1
|
Chernomas G, Griswold CK. Deleterious mutation/epimutation-selection balance with and without inbreeding: a population (epi)genetics model. Genetics 2024; 227:iyae080. [PMID: 38733620 PMCID: PMC11228854 DOI: 10.1093/genetics/iyae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Epigenetics in the form of DNA methylation and other processes is an established property of genotypes and a focus of empirical research. Yet, there remain fundamental gaps in the evolutionary theory of epigenetics. To support a comprehensive understanding of epigenetics, this paper investigates theoretically the combined effects of deleterious mutation and epimutation with and without inbreeding. Both spontaneous epimutation and paramutation are considered to cover a broader range of epigenetic phenomena. We find that inbreeding generally reduces the amount of segregating deleterious genetic and epigenetic variation at equilibrium, although interestingly inbreeding can also increase the amount of deleterious genetic or epigenetic variation. Furthermore, we also demonstrate that epimutation indirectly can cause increased or decreased deleterious genetic variation at equilibrium relative to classic expectations, which is particularly evident when paramutation is occurring. With the addition of deleterious epimutation, there may be significantly increased purging of deleterious variation in more inbred populations and a significantly increased amount of segregating deleterious variation in more outbred populations, with notable exceptions.
Collapse
Affiliation(s)
- Gregory Chernomas
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cortland K Griswold
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
2
|
Raabe K, Sun L, Schindfessel C, Honys D, Geelen D. A word of caution: T-DNA-associated mutagenesis in plant reproduction research. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3248-3258. [PMID: 38477707 DOI: 10.1093/jxb/erae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
T-DNA transformation is prevalent in Arabidopsis research and has expanded to a broad range of crops and model plants. While major progress has been made in optimizing the Agrobacterium-mediated transformation process for various species, a variety of pitfalls associated with the T-DNA insertion may lead to the misinterpretation of T-DNA mutant analysis. Indeed, secondary mutagenesis either on the integration site or elsewhere in the genome, together with epigenetic interactions between T-DNA inserts or frequent genomic rearrangements, can be tricky to differentiate from the effect of the knockout of the gene of interest. These are mainly the case for genomic rearrangements that become balanced in filial generations without consequential phenotypical defects, which may be confusing particularly for studies that aim to investigate fertility and gametogenesis. As a cautionary note to the plant research community studying gametogenesis, we here report an overview of the consequences of T-DNA-induced secondary mutagenesis with emphasis on the genomic imbalance on gametogenesis. Additionally, we present a simple guideline to evaluate the T-DNA-mutagenized transgenic lines to decrease the risk of faulty analysis with minimal experimental effort.
Collapse
Affiliation(s)
- Karel Raabe
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Limin Sun
- Horticell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Cédric Schindfessel
- Horticell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Danny Geelen
- Horticell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Sidorenko LV, Chandler VL, Wang X, Peterson T. Transcribed enhancer sequences are required for maize p1 paramutation. Genetics 2024; 226:iyad178. [PMID: 38169343 PMCID: PMC10763531 DOI: 10.1093/genetics/iyad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/27/2023] [Indexed: 01/05/2024] Open
Abstract
Paramutation is a transfer of heritable silencing states between interacting endogenous alleles or between endogenous alleles and homologous transgenes. Prior results demonstrated that paramutation occurs at the P1-rr (red pericarp and red cob) allele of the maize p1 (pericarp color 1) gene when exposed to a transgene containing a 1.2-kb enhancer fragment (P1.2) of P1-rr. The paramutable P1-rr allele undergoes transcriptional silencing resulting in a paramutant light-pigmented P1-rr' state. To define more precisely the sequences required to elicit paramutation, the P1.2 fragment was further subdivided, and the fragments transformed into maize plants and crossed with P1-rr. Analysis of the progeny plants showed that the sequences required for paramutation are located within a ∼600-bp segment of P1.2 and that this segment overlaps with a previously identified enhancer that is present in 4 direct repeats in P1-rr. The paramutagenic segment is transcribed in both the expressed P1-rr and the silenced P1-rr'. Transcription is sensitive to α-amanitin, indicating that RNA polymerase II mediates most of the transcription of this sequence. Although transcription within the paramutagenic sequence was similar in all tested genotypes, small RNAs were more abundant in the silenced P1-rr' epiallele relative to the expressed P1-rr allele. In agreement with prior results indicating the association of RNA-mediated DNA methylation in p1 paramutation, DNA blot analyses detected increased cytosine methylation of the paramutant P1-rr' sequences homologous to the transgenic P1.2 subfragments. Together these results demonstrate that the P1-rr enhancer repeats mediate p1 paramutation.
Collapse
Affiliation(s)
- Lyudmila V Sidorenko
- Department of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA 50131, USA
| | - Vicki L Chandler
- Department of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Minerva University, 14 Mint Plaza, Suite 300, San Francisco, CA 94103, USA
| | - Xiujuan Wang
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA 50131, USA
- Department of Genetics, Development, and Cellular Biology, Department of Agronomy, Iowa State University, Ames, IA 50010, USA
| | - Thomas Peterson
- Department of Genetics, Development, and Cellular Biology, Department of Agronomy, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
4
|
Thulasi Devendrakumar K, Goldstein M, Kronstad J, Li X. Deletions within intronic T-DNA lead to reversion of T-DNA mutant phenotypes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:161-176. [PMID: 37773774 DOI: 10.1111/tpj.16482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Agrobacterium-mediated transformation enables random transfer-DNA (T-DNA) insertion into plant genomes. T-DNA insertion into a gene's exons, introns or untranscribed regions close to the start or stop codon can disrupt gene function. Such T-DNA mutants have been useful for reverse genetics analysis, especially in Arabidopsis thaliana. As T-DNAs are inserted into genomic DNA, they are generally believed to be stably inherited. Here, we report a phenomenon of reversion of intronic T-DNA mutant phenotypes. From a suppressor screen using intronic T-DNA pi4kβ1,2 double mutant, we recovered intragenic mutants of pi4kβ1, which suppressed the autoimmunity of the double mutant. These mutants carried deletions in the intronic T-DNAs, resulting in elevated transcription of normal PI4Kβ1. Such reversion of T-DNA insertional mutant phenotype stresses the need for caution when using intronic T-DNA mutants and reiterates the importance of using irreversible null mutant alleles in genetic analyses.
Collapse
Affiliation(s)
- Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Madeleine Goldstein
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - James Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
5
|
Hughes CL, Harmer SL. Myb-like transcription factors have epistatic effects on circadian clock function but additive effects on plant growth. PLANT DIRECT 2023; 7:e533. [PMID: 37811362 PMCID: PMC10557472 DOI: 10.1002/pld3.533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
The functions of closely related Myb-like repressor and Myb-like activator proteins within the plant circadian oscillator have been well-studied as separate groups, but the genetic interactions between them are less clear. We hypothesized that these repressors and activators would interact additively to regulate both circadian and growth phenotypes. We used CRISPR-Cas9 to generate new mutant alleles and performed physiological and molecular characterization of plant mutants for five of these core Myb-like clock factors compared with a repressor mutant and an activator mutant. We first examined circadian clock function in plants likely null for both the repressor proteins, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), and the activator proteins, REVEILLE 4 (RVE4), REVEILLE (RVE6), and REVEILLE (RVE8). The rve468 triple mutant has a long period and flowers late, while cca1 lhy rve468 quintuple mutants, similarly to cca1 lhy mutants, have poor circadian rhythms and flower early. This suggests that CCA1 and LHY are epistatic to RVE4, RVE6, and RVE8 for circadian clock and flowering time function. We next examined hypocotyl elongation and rosette leaf size in these mutants. The cca1 lhy rve468 mutants have growth phenotypes intermediate between cca1 lhy and rve468 mutants, suggesting that CCA1, LHY, RVE4, RVE6, and RVE8 interact additively to regulate growth. Together, our data suggest that these five Myb-like factors interact differently in regulation of the circadian clock versus growth. More generally, the near-norm al seedling phenotypes observed in the largely arrhythmic quintuple mutant demonstrate that circadian-regulated output processes, like control of hypocotyl elongation, do not always depend upon rhythmic oscillator function.
Collapse
Affiliation(s)
| | - Stacey L. Harmer
- Department of Plant BiologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
6
|
Wouters M, Bastiaanse H, Rombauts S, de Vries L, De Pooter T, Strazisar M, Neutelings G, Vanholme R, Boerjan W. Suppression of the Arabidopsis cinnamoyl-CoA reductase 1-6 intronic T-DNA mutation by epigenetic modification. PLANT PHYSIOLOGY 2023; 192:3001-3016. [PMID: 37139862 PMCID: PMC7614886 DOI: 10.1093/plphys/kiad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) transfer DNA (T-DNA) insertion collections are popular resources for fundamental plant research. Cinnamoyl-CoA reductase 1 (CCR1) catalyzes an essential step in the biosynthesis of the cell wall polymer lignin. Accordingly, the intronic T-DNA insertion mutant ccr1-6 has reduced lignin levels and shows a stunted growth phenotype. Here, we report restoration of the ccr1-6 mutant phenotype and CCR1 expression levels after a genetic cross with a UDP-glucosyltransferase 72e1 (ugt72e1),-e2,-e3 T-DNA mutant. We discovered that the phenotypic recovery was not dependent on the UGT72E family loss of function but due to an epigenetic phenomenon called trans T-DNA suppression. Via trans T-DNA suppression, the gene function of an intronic T-DNA mutant was restored after the introduction of an additional T-DNA sharing identical sequences, leading to heterochromatinization and splicing out of the T-DNA-containing intron. Consequently, the suppressed ccr1-6 allele was named epiccr1-6. Long-read sequencing revealed that epiccr1-6, not ccr1-6, carries dense cytosine methylation over the full length of the T-DNA. We showed that the SAIL T-DNA in the UGT72E3 locus could trigger the trans T-DNA suppression of the GABI-Kat T-DNA in the CCR1 locus. Furthermore, we scanned the literature for other potential cases of trans T-DNA suppression in Arabidopsis and found that 22% of the publications matching our query report on double or higher-order T-DNA mutants that meet the minimal requirements for trans T-DNA suppression. These combined observations indicate that intronic T-DNA mutants need to be used with caution since methylation of intronic T-DNA might derepress gene expression and can thereby confound results.
Collapse
Affiliation(s)
- Marlies Wouters
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Héloïse Bastiaanse
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stéphane Rombauts
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Lisanne de Vries
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Tim De Pooter
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Godfrey Neutelings
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576, CNRS, Université de Lille, Lille, France
| | - Ruben Vanholme
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Wout Boerjan
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Vargas J, Gómez I, Vidal EA, Lee CP, Millar AH, Jordana X, Roschzttardtz H. Growth Developmental Defects of Mitochondrial Iron Transporter 1 and 2 Mutants in Arabidopsis in Iron Sufficient Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1176. [PMID: 36904036 PMCID: PMC10007191 DOI: 10.3390/plants12051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Iron is the most abundant micronutrient in plant mitochondria, and it has a crucial role in biochemical reactions involving electron transfer. It has been described in Oryza sativa that Mitochondrial Iron Transporter (MIT) is an essential gene and that knockdown mutant rice plants have a decreased amount of iron in their mitochondria, strongly suggesting that OsMIT is involved in mitochondrial iron uptake. In Arabidopsis thaliana, two genes encode MIT homologues. In this study, we analyzed different AtMIT1 and AtMIT2 mutant alleles, and no phenotypic defects were observed in individual mutant plants grown in normal conditions, confirming that neither AtMIT1 nor AtMIT2 are individually essential. When we generated crosses between the Atmit1 and Atmit2 alleles, we were able to isolate homozygous double mutant plants. Interestingly, homozygous double mutant plants were obtained only when mutant alleles of Atmit2 with the T-DNA insertion in the intron region were used for crossings, and in these cases, a correctly spliced AtMIT2 mRNA was generated, although at a low level. Atmit1 Atmit2 double homozygous mutant plants, knockout for AtMIT1 and knockdown for AtMIT2, were grown and characterized in iron-sufficient conditions. Pleiotropic developmental defects were observed, including abnormal seeds, an increased number of cotyledons, a slow growth rate, pinoid stems, defects in flower structures, and reduced seed set. A RNA-Seq study was performed, and we could identify more than 760 genes differentially expressed in Atmit1 Atmit2. Our results show that Atmit1 Atmit2 double homozygous mutant plants misregulate genes involved in iron transport, coumarin metabolism, hormone metabolism, root development, and stress-related response. The phenotypes observed, such as pinoid stems and fused cotyledons, in Atmit1 Atmit2 double homozygous mutant plants may suggest defects in auxin homeostasis. Unexpectedly, we observed a possible phenomenon of T-DNA suppression in the next generation of Atmit1 Atmit2 double homozygous mutant plants, correlating with increased splicing of the AtMIT2 intron containing the T-DNA and the suppression of the phenotypes observed in the first generation of the double mutant plants. In these plants with a suppressed phenotype, no differences were observed in the oxygen consumption rate of isolated mitochondria; however, the molecular analysis of gene expression markers, AOX1a, UPOX, and MSM1, for mitochondrial and oxidative stress showed that these plants express a degree of mitochondrial perturbation. Finally, we could establish by a targeted proteomic analysis that a protein level of 30% of MIT2, in the absence of MIT1, is enough for normal plant growth under iron-sufficient conditions.
Collapse
Affiliation(s)
- Joaquín Vargas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Isabel Gómez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Elena A. Vidal
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
8
|
Jedynak P, Trzebuniak KF, Chowaniec M, Zgłobicki P, Banaś AK, Mysliwa-Kurdziel B. Dynamics of Etiolation Monitored by Seedling Morphology, Carotenoid Composition, Antioxidant Level, and Photoactivity of Protochlorophyllide in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 12:772727. [PMID: 35265091 PMCID: PMC8900029 DOI: 10.3389/fpls.2021.772727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Although etiolated Arabidopsis thaliana seedlings are widely used as a model to study the de-etiolation process, the etiolation itself at the molecular level still needs elucidation. Here, we monitored the etiolation dynamics for wild type A. thaliana seedlings and lutein-deficient (lut2) mutant between 2 and 12 days of their growth in the absence of light. We analyzed the shape of the apex, the growth rate, the carotenoids and protochlorophyllide (Pchlide) accumulation, and the light-dependent protochlorophyllide oxidoreductase (LPOR) transcripts. Differences concerning the apical hook curvature and cotyledon opening among seedlings of the same age were observed, mostly after day 6 of the culture. We categorized the observed apex shapes and presented quantitatively how distribution among the categories changed during 12 days of seedling growth. The Pchlide654/Pchlide633 ratio, corresponding to the amount of the photoactive Pchlide, was the highest in the youngest seedlings, and decreased with their age. LPORA, LPORB, and LPORC transcripts were detected in etiolated seedlings, and their content decreased during seedling growth. Expression of SAG12 or SAG13 senescence markers, depletion in antioxidants, and excess ion leakage were not observed during the etiolation. Lack of lutein in the lut2 mutant resulted in slow Pchlide accumulation and affected other xanthophyll composition.
Collapse
Affiliation(s)
- Pawel Jedynak
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kamil Filip Trzebuniak
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Chowaniec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Beata Mysliwa-Kurdziel
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
Jiang W, Li Z, Yao X, Zheng B, Shen WH, Dong A. jaw-1D: a gain-of-function mutation responsive to paramutation-like induction of epigenetic silencing. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:459-468. [PMID: 30346598 PMCID: PMC6322565 DOI: 10.1093/jxb/ery365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The Arabidopsis thaliana gain-of-function T-DNA insertion mutant jaw-1D produces miR319A, a microRNA that represses genes encoding CIN-like TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs), a family of transcription factors that play key roles in leaf morphogenesis. In this study, we show that jaw-1D is responsive to paramutation-like epigenetic silencing. A genetic cross of jaw-1D with the polycomb gene mutant curly leaf-29 (clf-29) leads to attenuation of the jaw-1D mutant plant phenotype. This induced mutation, jaw-1D*, was associated with down-regulation of miR319A, was heritable independently from clf-29, and displayed paramutation-like non-Mendelian inheritance. Down-regulation of miR319A in jaw-1D* was linked to elevated levels of histone H3 lysine 9 dimethylation and DNA methylation at the CaMV35S enhancer located within the activation-tagging T-DNA of the jaw-1D locus. Examination of 21 independent T-DNA insertion mutant lines revealed that 11 could attenuate the jaw-1D mutant phenotype in a similar way to the paramutation induced by clf-29. These paramutagenic mutant lines shared the common feature that their T-DNA insertion was present as multi-copy tandem repeats and contained high levels of CG and CHG methylation. Our results provide important insights into paramutation-like epigenetic silencing, and caution against the use of jaw-1D in genetic interaction studies.
Collapse
Affiliation(s)
- Wen Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhongfei Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaozhen Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Université de Strasbourg, CNRS, Strasbourg, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Epigenetic Regulation of Intronic Transgenes in Arabidopsis. Sci Rep 2017; 7:45166. [PMID: 28338020 PMCID: PMC5364540 DOI: 10.1038/srep45166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/20/2017] [Indexed: 11/23/2022] Open
Abstract
Defense mechanisms of plant genomes can epigenetically inactivate repetitive sequences and exogenous transgenes. Loss of mutant phenotypes in intronic T-DNA insertion lines by interaction with another T-DNA locus, termed T-DNA suppression, has been observed in Arabidopsis thaliana, although the molecular basis of establishment and maintenance of T-DNA suppression is poorly understood. Here we show that maintenance of T-DNA suppression requires heterochromatinisation of T-DNA sequences and the nuclear proteins, INCREASED IN BONSAI METHYLATION 2 (IBM2) and ENHANCED DOWNY MILDEW 2 (EDM2), which prevent ectopic 3′ end processing of mRNA in atypically long introns containing T-DNA sequences. Initiation of T-DNA suppression is mediated by the canonical RdDM pathway after hybridisation of two T-DNA strains, accompanied by DNA hypermethylation of T-DNA sequences in the F1 generation. Our results reveal the presence of a genome surveillance mechanism through genome hybridisation that masks repetitive DNAs intruding into transcription units.
Collapse
|
11
|
Zhang Y, Li X, Goodrich J, Wu C, Wei H, Yang S, Feng X. Reduced function of the RNA-binding protein FPA rescues a T-DNA insertion mutant in the Arabidopsis ZHOUPI gene by promoting transcriptional read-through. PLANT MOLECULAR BIOLOGY 2016; 91:549-61. [PMID: 27164978 DOI: 10.1007/s11103-016-0487-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/27/2016] [Indexed: 05/08/2023]
Abstract
T-DNA insertion mutants have been widely used to investigate plant gene functions. Unexpectedly, in several reported cases, the phenotype of T-DNA insertion mutations can be suppressed because of trans T-DNA interactions associated with epigenetic modification, which indicates that caution is needed when T-DNA mutants are used. In the present study, we characterized a novel process suppressing a T-DNA mutation. The spz2 (suppressor of zou 2) mutant was isolated as a suppressor of the phenotype of the zou-4 mutant caused by a T-DNA insertion in the first intron. The spz2 mutation partially recovered the native ZOU gene expression in the zou-4 background, but not in two other zou alleles, zou-2 and zou-3, with T-DNAs inserted in the exon and intron, respectively. The suppressed phenotype was inherited in a Mendelian fashion and is not associated with epigenetic modification. The recovery of the native ZOU gene expression in the spz2 zou-4 double mutant is caused by transcriptional read-through of the intronic T-DNA as a result of decreased proximal polyadenylation. SPZ2 encodes an RNA-binding protein, FPA, which is known to regulate polyadenylation site selection. This is the first example of FPA rescuing a T-DNA insertion mutation by affecting the polyadenylation site selection.
Collapse
MESH Headings
- Alleles
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Cloning, Molecular
- DNA, Bacterial/genetics
- Drug Resistance, Microbial/genetics
- Epigenesis, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Suppressor
- Introns/genetics
- Mutagenesis, Insertional/genetics
- Mutation
- Phenotype
- Polyadenylation/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- Seeds/genetics
- Seeds/growth & development
- Transcription, Genetic
Collapse
Affiliation(s)
- Yaohua Zhang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China
| | - Xin Li
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China
| | - Justin Goodrich
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Chunxia Wu
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Haichao Wei
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China.
| | - Xianzhong Feng
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China.
| |
Collapse
|
12
|
Identification of MEDIATOR16 as the Arabidopsis COBRA suppressor MONGOOSE1. Proc Natl Acad Sci U S A 2015; 112:16048-53. [PMID: 26655738 DOI: 10.1073/pnas.1521675112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We performed a screen for genetic suppressors of cobra, an Arabidopsis mutant with defects in cellulose formation and an increased ratio of unesterified/esterified pectin. We identified a suppressor named mongoose1 (mon1) that suppressed the growth defects of cobra, partially restored cellulose levels, and restored the esterification ratio of pectin to wild-type levels. mon1 was mapped to the MEDIATOR16 (MED16) locus, a tail mediator subunit, also known as SENSITIVE TO FREEZING6 (SFR6). When separated from the cobra mutation, mutations in MED16 caused resistance to cellulose biosynthesis inhibitors, consistent with their ability to suppress the cobra cellulose deficiency. Transcriptome analysis revealed that a number of cell wall genes are misregulated in med16 mutants. Two of these genes encode pectin methylesterase inhibitors, which, when ectopically expressed, partially suppressed the cobra phenotype. This suggests that cellulose biosynthesis can be affected by the esterification levels of pectin, possibly through modifying cell wall integrity or the interaction of pectin and cellulose.
Collapse
|
13
|
Springer NM, McGinnis KM. Paramutation in evolution, population genetics and breeding. Semin Cell Dev Biol 2015; 44:33-8. [PMID: 26325077 DOI: 10.1016/j.semcdb.2015.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022]
Abstract
Paramutation is a fascinating phenomenon in which directed allelic interactions result in heritable changes in the state of an allele. Paramutation has been carefully characterized at a handful of loci but the prevalence of paramutable/paramutagenic alleles is not well characterized within genomes or populations. In order to consider the role of paramutation in evolutionary processes and plant breeding, we focused on several questions. First, what causes certain alleles to become subject to paramutation? While paramutation clearly involves epigenetic regulation it is also true that only certain alleles defined by genetic sequences are able to participate in paramutation. Second, what is the prevalence of paramutation? There are only a handful of well-documented examples of paramutation. However, there is growing evidence that many loci may undergo changes in chromatin state or expression that are similar to changes observed as a result of paramutation. Third, how will paramutation events be inherited in natural or artificial populations? Many factors, including stability of epigenetic state, mating style and ploidy, may influence the prevalence of paramutation states within populations. Developing a clear understanding of the mechanisms and frequency of paramutation in crop plant genomes will facilitate new opportunities in genetic manipulation, and will also enhance plant breeding programs and our understanding of genome evolution.
Collapse
Affiliation(s)
- Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Karen M McGinnis
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
14
|
Jia X, Chanda B, Zhao M, Brunner AM, Beers EP. Instability of the Arabidopsis mutant csn5a-2 caused by epigenetic modification of intronic T-DNA. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:53-63. [PMID: 26259174 DOI: 10.1016/j.plantsci.2015.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/27/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
T-DNA insertion mutants play a crucial role in elucidating Arabidopsis gene function. In some cases, two or more T-DNA mutants are combined to study genetic interactions between homologous genes or genes hypothesized to act in the same pathway. We studied the significance of protein-protein interactions between CSN5A and ROP11 by crossing three independent rop11 T-DNA insertion mutants with csn5a-2, a partial loss-of-function intronic T-DNA insertion mutant. The csn5a-2 single mutant is severely stunted, but double rop11 csn5a-2mutants were rescued and exhibited increased CSN5A transcript and protein levels. The rescued phenotype was maintained in non-Mendelian fashion when the csn5a-2 single mutant was re-isolated from the rop11-1 csn5a-2 double mutant, and was sensitive to two inhibitors of DNA methylation. Loss of kanamycin resistance was also observed in re-isolated csn5a-2. These findings indicate that the rescue of csn5a-2 resulted from a trans T-DNA-mediated epigenetic effect on the csn5a-2 intronic T-DNA, similar to recent reports involving the intronic T-DNA mutants ag-TD, ben1-1, and cob-6. Thus the work reported here provides further support for the recommendation that mutants created through novel combinations of T-DNA alleles should be carefully evaluated for evidence of epigenetic modification of T-DNA before final conclusions are drawn.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bidisha Chanda
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mingzhe Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric P Beers
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
15
|
Pilu R. Paramutation phenomena in plants. Semin Cell Dev Biol 2015; 44:2-10. [DOI: 10.1016/j.semcdb.2015.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023]
|
16
|
Cis-acting determinants of paramutation. Semin Cell Dev Biol 2015; 44:22-32. [DOI: 10.1016/j.semcdb.2015.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 11/23/2022]
|
17
|
Zheng Z, Yu H, Miki D, Jin D, Zhang Q, Ren Z, Gong Z, Zhang H, Zhu JK. Involvement of Multiple Gene-Silencing Pathways in a Paramutation-like Phenomenon in Arabidopsis. Cell Rep 2015; 11:1160-7. [PMID: 25981044 PMCID: PMC4484736 DOI: 10.1016/j.celrep.2015.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/12/2015] [Accepted: 04/16/2015] [Indexed: 12/24/2022] Open
Abstract
Paramutation is an epigenetic phenomenon that has been observed in a number of multicellular organisms. The epigenetically silenced state of paramutated alleles is not only meiotically stable but also "infectious" to active homologous alleles. The molecular mechanism of paramutation remains unclear, but components involved in RNA-directed DNA methylation (RdDM) are required. Here, we report a multi-copy pRD29A-LUC transgene in Arabidopsis thaliana that behaves like a paramutation locus. The silent state of LUC is induced by mutations in the DNA glycosylase gene ROS1. The silent alleles of LUC are not only meiotically stable but also able to transform active LUC alleles into silent ones, in the absence of ros1 mutations. Maintaining silencing at the LUC gene requires action of multiple pathways besides RdDM. Our study identified specific factors that are involved in the paramutation-like phenomenon and established a model system for the study of paramutation in Arabidopsis.
Collapse
Affiliation(s)
- Zhimin Zheng
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China.
| | - Hasi Yu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China
| | - Dan Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingzhu Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
The ben1-1 brassinosteroid-catabolism mutation is unstable due to epigenetic modifications of the intronic T-DNA insertion. G3-GENES GENOMES GENETICS 2013; 3:1587-95. [PMID: 23893742 PMCID: PMC3755919 DOI: 10.1534/g3.113.006353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Loss-of-function genetic analysis plays a pivotal role in elucidating individual gene function as well as interactions among gene networks. The ease of gene tagging and cloning provided by transfer DNA (T-DNA) insertion mutants have led to their heavy use by the Arabidopsis research community. However, certain aspects of T-DNA alleles require caution, as highlighted in this study of an intronic insertion mutant (ben1-1) in the BEN1 (BRI1-5 ENHANCED 1) gene. As a part of our analysis of brassinosteroid catabolic enzymes, we generated a genetic triple-mutant from a cross between the bas1-2 sob7-1 double-null (T-DNA exonic insertion mutants of phyB-4 ACTIVATION TAGGED SUPPRESSOR 1 and SUPPRESSOR OF phyB-4 7) and ben1-1. As previously described, the single ben1-1 line behaves as a transcript null. However, in the triple-mutant background ben1-1 was reverted to a partial loss-of-function allele showing enhanced levels of the wild-type-spliced transcript. Interestingly, the enhanced expression of BEN1 remained stable when the ben1-1 single-mutant was reisolated from a cross with the wild type. In addition, the two genetically identical pretriple and posttriple ben1-1 mutants also differed phenotypically. The previously functional NPTII (NEOMYCIN PHOSPHOTRANSFERASE II) T-DNA marker gene (which encodes kanamycin resistance) was no longer functional in the recovered ben1-1 allele, though the length of the T-DNA insertion and the NPTII gene sequence did not change in the pretriple and posttriple ben1-1 mutants. Methylation analysis using both restriction endonuclease activity and bisulfite conversion followed by sequencing showed that the methylation status of the T-DNA is different between the original and the recovered ben1-1. These observations demonstrate that the recovered ben1-1 mutant is epigenetically different from the original ben1-1 allele.
Collapse
|