1
|
Rekad Z, Izzi V, Lamba R, Ciais D, Van Obberghen-Schilling E. The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol 2022; 111:26-52. [DOI: 10.1016/j.matbio.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
|
2
|
Kaur R, Deb PK, Diwan V, Saini B. Heparanase Inhibitors in Cancer Progression: Recent Advances. Curr Pharm Des 2021; 27:43-68. [PMID: 33185156 DOI: 10.2174/1381612826666201113105250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND An endo-β-glucuronidase enzyme, Heparanase (HPSE), degrades the side chains of polymeric heparan sulfate (HS), a glycosaminoglycan formed by alternate repetitive units of D-glucosamine and D-glucuronic acid/L-iduronic acid. HS is a major component of the extracellular matrix and basement membranes and has been implicated in processes of the tissue's integrity and functional state. The degradation of HS by HPSE enzyme leads to conditions like inflammation, angiogenesis, and metastasis. An elevated HPSE expression with a poor prognosis and its multiple roles in tumor growth and metastasis has attracted significant interest for its inhibition as a potential anti-neoplastic target. METHODS We reviewed the literature from journal publication websites and electronic databases such as Bentham, Science Direct, PubMed, Scopus, USFDA, etc., about HPSE, its structure, functions, and role in cancer. RESULTS The present review is focused on Heparanase inhibitors (HPIns) that have been isolated from natural resources or chemically synthesized as new therapeutics for metastatic tumors and chronic inflammatory diseases in recent years. The recent developments made in the HPSE structure and function are also discussed, which can lead to the future design of HPIns with more potency and specificity for the target. CONCLUSION HPIns can be a better target to be explored against various cancers.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Philadelphia, Jordan
| | - Vishal Diwan
- Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
3
|
Heparanase-The Message Comes in Different Flavors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:253-283. [DOI: 10.1007/978-3-030-34521-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Coombe DR, Gandhi NS. Heparanase: A Challenging Cancer Drug Target. Front Oncol 2019; 9:1316. [PMID: 31850210 PMCID: PMC6892829 DOI: 10.3389/fonc.2019.01316] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Heparanase has been viewed as a promising anti-cancer drug target for almost two decades, but no anti-heparanase therapy has yet reached the clinic. This endoglycosidase is highly expressed in a variety of malignancies, and its high expression is associated with greater tumor size, more metastases, and a poor prognosis. It was first described as an enzyme cleaving heparan sulfate chains of proteoglycans located in extracellular matrices and on cell surfaces, but this is not its only function. It is a multi-functional protein with activities that are enzymatic and non-enzymatic and which take place both outside of the cell and intracellularly. Knowledge of the crystal structure of heparanase has assisted the interpretation of earlier structure-function studies as well as in the design of potential anti-heparanase agents. This review re-examines the various functions of heparanase in light of the structural data. The functions of the heparanase variant, T5, and structure and functions of heparanase-2 are also examined as these heparanase related, but non-enzymatic, proteins are likely to influence the in vivo efficacy of anti-heparanase drugs. The anti-heparanase drugs currently under development predominately focus on inhibiting the enzymatic activity of heparanase, which, in the absence of inhibitors with high clinical efficacy, prompts a discussion of whether this is the best approach. The diversity of outcomes attributed to heparanase and the difficulties of unequivocally determining which of these are due to its enzymatic activity is also discussed and leads us to the conclusion that heparanase is a valid, but challenging drug target for cancer.
Collapse
Affiliation(s)
- Deirdre R Coombe
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Neha S Gandhi
- School of Mathematical Sciences and Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Barash U, Spyrou A, Liu P, Vlodavsky E, Zhu C, Luo J, Su D, Ilan N, Forsberg-Nilsson K, Vlodavsky I, Yang X. Heparanase promotes glioma progression via enhancing CD24 expression. Int J Cancer 2019; 145:1596-1608. [PMID: 31032901 DOI: 10.1002/ijc.32375] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023]
Abstract
Heparanase is an endo-β-d-glucuronidase that cleaves heparan sulfate (HS) side chains of heparan sulfate proteoglycans. Compelling evidence tie heparanase levels with all steps of tumor formation including tumor initiation, growth, metastasis and chemo-resistance, likely involving augmentation of signaling pathways and gene transcription. In order to reveal the molecular mechanism(s) underlying the protumorigenic properties of heparanase, we established an inducible (Tet-on) system in U87 human glioma cells and applied gene array methodology in order to identify genes associated with heparanase induction. We found that CD24, a mucin-like cell adhesion protein, is consistently upregulated by heparanase and by heparanase splice variant devoid of enzymatic activity, whereas heparanase gene silencing was associated with decreased CD24 expression. This finding was further substantiated by a similar pattern of heparanase and CD24 immunostaining in glioma patients (Pearson's correlation; R = 0.66, p = 0.00001). Noteworthy, overexpression of CD24 stimulated glioma cell migration, invasion, colony formation in soft agar and tumor growth in mice suggesting that CD24 functions promote tumor growth. Likewise, anti-CD24 neutralizing monoclonal antibody attenuated glioma tumor growth, and a similar inhibition was observed in mice treated with a neutralizing mAb directed against L1 cell adhesion molecule (L1CAM), a ligand for CD24. Importantly, significant shorter patient survival was found in heparanase-high/CD24-high tumors vs. heparanase-high/CD24-low tumors for both high-grade and low-grade glioma (p = 0.02). Our results thus uncover a novel heparanase-CD24-L1CAM axis that plays a significant role in glioma tumorigenesis.
Collapse
Affiliation(s)
- Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Haifa, Israel
| | - Argyris Spyrou
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pei Liu
- Shantou University Medical College, Shantou, China
| | | | - Chenchen Zhu
- Shantou University Medical College, Shantou, China
| | - Juanjuan Luo
- Shantou University Medical College, Shantou, China
| | - Dongsheng Su
- Shantou University Medical College, Shantou, China
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Haifa, Israel
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Haifa, Israel
| | - Xiaojun Yang
- Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Suvannasankha A, Tompkins DR, Edwards DF, Petyaykina KV, Crean CD, Fournier PG, Parker JM, Sandusky GE, Ichikawa S, Imel EA, Chirgwin JM. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells. Oncotarget 2016; 6:19647-60. [PMID: 25944690 PMCID: PMC4637311 DOI: 10.18632/oncotarget.3794] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/10/2015] [Indexed: 01/09/2023] Open
Abstract
Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone.
Collapse
Affiliation(s)
- Attaya Suvannasankha
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Douglas R Tompkins
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel F Edwards
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katarina V Petyaykina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Colin D Crean
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pierrick G Fournier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jamie M Parker
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George E Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shoji Ichikawa
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erik A Imel
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John M Chirgwin
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
7
|
Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 2016; 8:647-80. [PMID: 27057774 DOI: 10.4155/fmc-2016-0012] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, heparanase has attracted considerable attention as a promising target for innovative pharmacological applications. Heparanase is a multifaceted protein endowed with enzymatic activity, as an endo-β-D-glucuronidase, and nonenzymatic functions. It is responsible for the cleavage of heparan sulfate side chains of proteoglycans, resulting in structural alterations of the extracellular matrix. Heparanase appears to be involved in major human diseases, from the most studied tumors to chronic inflammation, diabetic nephropathy, bone osteolysis, thrombosis and atherosclerosis, in addition to more recent investigation in various rare diseases. The present review provides an overview on heparanase, its biological role, inhibitors and possible clinical applications, covering the latest findings in these areas.
Collapse
|
8
|
Lapidot M, Barash U, Zohar Y, Geffen Y, Naroditsky I, Ilan N, Best LA, Vlodavsky I. Involvement of Heparanase in Empyema: Implication for Novel Therapeutic Approaches. ACTA ACUST UNITED AC 2015; 6. [PMID: 26005591 DOI: 10.4172/2155-9899.1000290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pleural empyema is an inflammatory condition that progresses from acute to chronic, life-threatening, phase. The incidence of empyema has been increasing both in children and adults worldwide in the past decades, mainly in healthy young adults and in older patients. Despite continued advances in the management of this condition, morbidity and mortality have essentially remained static over the past decade. Better understanding of the disease and the development of new therapeutic approaches are thus critically needed. Heparanase is an endoglucuronidase that cleaves heparan sulfate chains of proteoglycans. These macromolecules are most abounded in the sub-endothelial and sub-epithelial basement membranes and their cleavage by heparanase leads to disassembly of the extracellular matrix that becomes more susceptible to extravasation and dissemination of metastatic and immune cells. Here, we provide evidence that heparanase expression and activity are markedly increased in empyema and pleural fluids, associating with disease progression. Similarly, heparanase expression is increased in a mouse model of empyema initiated by intranasal inoculation of S. pneumonia. Applying this model we show that transgenic mice over expressing heparanase are more resistant to the infection and survive longer.
Collapse
Affiliation(s)
- Moshe Lapidot
- Department of General Thoracic Surgery, Rambam Health Care Campus , Haifa, Israel
| | - Uri Barash
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Health Care Campus , Haifa, Israel
| | - Yuval Geffen
- Department of Microbiology, Rambam Health Care Campus , Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus , Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Lael Anson Best
- Department of General Thoracic Surgery, Rambam Health Care Campus , Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
9
|
Barash U, Zohar Y, Wildbaum G, Beider K, Nagler A, Karin N, Ilan N, Vlodavsky I. Heparanase enhances myeloma progression via CXCL10 downregulation. Leukemia 2014; 28:2178-87. [PMID: 24699306 PMCID: PMC4185261 DOI: 10.1038/leu.2014.121] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 12/21/2022]
Abstract
In order to explore the mechanism(s) underlying the pro-tumorigenic capacity of heparanase, we established an inducible Tet-on system. Heparanase expression was markedly increased following addition of doxycycline (Dox) to the culture medium of CAG human myeloma cells infected with the inducible heparanase gene construct, resulting in increased colony number and size in soft agar. Moreover, tumor xenografts produced by CAG-heparanase cells were markedly increased in mice supplemented with Dox in their drinking water compared with control mice maintained without Dox. Consistently, we found that heparanase induction is associated with decreased levels of CXCL10, suggesting that this chemokine exerts tumor-suppressor properties in myeloma. Indeed, recombinant CXCL10 attenuated the proliferation of CAG, U266 and RPMI-8266 myeloma cells. Similarly, CXCL10 attenuated the proliferation of human umbilical vein endothelial cells, implying that CXCL10 exhibits anti-angiogenic capacity. Strikingly, development of tumor xenografts produced by CAG-heparanase cells overexpressing CXCL10 was markedly reduced compared with control cells. Moreover, tumor growth was significantly attenuated in mice inoculated with human or mouse myeloma cells and treated with CXCL10-Ig fusion protein, indicating that CXCL10 functions as a potent anti-myeloma cytokine.
Collapse
Affiliation(s)
- Uri Barash
- Cancer and Vascular Biology Research Center, Technion, Haifa 31096, Israel
| | - Yaniv Zohar
- Department of Immunology, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Gizi Wildbaum
- Department of Immunology, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Katia Beider
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| | - Nathan Karin
- Department of Immunology, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Technion, Haifa 31096, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Technion, Haifa 31096, Israel
| |
Collapse
|