1
|
Quertermous HM, Kamstra K, van der Burg CA, Muncaster S, Todd E, Jasoni CL, Brown C, Gemmell N. Behavioural and neural correlates of social hierarchy formation in a sex-changing fish. Proc Biol Sci 2025; 292:20242097. [PMID: 40359973 PMCID: PMC12074797 DOI: 10.1098/rspb.2024.2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/10/2024] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Social hierarchies in sex-changing fish determine which fish will change sex, yet the complexities of hierarchy formation at the neurobehavioural level are still being unravelled. Here, we investigate the formation of social hierarchies within groups of New Zealand spotty wrasse, integrating behavioural observations with neural activation patterns upon social disruption. We find that dominance hierarchies form linearly based on size, with larger fish displaying more dominant behaviours and smaller fish displaying more submissive behaviours. Disruption of the social hierarchy induced rapid behavioural changes, particularly in second-ranked fish, highlighting that second-ranked fish will opportunistically adopt a dominant position. Analysis of neural activation patterns reveals that the social decision-making network is deeply involved in the establishment of dominance, with the fish attaining dominance showing significant differences to all other ranked fish. Overall, this study underscores the complexity of social relationships and their neural underpinnings in the spotty wrasse, providing a foundation for further research into the cellular and molecular mechanisms of socially controlled sex change, and demonstrates that disruption of the social hierarchy triggers rapid changes in both behaviour and the social decision-making regions of the brain.
Collapse
Affiliation(s)
| | - Kaj Kamstra
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | | | | | - Erica Todd
- Deakin University, Geelong, Victoria, Australia
| | - Christine L. Jasoni
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
- Lincoln University, Lincoln, Canterbury, New Zealand
| | - Culum Brown
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Neil Gemmell
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
2
|
Stennette KA, Godwin JR. Estrogenic influences on agonistic behavior in teleost fishes. Horm Behav 2024; 161:105519. [PMID: 38452611 DOI: 10.1016/j.yhbeh.2024.105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Teleost fishes show an extraordinary diversity of sexual patterns, social structures, and sociosexual behaviors. Sex steroid hormones are key modulators of social behaviors in teleosts as in other vertebrates and act on sex steroid receptor-containing brain nuclei that form the evolutionarily conserved vertebrate social behavior network (SBN). Fishes also display important differences relative to tetrapod vertebrates that make them particularly well-suited to study the physiological mechanisms modulating social behavior. Specifically, fishes exhibit high levels of brain aromatization and have what has been proposed to be a lifelong, steroid hormone dependent plasticity in the neural substrates mediating sociosexual behavior. In this review, we examine how estrogenic signaling modulates sociosexual behaviors in teleosts with a particular focus on agonistic behavior. Estrogens have been shown to mediate agonistic behaviors in a broad range of fishes, from sexually monomorphic gonochoristic species to highly dimorphic sex changers with alternate reproductive phenotypes. These similarities across such diverse taxa contribute to a growing body of evidence that estrogens play a crucial role in the modulation of aggression in vertebrates. As analytical techniques and genomic tools rapidly advance, methods such as LC-MS/MS, snRNAseq, and CRISPR-based mutagenesis show great promise to further elucidate the mechanistic basis of estrogenic effects on social behavior in the diverse teleost lineage.
Collapse
Affiliation(s)
- Katherine A Stennette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Muñoz-Arroyo S, Guerrero-Tortolero DA, Hernández-Olalde L, Balart EF. Bidirectional sex-change behavior and physiological aspects in the Gorgeous goby Lythrypnus pulchellus (Gobiidae). JOURNAL OF FISH BIOLOGY 2024; 104:184-205. [PMID: 37779354 DOI: 10.1111/jfb.15573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The Gorgeous goby Lythrypnus pulchellus shows extreme sexual plasticity with the bidirectional sex-change ability socially controlled in adults. Therefore, this study describes how the hierarchical status affects hormone synthesis through newborn hormone waste products in water and tests the influence of body size and social dominance establishment in sex reversal duration and direction. The associated changes in behavior and hormone levels are described under laboratory conditions in male-male and female-female pairs of similar and different body sizes, recording the changes until spawning. The status establishment occurred in a relatively shorter time period in male and female pairs of different sizes (1-3 days) compared to those of similar size (3-5 days), but the earlier one did not significantly affect the overall time of sex change (verified by pair spawning). The changes in gonads, hormones, and papilla occurred in sex-changer individuals, but the first one was observed in behavior. Courtship started at 3-5 days in male pairs and from 2 h to 1 day in female pairs of both groups of different and similar sizes. Hormones did not gradually move in the new sexual phenotype direction during the sex-change time course. Nonetheless, estradiol regulated sex change and 11-ketotestosterone enabled bidirectional sex change and was modulated by agonistic interactions. Cortisol is associated with status and gonadal sex change. In general, similar mechanisms underlie sex change in both directions with a temporal change sequence in phases. These results shed new light on sex-change mechanisms. Further studies should be performed to determine whether these localized changes exist in the steroid hormone synthesis along the brain-pituitary gonad axis during social and bidirectional sex changes in L. pulchellus.
Collapse
Affiliation(s)
| | | | | | - Eduardo F Balart
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| |
Collapse
|
5
|
Smiley KO, Munley KM, Aghi K, Lipshutz SE, Patton TM, Pradhan DS, Solomon-Lane TK, Sun SED. Sex diversity in the 21st century: Concepts, frameworks, and approaches for the future of neuroendocrinology. Horm Behav 2024; 157:105445. [PMID: 37979209 PMCID: PMC10842816 DOI: 10.1016/j.yhbeh.2023.105445] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Sex is ubiquitous and variable throughout the animal kingdom. Historically, scientists have used reductionist methodologies that rely on a priori sex categorizations, in which two discrete sexes are inextricably linked with gamete type. However, this binarized operationalization does not adequately reflect the diversity of sex observed in nature. This is due, in part, to the fact that sex exists across many levels of biological analysis, including genetic, molecular, cellular, morphological, behavioral, and population levels. Furthermore, the biological mechanisms governing sex are embedded in complex networks that dynamically interact with other systems. To produce the most accurate and scientifically rigorous work examining sex in neuroendocrinology and to capture the full range of sex variability and diversity present in animal systems, we must critically assess the frameworks, experimental designs, and analytical methods used in our research. In this perspective piece, we first propose a new conceptual framework to guide the integrative study of sex. Then, we provide practical guidance on research approaches for studying sex-associated variables, including factors to consider in study design, selection of model organisms, experimental methodologies, and statistical analyses. We invite fellow scientists to conscientiously apply these modernized approaches to advance our biological understanding of sex and to encourage academically and socially responsible outcomes of our work. By expanding our conceptual frameworks and methodological approaches to the study of sex, we will gain insight into the unique ways that sex exists across levels of biological organization to produce the vast array of variability and diversity observed in nature.
Collapse
Affiliation(s)
- Kristina O Smiley
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 639 North Pleasant Street, Morrill IVN Neuroscience, Amherst, MA 01003, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, 3695 Cullen Boulevard, Houston, TX 77204, USA.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA.
| | - Sara E Lipshutz
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.
| | - Tessa M Patton
- Bioinformatics Program, Loyola University Chicago, 1032 West Sheridan Road, LSB 317, Chicago, IL 60660, USA.
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209, USA.
| | - Tessa K Solomon-Lane
- Scripps, Pitzer, Claremont McKenna Colleges, 925 North Mills Avenue, Claremont, CA 91711, USA.
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
6
|
Proffitt MR, Liu X, Ortlund EA, Smith GT. Evolution of androgen receptors contributes to species variation in androgenic regulation of communication signals in electric fishes. Mol Cell Endocrinol 2023; 578:112068. [PMID: 37714403 PMCID: PMC10695101 DOI: 10.1016/j.mce.2023.112068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Hormones and receptors coevolve to generate species diversity in hormone action. We compared the structure and function of androgen receptors (ARs) across fishes, with a focus on ARs in ghost knifefishes (Apteronotidae). Apteronotids, like many other teleosts, have two ARs (ARα and ARβ). ARβ is largely conserved, whereas ARα sequences vary considerably across species. The ARα ligand binding domain (LBD) has evolved under positive selection, and differences in the LBD across apteronotid species are associated with diversity in androgenic regulation of behavior. The Apteronotus leptorhynchus ARα LBD differs substantially from that of the Apteronotus albifrons ARα or the ancestral AR. Structural modeling and transactivation assays demonstrated that A. leptorhynchus ARα cannot bind androgens. We propose a model whereby relative expression of ARα versus ARβ in the brain, coupled with loss of androgen binding by ARα in A. leptorhynchus might explain reversals in androgenic regulation and sex differences in electrocommunication behavior.
Collapse
Affiliation(s)
- Melissa Renee Proffitt
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Xu Liu
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - G Troy Smith
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
7
|
Kelly AM, Thompson RR. Testosterone facilitates nonreproductive, context-appropriate pro- and anti-social behavior in female and male Mongolian gerbils. Horm Behav 2023; 156:105436. [PMID: 37776832 DOI: 10.1016/j.yhbeh.2023.105436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/13/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
A growing body of literature suggests that testosterone (T) rapidly modulates behavior in a context-specific manner. However, the timescales in which T can rapidly mediate distinct types of behavior, such as pro- vs. anti- social responses, has not been studied. Thus, here we examined acute T influences on social behavior in male and female Mongolian gerbils in nonreproductive contexts. Females and males received an injection of either saline or T and were first tested in a social interaction test with a same-sex, familiar peer. 5 min after the peer interaction, subjects then underwent a resident-intruder test with a novel, same-sex conspecific. After another 5 min, gerbils were tested in a novel object task to test context-specificity (i.e., social vs. nonsocial) of T effects on behavior. Within 1 h, males and females injected with T exhibited more huddling with a peer but more active avoidance of and less time spent in proximity of an intruder than did animals injected with saline. T effects on behavior were specific to social contexts, such that T did not influence investigation of the novel object. Together these findings show that T rapidly promotes pro-social responses to a familiar peer and anti-social responses to an intruder in the same individuals within 5 min of experiencing these disparate social contexts. This demonstrates that T rapidly facilitates behavior in a context-appropriate manner outside the context of reproduction and reveals that rapid effects of T on behavior are not restricted to males.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA.
| | - Richmond R Thompson
- Division of Social Sciences, Oxford College of Emory University, 801 Emory Street, Oxford, GA 30054, USA
| |
Collapse
|
8
|
Zubizarreta L, Jalabert C, Silva AC, Soma KK, Quintana L. Brain and circulating steroids in an electric fish: Relevance for non-breeding aggression. PLoS One 2023; 18:e0289461. [PMID: 37816021 PMCID: PMC10564164 DOI: 10.1371/journal.pone.0289461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/23/2023] [Indexed: 10/12/2023] Open
Abstract
Steroids play a crucial role in modulating brain and behavior. While traditionally it is thought that the brain is a target of sex steroids produced in endocrine glands (e.g. gonads), the brain itself produces steroids, known as neurosteroids. Neurosteroids can be produced in regions involved in the regulation of social behaviors and may act locally to regulate social behaviors, such as reproduction and aggression. Our model species, the weakly electric fish Gymnotus omarorum, displays non-breeding aggression in both sexes. This is a valuable natural behavior to understand neuroendocrine mechanisms that differ from those underlying breeding aggression. In the non-breeding season, circulating sex steroid levels are low, which facilitates the study of neurosteroids. Here, for the first time in a teleost fish, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify a panel of 8 steroids in both plasma and brain to characterize steroid profiles in wild non-breeding adult males and females. We show that: 1) systemic steroid levels in the non-breeding season are similar in both sexes, although only males have detectable circulating 11-ketotestosterone, 2) brain steroid levels are sexually dimorphic, as females display higher levels of androstenedione, testosterone and estrone, and only males had detectable 11-ketotestosterone, 3) systemic androgens such as androstenedione and testosterone in the non-breeding season are potential precursors for neuroestrogen synthesis, and 4) estrogens, which play a key role in non-breeding aggression, are detectable in the brain (but not the plasma) in both sexes. These data are consistent with previous studies of G. omarorum that show non-breeding aggression is dependent on estrogen signaling, as has also been shown in bird and mammal models. Overall, our results provide a foundation for understanding the role of neurosteroids, the interplay between central and peripheral steroids and potential sex differences in the regulation of social behaviors.
Collapse
Affiliation(s)
- Lucia Zubizarreta
- Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana C. Silva
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Kiran K. Soma
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Quintana
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
9
|
White KJ, Rivas MG, Pradhan DS. Sex differences in aggressive intensities and brain steroids during status resolution in a sex changing fish, Lythrypnus dalli. Horm Behav 2023; 153:105373. [PMID: 37182511 DOI: 10.1016/j.yhbeh.2023.105373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
For vertebrates living in social hierarchies, the neuroendocrine system regulates temporal aspects of aggressive interactions during status establishment. In teleost fishes, the sex steroids 17β-estradiol (E2) and 11-ketotestosterone (KT), and the glucocorticoid, cortisol (CORT) are associated with aggression in distinct phases of their life history. Bluebanded gobies, Lythrypnus dalli, exhibit bidirectional sexual plasticity by responding to changes in their social structure by escalating aggression associated with neural changes that precede gonadal reorganization to the opposite sex. Here, we used a novel experimental design to investigate systemic (waterborne) and neural steroids associated with the earliest behavioral changes associated with feminization and masculinization during protandrous and protogynous sex change respectively. In stable social groups of wild-caught L. dalli comprising of one male and two females, we disrupted hierarchy by adding or removing a male, providing a social context for intrasexual aggression. Within only 30 min, males exhibited high rates of physical aggression inside the nest to maintain their territory, while females exhibited high rates of chases outside the nest to reestablish social status. During this period of instability, while waterborne steroids were not affected, brain E2 was higher in all fish and CORT was lower in male brains. Brain KT was higher in males who emerged as dominant compared to dominant females. Overall, a combination of differences in brain E2, CORT, and KT were important in the regulation of hierarchy re-establishment and maintenance. Rapid responses during conspecific aggressive encounters are likely mediated by neural steroid synthesis that precede changes in systemic steroids.
Collapse
Affiliation(s)
- Katrina J White
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, United States of America.
| | - Melissa G Rivas
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, United States of America
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, United States of America
| |
Collapse
|
10
|
Parker CG, Craig SE, Histed AR, Lee JS, Ibanez E, Pronitcheva V, Rhodes JS. New cells added to the preoptic area during sex change in the common clownfish Amphiprion ocellaris. Gen Comp Endocrinol 2023; 333:114185. [PMID: 36509136 DOI: 10.1016/j.ygcen.2022.114185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Sex differences in cell number in the preoptic area of the hypothalamus (POA) are documented across all major vertebrate lineages and contribute to differential regulation of the hypothalamic-pituitary-gonad axis and reproductive behavior between the sexes. Sex-changing fishes provide a unique opportunity to study mechanisms underlying sexual differentiation of the POA. In anemonefish (clownfish), which change sex from male to female, females have approximately twice the number of medium-sized cells in the anterior POA compared to males. This sex difference transitions from male-like to female-like during sex change. However, it is not known how this sex difference in POA cell number is established. This study tests the hypothesis that new cell addition plays a role. We initiated adult male-to-female sex change in 30 anemonefish (Amphiprion ocellaris) and administered BrdU to label new cells added to the POA at regular intervals throughout sex change. Sex-changing fish added more new cells to the anterior POA than non-changing fish, supporting the hypothesis. The observed effects could be accounted for by differences in POA volume, but they are also consistent with a steady trickle of new cells being gradually accumulated in the anterior POA before vitellogenic oocytes develop in the gonads. These results provide insight into the unique characteristics of protandrous sex change in anemonefish relative to other modes of sex change, and support the potential for future research in sex-changing fishes to provide a richer understanding of the mechanisms for sexual differentiation of the brain.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Sarah E Craig
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Abigail R Histed
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Joanne S Lee
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Emma Ibanez
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Veronica Pronitcheva
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA; Department of Psychology, University of Illinois, Urbana-Champaign, 603 E Daniel St, Urbana, IL 61801, USA.
| |
Collapse
|
11
|
Casas L, Saborido-Rey F. Environmental Cues and Mechanisms Underpinning Sex Change in Fish. Sex Dev 2021; 15:108-121. [PMID: 34111868 DOI: 10.1159/000515274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Fishes are the only vertebrates that undergo sex change during their lifetime, but even within this group, a unique reproductive strategy is displayed by only 1.5% of the teleosts. This lability in alternating sexual fate is the result of the simultaneous suppression and activation of opposing male and female networks. Here, we provide a brief review summarizing recent advances in our understanding of the environmental cues that trigger sex change and their perception, integration, and translation into molecular cascades that convert the sex of an individual. We particularly focus on molecular events underpinning the complex behavioral and morphological transformation involved in sex change, dissecting the main molecular players and regulatory networks that shape the transformation of one sex into the opposite. We show that histological changes and molecular pathways governing gonadal reorganization are better described than the neuroendocrine basis of sex change and that, despite important advances, information is lacking for the majority of hermaphrodite species. We highlight significant gaps in our knowledge of how sex change takes place and suggest future research directions.
Collapse
Affiliation(s)
- Laura Casas
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Fran Saborido-Rey
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| |
Collapse
|
12
|
Suzuki H, Ozaki Y, Gen K, Kazeto Y. Japanese eel retinol dehydrogenases 11/12-like are 17-ketosteroid reductases involved in sex steroid synthesis. Gen Comp Endocrinol 2021; 305:113685. [PMID: 33271196 DOI: 10.1016/j.ygcen.2020.113685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022]
Abstract
The synthesis of 11-ketotestosterone (11KT) and estradiol-17β (E2), which play important roles in the regulation of gametogenesis in teleost fishes, is catalyzed by several steroidogenic enzymes. In particular, 17β-hydroxysteroid dehydrogenases (Hsd17bs) with 17-ketosteroid reducing activity (17KSR activity) are essential enzymes in the formation of these sex steroid hormones in the gonads and other tissues. Retinol dehydrogenase 11 (RDH11) has been suggested to be a novel tentative HSD17B (HSD17B15) in humans for a decade, however no definitive proof has been provided yet. In this study, three cDNAs related to human RDH11 were isolated from Japanese eel testis and characterized. Sequence similarity and phylogenetic analyses revealed their close relationship to human rdh11 and rdh12 gene products and they were designated as rdh11/12-like 1, rdh11/12-like 2, and rdh11/12-like 3. Three recombinant Rdh11/12-like proteins expressed in HEK293T cells catalyzed the transformation of estrone into E2 and androstenedione into testosterone. Only Rdh11/12-like 1 catalyzed the conversion of 11-ketoandrostenedione into 11KT. Tissue-distribution analysis by quantitative real-time polymerase chain reaction revealed, in immature male Japanese eel, that rdh11/12-like 1 and rdh11/12-like 2 are predominantly expressed in testis and brain, while rdh11/12-like 3 is expressed ubiquitously. Moreover, we analyzed the effects of gonadotropins and 11KT on the expression of the three rdh11/12-like mRNAs in the immature testis. In vitro incubation of immature testes with various doses of recombinant Japanese eel follicle stimulating hormone, luteinizing hormone, and 11KT indicated that the expression of rdh11/12-like 1 mRNA, rdh11/12-like 2, and rdh11/12-like 3 did not change. These findings suggest that the three Rdh11/12-like proteins metabolize sex steroids. Rdh11/12-like 1 may be one of the enzymes with 17KSR activity involved in the production of 11KT in the testis.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Yuichi Ozaki
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Koichiro Gen
- Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan.
| | - Yukinori Kazeto
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| |
Collapse
|
13
|
Horita J, Iwasa Y, Tachiki Y. Positive Feedback between Behavioral and Hormonal Dynamics Leads to Differentiation of Life-History Tactics. Am Nat 2020; 196:679-689. [PMID: 33211570 DOI: 10.1086/711414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractCompetitive interaction among individuals of a single population may result in the differentiation of two or more distinct life-history tactics. For example, although they exhibit unimodal size distribution, male juveniles of salmonids differentiate into those going down to the ocean to grow and returning to the natal stream after several years to reproduce (migratory tactic) and those staying in the stream and reproducing for multiple years (resident tactic). In this study, we developed a simple mathematical model for the positive feedback between hormonal and behavioral dynamics, with the expectation of establishing multiple discrete clusters of hormone levels leading to differentiation of life-history tactics. The assumptions were that probability of winning in fighting depends both on the body size and hormone level of the two contestants. An individual with a higher hormone level would be more likely to win the competition, which further enhanced hormone production, forming a positive feedback loop between hormone level and fighting ability. If the positive feedback was strong but not excessive, discrete clusters of hormone levels emerged from a continuous distribution. In contrast, no clear clustering structure appeared in the distribution of hormone levels if the probability of winning in fighting was controlled by the body size.
Collapse
|
14
|
Relative size underlies alternative morph development in a salamander. Oecologia 2020; 193:879-888. [PMID: 32740730 DOI: 10.1007/s00442-020-04723-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/23/2020] [Indexed: 01/16/2023]
Abstract
Size thresholds commonly underlie the induction of alternative morphological states. However, the respective importance of absolute and relative size to such thresholds remains uncertain. If absolute size governs expression, morph frequency should differ among environments that influence absolute sizes (e.g. resources, competition), and individuals of the same morph should have similar average sizes across environments. If relative size determines expression, the frequency of each morph may not differ among environments, but morphs within each environment should differ in size relative to one another. We tested these predictions in a salamander (Ambystoma talpoideum) that develops into either a terrestrial metamorph or an aquatic paedomorph. To generate size variation within and among environments, we reared individuals in mesocosm ponds across three conspecific densities. We found that morph frequency did not differ among density treatments, and the morphs were not similarly sized within each density treatment. Instead, within each environment, relatively larger individuals became metamorphs and relatively smaller individuals became paedomorphs. Relative size therefore determined morph development, highlighting the importance of an individual's social context to size-dependent morph induction.
Collapse
|
15
|
Abstract
Sexual fate can no longer be considered an irreversible deterministic process that once established during early embryonic development, plays out unchanged across an organism's life. Rather, it appears to be a dynamic process, with sexual phenotype determined through an ongoing battle for supremacy between antagonistic male and female developmental pathways. That sexual fate is not final and is actively regulated via the suppression or activation of opposing genetic networks creates the potential for flexibility in sexual phenotype in adulthood. Such flexibility is seen in many fish, where sex change is a usual and adaptive part of the life cycle. Many fish are sequential hermaphrodites, beginning life as one sex and changing sometime later to the other. Sequential hermaphrodites include species capable of female-to-male (protogynous), male-to-female (protandrous), or bidirectional (serial) sex change. These natural forms of sex change involve coordinated transformations across multiple biological systems, including behavioral, anatomical, neuroendocrine and molecular axes. Here we review the biological processes underlying this amazing transformation, focusing particularly on the molecular aspects, where new genomic technologies are beginning to help us understand how sex change is initiated and regulated at the molecular level.
Collapse
Affiliation(s)
- Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Thompson RR, Mangiamele LA. Rapid sex steroid effects on reproductive responses in male goldfish: Sensory and motor mechanisms. Horm Behav 2018; 104:52-62. [PMID: 29777656 DOI: 10.1016/j.yhbeh.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. Although we have learned a great deal about the molecular mechanisms through which sex steroids rapidly affect cellular physiology, we still know little about the links between those mechanisms and behavioral output, nor about their functional consequences in natural contexts. In this review, we first briefly discuss the contexts associated with rapid effects of sex steroids on reproductive behaviors and their likely functional outcomes, as well the sensory, motor, and motivational mechanisms associated with those effects. We then discuss our recent studies on the rapid effects of testosterone in goldfish. Those studies indicate that testosterone, through its aromatization and the subsequent activation of estrogen receptors, rapidly stimulates physiological processes related to the release of milt/sperm through likely influences on motor pathways, as well as behavioral responses to female visual stimuli that may reflect, in part, influences on early stages of sensory processing. Such motor and sensory mechanism are likely important for sperm competition and mate detection / tracking, respectively, in competitive mating contexts. We also present preliminary data on rapid effects of testosterone on responses to pheromones that may not involve estrogen receptors, suggesting a dissociation in the receptor mechanisms that mediate behavioral responses in different sensory modalities. Lastly, we briefly discuss the implications of our work on unresolved questions about rapid sex steroid neuromodulation in fish.
Collapse
Affiliation(s)
- Richmond R Thompson
- Department of Psychology, Program in Neuroscience, Bowdoin College, Brunswick, ME 04011, United States.
| | - Lisa A Mangiamele
- Department of Biological Sciences, Smith College, North Hampton, MA 01063, United States
| |
Collapse
|
17
|
Kalamarz-Kubiak H, Gozdowska M, Guellard T, Kulczykowska E. How does oestradiol influence the AVT/IT system in female round gobies during different reproductive phases? Biol Open 2017; 6:1493-1501. [PMID: 28860130 PMCID: PMC5665460 DOI: 10.1242/bio.024844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this in vitro gradient perfusion study, we determined whether there is a functional relationship between oestradiol and the arginine vasotocin/isotocin (AVT/IT) system in the female round goby (Neogobius melanostomus). Brain explants were perfused in medium supplemented with 17β-oestradiol (E2) at doses mimicking the plasma levels of this hormone in nature during the spawning-capable phase and regressing phase. We aimed to establish which pathway, genomic or non-genomic, is involved in this mechanism in different reproductive phases. For this purpose, brain explants were perfused in medium supplemented with Fulvestrant (ICI 182.780) or Actinomycin D (Act D) separately or in combination with E2 The contents of AVT and IT in the perfusion media were determined using high-performance liquid chromatography (HPLC) with fluorescence and UV detection. During the spawning-capable phase, the effect of E2 on AVT release is mediated through oestrogen receptors (ERs) via both genomic and non-genomic pathways, while IT release is mediated through ERs via a genomic pathway only. In the regressing phase, release of both nonapeptides is mediated through ERs via a genomic pathway. This is the first study to present a feasible mechanism of oestradiol action on the AVT/IT system in female fish during different phases of the reproductive cycle.
Collapse
Affiliation(s)
- Hanna Kalamarz-Kubiak
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish, Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish, Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Tatiana Guellard
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish, Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish, Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
18
|
Ramallo MR, Honji RM, Birba A, Morandini L, Varela ML, Genovese G, Moreira RG, Somoza GM, Pandolfi M. A game of two? Gene expression analysis of brain (cyp19a1b) and gonadal (cyp19a1a) aromatase in females of a Neotropical cichlid fish through the parental care period and removal of the offspring. Gen Comp Endocrinol 2017; 252:119-129. [PMID: 28797804 DOI: 10.1016/j.ygcen.2017.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 01/28/2023]
Abstract
For many species parental behavior is essential for the survival of the offspring. While the ultimate causes of teleost parental behavior have been widely studied, comparatively little is known about its proximate causes. The aim of this study was to analyze the yet unexplored, potential dual role of brain and gonadal aromatases, the enzymes responsible for the conversion of androgens to estrogens in the brains and gonads of teleosts, respectively, on the different stages of the maternal care period of the biparental cichlid Cichlasoma dimerus, locally known as chanchita. By immunohistochemistry we analyzed the neural distribution of brain aromatase and observed it exclusively within the forebrain, including areas involved in the regulation of parental behavior. We next analyzed the gene expression of brain aromatase in the brain, and gonadal aromatase in the ovary, of female chanchitas through the parental care period. To further characterize the physiological environment associated to maternal care, we also evaluated sex steroid levels (17β-estradiol, testosterone and 11-ketotestoterone) and ovarian follicle percentage. The onset of parental behavior specifically downregulated sex steroids synthesis and the rate of ovarian maturation, as denoted by a more than 10-fold decrease in steroid levels and delayed detection of mature follicles in females with offspring, compared to females which eggs were removed. Gene expression levels of both aromatases were independent of maternal care at the evaluated time points, even though they varied during the parental care period.
Collapse
Affiliation(s)
- Martín R Ramallo
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Renato M Honji
- Departamento de Fisiologia do Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Agustina Birba
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Leonel Morandini
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - María L Varela
- Laboratorio de Ecotoxicología Acuática, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Griselda Genovese
- Laboratorio de Ecotoxicología Acuática, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Renata G Moreira
- Departamento de Fisiologia do Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo M Somoza
- Laboratorio de Ictiofisiología y Acuicultura, IIB-INTECH, CONICET, UNSAM, Chascomús, Buenos Aires, Argentina
| | - Matías Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina.
| |
Collapse
|
19
|
Schuppe ER, Pradhan DS, Thonkulpitak K, Drilling C, Black M, Grober MS. Sex differences in neuromuscular androgen receptor expression and sociosexual behavior in a sex changing fish. PLoS One 2017; 12:e0177711. [PMID: 28520775 PMCID: PMC5433761 DOI: 10.1371/journal.pone.0177711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/02/2017] [Indexed: 12/16/2022] Open
Abstract
Androgen signaling, via receptor binding, is critical for regulating the physiological and morphological foundations of male-typical reproductive behavior in vertebrates. Muscles essential for male courtship behavior and copulation are highly sensitive to androgens. Differences in the distribution and density of the androgen receptor (AR) are important for maintaining dimorphic musculature and thus may provide for anatomical identification of sexually selected traits. In Lythrypnus dalli, a bi-directional hermaphroditic teleost fish, both sexes produce agonistic approach displays, but reproductive behavior is sexually dimorphic. The male-specific courtship behavior is characterized by rapid jerky movements (involving dorsal fin erection) towards a female or around their nest. Activation of the supracarinalis muscle is involved in dorsal fin contributions to both agonistic and sociosexual behavior in other fishes, suggesting that differences in goby sexual behavior may be reflected in sexual dimorphism in AR signaling in this muscle. We examined sex differences in the local distribution of AR in supracarinalis muscle and spinal cord. Our results demonstrate that males do express more AR in the supracarinalis muscle relative to females, but there was no sex difference in the number of spinal motoneurons expressing AR. Interestingly, AR expression in the supracarinalis muscle was also related to rates of sociosexual behavior in males, providing evidence that sexual selection may influence muscle androgenic sensitivity to enhance display vigor. Sex differences in the distribution and number of cells expressing AR in the supracarinalis muscle may underlie the expression of dimorphic behaviors in L. dalli.
Collapse
Affiliation(s)
- Eric R. Schuppe
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Devaleena S. Pradhan
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Kevin Thonkulpitak
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Cathleen Drilling
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Michael Black
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Matthew S. Grober
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|
20
|
Schuppe ER, Solomon-Lane TK, Pradhan DS, Thonkulpitak K, Grober MS. Ancestral androgenic differentiation pathways are repurposed during the evolution of adult sexual plasticity. Evol Dev 2016; 18:285-296. [PMID: 27870212 DOI: 10.1111/ede.12207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although early exposure to androgens is necessary to permanently organize male phenotype in many vertebrates, animals that exhibit adult sexual plasticity require mechanisms that prevent early fixation of genital morphology and allow for genital morphogenesis during adult transformation. In Lythrypnus dalli, a teleost fish that exhibits bi-directional sex change, adults display dimorphic genitalia morphology despite the absence of sex differences in the potent fish androgen 11-ketotestosterone. Based on conserved patterns of vertebrate development, two steroid-based mechanisms may regulate the early development and adult maintenance of dimorphic genitalia; local androgen receptor (AR) and steroidogenic enzyme expression. Consistent with the ancestral pattern of AR expression during the multipotential phase of differentiation, juvenile differentiation into either sex involved high mesenchymal AR expression. In adults, AR expression was high throughout the male genitalia, but low or absent in females. Consistent with the hypothesis that adult sexual plasticity repurposes pathways from primary differentiation, we show that adults with transitioning genitalia also exhibited higher AR expression relative to females. Local androgen biosynthesis may also participate in genitalia transformation, as transitioning adults had greater 11β-HSD-like immunoreactivity in the epithelial layer of the dorsal lumen compared to both sexes. By administering an AR antagonist to adult males, we show AR is necessary to maintain male-typical morphology. In a species that is resistant to early sexual canalization, early androgenic differentiation mechanisms are consistent with other vertebrates and the tissue-specific regulation of AR expression appears to be repurposed in adulthood to allow for transitions between sexual phenotypes.
Collapse
Affiliation(s)
- Eric R Schuppe
- Department of Biology, Georgia State University, Atlanta, GA
| | | | | | | | - Matthew S Grober
- Department of Biology, Georgia State University, Atlanta, GA.,Neuroscience Institute, Georgia State University, Atlanta, GA
| |
Collapse
|
21
|
Todd EV, Liu H, Muncaster S, Gemmell NJ. Bending Genders: The Biology of Natural Sex Change in Fish. Sex Dev 2016; 10:223-241. [PMID: 27820936 DOI: 10.1159/000449297] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 11/19/2022] Open
Abstract
Sexual fate is no longer seen as an irreversible deterministic switch set during early embryonic development but as an ongoing battle for primacy between male and female developmental trajectories. That sexual fate is not final and must be actively maintained via continuous suppression of the opposing sexual network creates the potential for flexibility into adulthood. In many fishes, sexuality is not only extremely plastic, but sex change is a usual and adaptive part of the life cycle. Sequential hermaphrodites begin life as one sex, changing sometime later to the other, and include species capable of protandrous (male-to-female), protogynous (female-to-male), or serial (bidirectional) sex change. Natural sex change involves coordinated transformations across multiple biological systems, including behavioural, anatomical, neuroendocrine, and molecular axes. We here review the biological processes underlying this amazing transformation, focussing particularly on its molecular basis, which remains poorly understood, but where new genomic technologies are significantly advancing our understanding of how sex change is initiated and progressed at the molecular level. Knowledge of how a usually committed developmental process remains plastic in sequentially hermaphroditic fishes is relevant to understanding the evolution and functioning of sexual developmental systems in vertebrates generally, as well as pathologies of sexual development in humans.
Collapse
Affiliation(s)
- Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
22
|
Solomon-Lane TK, Shvidkaya P, Thomas A, Williams MM, Rhyne A, Rogers L, Grober MS. Juvenile social status predicts primary sex allocation in a sex changing fish. Evol Dev 2016; 18:245-53. [PMID: 27402570 DOI: 10.1111/ede.12195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Both individual sex and population sex ratio can affect lifetime reproductive success. As a result, multiple mechanisms have evolved to regulate sexual phenotype, including adult sex change in fishes. While adult sex change is typically socially regulated, few studies focus on the non-chromosomal mechanisms regulating primary sex allocation. We investigated primary sex determination in the bluebanded goby (Lythrypnus dalli), a bidirectionally sex-changing fish. Of the studies investigating primary sex determination in species with adult sex change, this is the first to incorporate the roles of social status and size, key factors for determining adult sex allocation. For L. dalli, adult sex is regulated by social status: dominants are male; subordinates are female. In social groups of laboratory-reared juveniles, we demonstrate that status also predicts primary sex. Dominant juveniles developed male-typical genitalia, and their gonads contained significantly less ovarian tissue than subordinates, which developed female-typical genitalia. To better understand natural development, we quantified the distribution of juveniles and adults on the reef and analyzed genital papilla and gonad morphology in a sample of wild-caught juveniles. Juveniles were observed in various social environments, and most grouped with other juveniles and/or adults. The majority of field-caught juveniles had female-typical genitalia and bisexual, female-biased gonads. These data are consistent with a single mechanism that regulates sexual phenotype throughout life. Social status could first cause and then maintain through adulthood a female-biased population, allowing individuals to regulate sex based on local conditions, which is important for optimizing lifetime reproductive success.
Collapse
Affiliation(s)
- Tessa K Solomon-Lane
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Polina Shvidkaya
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Alma Thomas
- Department of Biology, Agnes Scott College, Decatur, GA, 30030, USA
| | - Megan M Williams
- Department of Biology, Agnes Scott College, Decatur, GA, 30030, USA
| | - Andrew Rhyne
- Department of Biology and Marine Biology, Roger Williams University, Bristol, RI, 02809, USA
| | - Lock Rogers
- Department of Biology, Agnes Scott College, Decatur, GA, 30030, USA
| | - Matthew S Grober
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
23
|
|
24
|
Bhatia H, Kumar A. Does anti-androgen, flutamide cancel out the in vivo effects of the androgen, dihydrotestosterone on sexual development in juvenile Murray rainbowfish (Melanotaenia fluviatilis)? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:72-80. [PMID: 26638141 DOI: 10.1016/j.aquatox.2015.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to investigate if the effects of the androgen, dihydrotestosterone (DHT) on the sexual development in juvenile Murray rainbowfish (Melanotaenia fluviatilis) are canceled out by the anti-androgen, flutamide. Fish (60 days post hatch) were exposed to 250ng/L of DHT, 25μg/L of flutamide (Flu-low), 250μg/L of flutamide (Flu-high), DHT+Flu low and DHT+Flu high. After 35 days of exposure, lengths and weights of the fish were measured and the condition factor (CF) calculated; vitellogenin (VTG) concentrations were measured in tail tissue; sex steroid hormones (17β-estradiol [E2] and 11-keto testosterone [11-KT]) were measured in the head tissue and abdominal regions were used in histological investigation of the gonads. Treatment with DHT reduced the body-length of both male and female fish, an effect which was canceled out by low and high concentrations of flutamide. However, flutamide (low or high) could not nullify the DHT-induced reduction in the CF in either sex. The E2 levels were reduced only in female fish after exposure to DHT but returned to normal after treatment with Flu-high. DHT increased the levels of 11-KT and decreased the E2/11-KT ratio in both sexes. Flu-high, but not Flu-low, could nullify these effects. Both DHT and flutamide (low or high) induced VTG production and this effect persisted when both chemicals were co-administered. Treatment with DHT did not affect gonadal cell development in the testes. However, the female fish treated with DHT contained ovaries in early-vitellogenic stage in comparison to the pre-vitellogenic ovaries in control fish. Co-treatment with flutamide (low or high) resulted in oocyte atresia. The results from the present study suggest that treatment with Flu-high could cancel out DHT-induced effects only on the hormonal profile and body-length in both male and female fish. Juvenile fish co-treated with DHT and flutamide (low or high) had high VTG levels and low CF. In addition, the ovaries in female fish were atretic. These data represent potential adverse effects on the ability of the fish to reproduce successfully.
Collapse
Affiliation(s)
- Harpreet Bhatia
- Commonwealth Scientific and Industrial Research Organisation (Land and Water), PMB 2, Glen Osmond, Adelaide, SA 5064, Australia.
| | - Anupama Kumar
- Commonwealth Scientific and Industrial Research Organisation (Land and Water), PMB 2, Glen Osmond, Adelaide, SA 5064, Australia
| |
Collapse
|
25
|
The effects of previous experience and current condition on status contests in the bluebanded goby (Lythrypnus dalli). Acta Ethol 2015. [DOI: 10.1007/s10211-015-0224-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Solomon-Lane TK, Pradhan DS, Willis MC, Grober MS. Agonistic reciprocity is associated with reduced male reproductive success within haremic social networks. Proc Biol Sci 2015; 282:20150914. [PMID: 26156769 PMCID: PMC4528554 DOI: 10.1098/rspb.2015.0914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022] Open
Abstract
While individual variation in social behaviour is ubiquitous and causes social groups to differ in structure, how these structural differences affect fitness remains largely unknown. We used social network analysis of replicate bluebanded goby (Lythrypnus dalli) harems to identify the reproductive correlates of social network structure. In stable groups, we quantified agonistic behaviour, reproduction and steroid hormones, which can both affect and respond to social/reproductive cues. We identified distinct, optimal social structures associated with different reproductive measures. Male hatching success (HS) was negatively associated with agonistic reciprocity, a network structure that describes whether subordinates 'reciprocated' agonism received from dominants. Egg laying was associated with the individual network positions of the male and dominant female. Thus, males face a trade-off between promoting structures that facilitate egg laying versus HS. Whether this reproductive conflict is avoidable remains to be determined. We also identified different social and/or reproductive roles for 11-ketotestosterone, 17β-oestradiol and cortisol, suggesting that specific neuroendocrine mechanisms may underlie connections between network structure and fitness. This is one of the first investigations of the reproductive and neuroendocrine correlates of social behaviour and network structure in replicate, naturalistic social groups and supports network structure as an important target for natural selection.
Collapse
Affiliation(s)
- Tessa K Solomon-Lane
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Devaleena S Pradhan
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Madelyne C Willis
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Matthew S Grober
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
27
|
Lin CJ, Fan-Chiang YC, Dufour S, Chang CF. Activation of brain steroidogenesis and neurogenesis during the gonadal differentiation in protandrous black porgy, Acanthopagrus schlegelii. Dev Neurobiol 2015; 76:121-36. [PMID: 25980979 DOI: 10.1002/dneu.22303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/09/2015] [Accepted: 05/07/2015] [Indexed: 02/05/2023]
Abstract
The early brain development, at the time of gonadal differentiation was investigated using a protandrous teleost, black porgy. This natural model of monosex juvenile fish avoids the potential complexity of sexual dimorphism. Brain neurogenesis was evaluated by histological analyses of the diencephalon, at the time of testicular differentiation (in fish between 90 and 150 days after hatching). Increases in the number of both Nissl-stained total brain cells, and Pcna-immunostained proliferative brain cells were observed in specific area of the diencephalon, such as ventromedialis thalami and posterior preoptic area, revealing brain cell proliferation. qPCR analyses showed significantly higher expression of the radial glial cell marker blbp and neuron marker bdnf. Strong immunohistochemical staining of Blbp and extended cellular projections were observed. A peak expression of aromatase (cyp19a1b), as well as an increase in estradiol (E2 ) content were also detected in the early brain. These data demonstrate that during gonadal differentiation, the early brain exhibits increased E2 synthesis, cell proliferation, and neurogenesis. To investigate the role of E2 in early brain, undifferentiated fish were treated with E2 or aromatase inhibitor (AI). E2 treatment upregulated brain cyp19a1b and blbp expression, and enhanced brain cell proliferation. Conversely, AI reduced brain cell proliferation. Castration experiment did not influence the brain gene expression patterns and the brain cell number. Our data clearly support E2 biosynthesis in the early brain, and that brain E2 induces neurogenesis. These peak activity patterns in the early brain occur at the time of gonad differentiation but are independent of the gonads.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yi-Chun Fan-Chiang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208/IRD 207/UPMC/UCBN, Muséum National D'histoire Naturelle, Paris, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
28
|
Pradhan DS, Solomon-Lane TK, Grober MS. Contextual modulation of social and endocrine correlates of fitness: insights from the life history of a sex changing fish. Front Neurosci 2015; 9:8. [PMID: 25691855 PMCID: PMC4315020 DOI: 10.3389/fnins.2015.00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/09/2015] [Indexed: 12/18/2022] Open
Abstract
Steroid hormones are critical regulators of reproductive life history, and the steroid sensitive traits (morphology, behavior, physiology) associated with particular life history stages can have substantial fitness consequences for an organism. Hormones, behavior and fitness are reciprocally associated and can be used in an integrative fashion to understand how the environment impacts organismal function. To address the fitness component, we highlight the importance of using reliable proxies of reproductive success when studying proximate regulation of reproductive phenotypes. To understand the mechanisms by which the endocrine system regulates phenotype, we discuss the use of particular endocrine proxies and the need for appropriate functional interpretation of each. Lastly, in any experimental paradigm, the responses of animals vary based on the subtle differences in environmental and social context and this must also be considered. We explore these different levels of analyses by focusing on the fascinating life history transitions exhibited by the bi-directionally hermaphroditic fish, Lythrypnus dalli. Sex changing fish are excellent models for providing a deeper understanding of the fitness consequences associated with behavioral and endocrine variation. We close by proposing that local regulation of steroids is one potential mechanism that allows for the expression of novel phenotypes that can be characteristic of specific life history stages. A comparative species approach will facilitate progress in understanding the diversity of mechanisms underlying the contextual regulation of phenotypes and their associated fitness correlates.
Collapse
Affiliation(s)
| | | | - Matthew S Grober
- Department of Biology, Georgia State University Atlanta, GA, USA ; Neuroscience Institute, Georgia State University Atlanta, GA, USA
| |
Collapse
|
29
|
Pradhan DS, Solomon-Lane TK, Willis MC, Grober MS. A mechanism for rapid neurosteroidal regulation of parenting behaviour. Proc Biol Sci 2015; 281:rspb.2014.0239. [PMID: 24827441 DOI: 10.1098/rspb.2014.0239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
While systemic steroid hormones are known to regulate reproductive behaviour, the actual mechanisms of steroidal regulation remain largely unknown. Steroidogenic enzyme activity can rapidly modulate social behaviour by influencing neurosteroid production. In fish, the enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) synthesizes 11-ketotestosterone (KT, a potent teleost androgen) and deactivates cortisol (the primary teleost glucocorticoid), and both of these steroid hormones can regulate behaviour. Here, we investigated the role of neurosteroidogenesis in regulating parenting in a haremic bidirectionally hermaphroditic fish, Lythrypnus dalli, where males provide all requisite parental care. Using an in vitro assay, we found that an 11β-HSD inhibitor, carbenoxolone (CBX), reduced brain and testicular KT synthesis by 90% or more. We modulated neurosteroid levels in parenting males via intracerebroventricular injection of CBX. Within only 20 min, CBX transiently eliminated parenting behaviour, but not other social behaviour, suggesting an enzymatic mechanism for rapid neurosteroidal regulation of parenting. Consistent with our proposed mechanism, elevating KT levels rescued parenting when paired with CBX, while cortisol alone did not affect parenting. Females paired with the experimental males opportunistically consumed unattended eggs, which reduced male reproductive success by 15%, but some females also exhibited parenting behaviour and these females had elevated brain KT. Brain KT levels appear to regulate the expression of parenting behaviour as a result of changes in neural 11β-HSD activity.
Collapse
Affiliation(s)
| | | | - Madelyne C Willis
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Matthew S Grober
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
30
|
Pradhan DS, Solomon-Lane TK, Grober MS. Water-borne and Tissue Endocrine Profiles of an Alternative Male Reproductive Phenotype in the Sex Changing Fish,Lythrypnus dalli. COPEIA 2014. [DOI: 10.1643/cp-14-018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Solomon-Lane TK, Crespi EJ, Grober MS. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change. Front Neurosci 2013; 7:210. [PMID: 24265604 PMCID: PMC3820965 DOI: 10.3389/fnins.2013.00210] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/20/2013] [Indexed: 01/15/2023] Open
Abstract
Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli), a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.
Collapse
|
32
|
Marsh-Hunkin KE, Heinz HM, Hawkins MB, Godwin J. Estrogenic control of behavioral sex change in the bluehead wrasse, Thalassoma bifasciatum. Integr Comp Biol 2013; 53:951-9. [PMID: 24036013 DOI: 10.1093/icb/ict096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Estrogens activate male-typical sexual behavior in several mammalian and avian models. Estrogen signaling also appears critical in the control of sex change in some fishes, in which it is instead decreases in estradiol levels that may permit development of male-typical behaviors. The bluehead wrasse is a protogynous hermaphrodite that exhibits rapid increases in aggressive and male-typical courtship behavior as females undergo sex change. Removal of the ovaries does not prevent these changes. In two field experiments involving gonadally-intact and gonadectomized females, estradiol (E2) implants prevented behavioral sex change in large females who were made the largest members of their social groups through removals of more dominant fish. In contrast, cholesterol-implanted control females showed full behavioral sex change, along with a higher frequency both of aggressive interactions and of male-typical courtship displays than occurred in E2-implanted animals. To assess potential neural correlates of these behavioral effects of E2, we evaluated abundances of aromatase mRNA using in situ hybridization. Aromatase mRNA was more abundant in the POA of E2-implanted females than in cholesterol-implanted controls in gonadally-intact females. The lack of behavioral sex change coupled with increased levels of aromatase mRNA are consistent with an inhibitory role for E2, likely of neural origin, in regulating socially controlled sex change.
Collapse
Affiliation(s)
- K Erica Marsh-Hunkin
- North Carolina State University, Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, Raleigh, NC 27606, USA
| | | | | | | |
Collapse
|