1
|
Alarcon NO, Jaramillo M, Mansour HM, Sun B. Therapeutic Cancer Vaccines—Antigen Discovery and Adjuvant Delivery Platforms. Pharmaceutics 2022; 14:pharmaceutics14071448. [PMID: 35890342 PMCID: PMC9325128 DOI: 10.3390/pharmaceutics14071448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
For decades, vaccines have played a significant role in protecting public and personal health against infectious diseases and proved their great potential in battling cancers as well. This review focused on the current progress of therapeutic subunit vaccines for cancer immunotherapy. Antigens and adjuvants are key components of vaccine formulations. We summarized several classes of tumor antigens and bioinformatic approaches of identification of tumor neoantigens. Pattern recognition receptor (PRR)-targeting adjuvants and their targeted delivery platforms have been extensively discussed. In addition, we emphasized the interplay between multiple adjuvants and their combined delivery for cancer immunotherapy.
Collapse
Affiliation(s)
- Neftali Ortega Alarcon
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Maddy Jaramillo
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Bo Sun
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Correspondence: ; Tel.: +1-520-621-6420
| |
Collapse
|
2
|
Ioannidou K, Randin O, Semilietof A, Maby-El Hajjami H, Baumgaertner P, Vanhecke D, Speiser DE. Low Avidity T Cells Do Not Hinder High Avidity T Cell Responses Against Melanoma. Front Immunol 2019; 10:2115. [PMID: 31555299 PMCID: PMC6742971 DOI: 10.3389/fimmu.2019.02115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/02/2022] Open
Abstract
The efficacy of T cells depends on their functional avidity, i. e., the strength of T cell interaction with cells presenting cognate antigen. The overall T cell response is composed of multiple T cell clonotypes, involving different T cell receptors and variable levels of functional avidity. Recently, it has been proposed that the presence of low avidity tumor antigen-specific CD8 T cells hinder their high avidity counterparts to protect from tumor growth. Here we analyzed human cytotoxic CD8 T cells specific for the melanoma antigen Melan-A/MART-1. We found that the presence of low avidity T cells did not result in reduced cytotoxicity of tumor cells, nor reduced cytokine production, by high avidity T cells. In vivo in NSG-HLA-A2 mice, the anti-tumor effect of high avidity T cells was similar in presence or absence of low avidity T cells. These data indicate that low avidity T cells are not hindering anti-tumor T cell responses, a finding that is reassuring because low avidity T cells are an integrated part of natural T cell responses.
Collapse
Affiliation(s)
- Kalliopi Ioannidou
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Olivier Randin
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Aikaterini Semilietof
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Hélène Maby-El Hajjami
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Petra Baumgaertner
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Dominique Vanhecke
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| |
Collapse
|
3
|
Galaine J, Turco C, Vauchy C, Royer B, Mercier-Letondal P, Queiroz L, Loyon R, Mouget V, Boidot R, Laheurte C, Lakkis Z, Jary M, Adotévi O, Borg C, Godet Y. CD4 T cells target colorectal cancer antigens upregulated by oxaliplatin. Int J Cancer 2019; 145:3112-3125. [PMID: 31396953 DOI: 10.1002/ijc.32620] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Immune checkpoint blockade has proven its efficacy in hypermutated subtypes of metastatic colorectal cancers (mCRC). Immunogenic potential can also be observed with conventional chemotherapies, but this property has never been explored thoroughly in CRC patients. The CRC therapeutic arsenal includes oxaliplatin, a well-characterized platinum drug already described as immunogenic. Here, we investigated the impact of the oxaliplatin-based treatment on mCRC immunopeptidome. We demonstrated that oxaliplatin-resistant CRC cell lines overexpressed telomerase reverse transcriptase (TERT), colorectal-associated-tumor antigen-1 (COA-1) and mesothelin tumor-associated antigens. We identified new HLA class-II-restricted and promiscuous peptides derived from COA-1 and mesothelin. The two naturally processed peptides COA-1331-345 and Meso366-380 appear to be the most immunogenic in mCRC patients. A prospective cohort of 162 mCRC patients enabled us to explore the impact of oxaliplatin exposure on the antitumor-specific immune response. Interestingly, chemotherapy-naive mCRC patients present high immune CD4 T-cell responses directed against TERT, COA-1 and mesothelin-derived peptides. These antitumor T-cell responses were maintained after 3 months of oxaliplatin-based treatment. Altogether, these findings highlight the interest of immunostimulatory agents to improve the management of chemoresistant mCRC patients. Finally, the high frequency of immune responses targeting the new immunogenic peptides derived from COA-1 and mesothelin support their use in immunomonitoring strategies.
Collapse
Affiliation(s)
- Jeanne Galaine
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Célia Turco
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Gastrointestinal Surgery, Besançon, France
| | - Charline Vauchy
- INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center un Biotherapy, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Bernard Royer
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of pharmacotoxicology, Besançon, France
| | - Patricia Mercier-Letondal
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Lise Queiroz
- INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center un Biotherapy, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Romain Loyon
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Virginie Mouget
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Romain Boidot
- Centre Georges-François Leclerc, Platform for Transfer to Cancer Biology, Dijon, France
| | - Caroline Laheurte
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,EFS Bourgogne Franche-Comté, INSERM CIC-1431, CHRU Besançon, Plateforme de BioMonitoring, Besançon, France
| | - Zaher Lakkis
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Gastrointestinal Surgery, Besançon, France
| | - Marine Jary
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Olivier Adotévi
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Christophe Borg
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Yann Godet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| |
Collapse
|
4
|
Besneux M, Greenshields-Watson A, Scurr MJ, MacLachlan BJ, Christian A, Davies MM, Hargest R, Phillips S, Godkin A, Gallimore A. The nature of the human T cell response to the cancer antigen 5T4 is determined by the balance of regulatory and inflammatory T cells of the same antigen-specificity: implications for vaccine design. Cancer Immunol Immunother 2019; 68:247-256. [PMID: 30406375 PMCID: PMC6394487 DOI: 10.1007/s00262-018-2266-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023]
Abstract
The oncofoetal antigen 5T4 is a promising T cell target in the context of colorectal cancer, as demonstrated by a recent clinical study where 5T4-specific T cell responses, induced by vaccination or cyclophosphamide, were associated with a significantly prolonged survival of patients with metastatic disease. Whilst Th1-type (IFN-γ+) responses specific to 5T4, and other oncofoetal antigens, are often readily detectable in early stage CRC patients and healthy donors, their activity is suppressed as the cancer progresses by CD4+CD25hiFoxp3+ regulatory T cells (Treg) which contribute to the immunosuppressive environment conducive to tumour growth. This study mapped the fine specificity of Th1 and Treg cell responses to the 5T4 protein. Surprisingly, both immunogenic peptides and those recognised by Tregs clustered in the same HLA-DR transcending epitope-rich hotspots within the 5T4 protein. Similarly, regions of low Th1-cell immunogenicity also did not contain peptides capable of stimulating Tregs, further supporting the notion that Treg and Th1 cells recognise the same peptides. Understanding the rules which govern the balance of Th1 and Treg cells responding to a given peptide specificity is, therefore, of fundamental importance to designing strategies for manipulating the balance in favour of Th1 cells, and thus the most effective anti-cancer T cell responses.
Collapse
Affiliation(s)
- Matthieu Besneux
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Health Park, Cardiff, CF14 4XN, UK
| | | | - Martin J Scurr
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Health Park, Cardiff, CF14 4XN, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Health Park, Cardiff, CF14 4XN, UK
| | - Adam Christian
- Department of Pathology, University Hospital of Wales, Cardiff, UK
| | - Michael M Davies
- Department of Colorectal Surgery, University Hospital of Wales, Cardiff, UK
| | - Rachel Hargest
- Department of Colorectal Surgery, University Hospital of Wales, Cardiff, UK
- CCMRC, Division of Cancer and Genetics, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Simon Phillips
- Department of Colorectal Surgery, University Hospital of Wales, Cardiff, UK
| | - Andrew Godkin
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Health Park, Cardiff, CF14 4XN, UK.
- Department of Gastroenterology, Hepatology and Endoscopy, University Hospital of Wales, Cardiff, UK.
| | - Awen Gallimore
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Health Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
5
|
Rabu C, Rangan L, Florenceau L, Fortun A, Charpentier M, Dupré E, Paolini L, Beauvillain C, Dupel E, Latouche JB, Adotevi O, Labarrière N, Lang F. Cancer vaccines: designing artificial synthetic long peptides to improve presentation of class I and class II T cell epitopes by dendritic cells. Oncoimmunology 2019; 8:e1560919. [PMID: 30906653 PMCID: PMC6422379 DOI: 10.1080/2162402x.2018.1560919] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
There is now a consensus that efficient peptide vaccination against cancer requires that peptides should (i) be exclusively presented by professional APC and (ii) stimulate both CD4 and CD8-specific T cell responses. To this aim, in recent trials, patients were vaccinated with pools of synthetic long peptides (SLP) (15-30 aa long) composed of a potential class I epitope(s) elongated at both ends with native antigen sequences to also provide a potential class II epitope(s). Using MELOE-1 as a model antigen, we present an alternative strategy consisting in linking selected class I and class II epitopes with an artificial cathepsin-sensitive linker to improve epitope processing and presentation by DC. We provide evidence that some linker sequences used in our artificial SLPs (aSLPs) could increase up to 100-fold the cross-presentation of class I epitopes to CD8-specific T cell clones when compared to cross-presentation of the corresponding native long peptide. Presentation of class II epitopes were only slightly increased. We confirmed this increased cross-presentation after in vitro stimulation of PBMC from healthy donors with aSLP and assessment of CD8-specific responses and also in vivo following aSLP vaccination of HLA*A0201/HLA-DRB0101 transgenic mice. Finally, we provide some evidence that vaccination with aSLP could inhibit the growth of transplanted tumors in mice. Our data thus support the use of such aSLPs in future cancer vaccination trials to improve anti-tumor CD8 T cell responses and therapeutic efficacy.
Collapse
Affiliation(s)
- Catherine Rabu
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Laurie Rangan
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Laetitia Florenceau
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Agnès Fortun
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Maud Charpentier
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Emilie Dupré
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Léa Paolini
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Céline Beauvillain
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Estelle Dupel
- Rouen University Hospital, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Jean-Baptiste Latouche
- Rouen University Hospital, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, Rouen, France
- Department of Genetics, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Nathalie Labarrière
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - François Lang
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| |
Collapse
|
6
|
Charpentier M, Croyal M, Carbonnelle D, Fortun A, Florenceau L, Rabu C, Krempf M, Labarrière N, Lang F. IRES-dependent translation of the long non coding RNA meloe in melanoma cells produces the most immunogenic MELOE antigens. Oncotarget 2018; 7:59704-59713. [PMID: 27486971 PMCID: PMC5312342 DOI: 10.18632/oncotarget.10923] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023] Open
Abstract
MELOE-1 and MELOE-2, two highly specific melanoma antigens involved in T cell immunosurveillance are produced by IRES-dependent translation of the long « non coding » and polycistronic RNA, meloe. In the present study, we document the expression of an additional ORF, MELOE-3, located in the 5' region of meloe. Data from in vitro translation experiments and transfection of melanoma cells with bicistronic vectors documented that MELOE-3 is exclusively translated by the classical cap-dependent pathway. Using a sensitive tandem mass spectrometry technique, we detected the presence of MELOE-3 in total lysates of both melanoma cells and normal melanocytes. This contrasts with our previous observation of the melanoma-restricted expression of MELOE-1 and MELOE-2. Furthermore, in vitro stimulation of PBMC from 6 healthy donors with overlapping peptides from MELOE-1 or MELOE-3 revealed a very scarce MELOE-3 specific T cell repertoire as compared to the abundant repertoire observed against MELOE-1. The poor immunogenicity of MELOE-3 and its expression in melanocytes is consistent with an immune tolerance towards a physiologically expressed protein. In contrast, melanoma-restricted expression of IRES-dependent MELOE-1 may explain its high immunogenicity. In conclusion, within the MELOE family, IRES-dependent antigens represent the best T cell targets for immunotherapy of melanoma.
Collapse
Affiliation(s)
- Maud Charpentier
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Mikael Croyal
- UMR INRA 1280, CHU, Nantes, France.,West Human Nutrition Research Center, CHU, Nantes, France
| | | | - Agnès Fortun
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Laetitia Florenceau
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,CHU, Nantes, France
| | - Catherine Rabu
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Michel Krempf
- UMR INRA 1280, CHU, Nantes, France.,West Human Nutrition Research Center, CHU, Nantes, France.,CHU, Nantes, France
| | - Nathalie Labarrière
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,CHU, Nantes, France
| | - François Lang
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
7
|
Galaine J, Kellermann G, Guillaume Y, Boidot R, Picard E, Loyon R, Queiroz L, Boullerot L, Beziaud L, Jary M, Mansi L, André C, Lethier L, Ségal-Bendirdjian E, Borg C, Godet Y, Adotévi O. Heparan Sulfate Proteoglycans Promote Telomerase Internalization and MHC Class II Presentation on Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1597-608. [DOI: 10.4049/jimmunol.1502633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/01/2016] [Indexed: 01/18/2023]
|
8
|
A lineage-specific methylation pattern controls the transcription of the polycistronic mRNA coding MELOE melanoma antigens. Melanoma Res 2016; 25:279-83. [PMID: 25968572 DOI: 10.1097/cmr.0000000000000167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We recently characterized two melanoma antigens MELOE-1 and MELOE-2 derived from a polycistronic RNA overexpressed in the melanocytic lineage. This transcription profile was because of hypomethylation of the meloe proximal promoter in melanomas and melanocytes. Here, we investigate whether this demethylation was restricted to the meloe promoter or was linked to a general lack of methylation at the meloe locus in the melanocytic lineage. We establish the methylation pattern of the locus spanning more than 40 kbp, focusing on CpG islands, using DNA bisulfite conversion and pyrosequencing. The study was carried out on cultured cell lines (melanoma, melanocyte, colon cancer, and mesothelioma cell lines), healthy tissues (skin and colon), and melanoma tumors. Demethylation, specifically observed in the melanocytic lineage, involves a large promoter area and not the entire meloe locus. This enables updating a tight regulation of meloe transcription in this lineage, suggesting tissue-specific epigenetic mechanisms. Associated with the previously described translational mechanisms, leading to the specific expression of MELOE-1 and MELOE-2 in melanomas, this makes MELOE-derived antigens a relevant candidate for immunotherapy of melanoma.
Collapse
|
9
|
Ren S, Chai L, Wang C, Li C, Ren Q, Yang L, Wang F, Qiao Z, Li W, He M, Riker AI, Han Y, Yu Q. Human malignant melanoma-derived progestagen-associated endometrial protein immunosuppresses T lymphocytes in vitro. PLoS One 2015; 10:e0119038. [PMID: 25785839 PMCID: PMC4364885 DOI: 10.1371/journal.pone.0119038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 01/17/2015] [Indexed: 01/04/2023] Open
Abstract
Progestagen-associated endometrial protein (PAEP) is a glycoprotein of the lipocalin family that acts as a negative regulator of T cell receptor-mediated activation. However, the function of tumor-derived PAEP on the human immune system in the tumor microenvironment is unknown. PAEP is highly expressed in intermediate and thick primary melanomas (Breslow’s 2.5mm or greater) and metastatic melanomas, correlating with its expression in daughter cell lines established in vitro. The current study investigates the role of melanoma cell-secreted PAEP protein in regulating T cell function. Upon the enrichment of CD3+, CD4+ and CD8+ T cells from human peripheral blood mononuclear cells, each subset was then mixed with either melanoma-derived PAEP protein or PAEP-poor supernatant of gene-silenced tumor cells. IL-2 and IFN-γ secretion of CD4+ T cells significantly decreased with the addition of PAEP-rich supernatant. And the addition of PAEP-positive cell supernatant to activated lymphocytes significantly inhibited lymphocyte proliferation and cytotoxic T cell activity, while increasing lymphocyte apoptosis. Our result suggests that melanoma cell-secreted PAEP protein immunosuppresses the activation, proliferation and cytotoxicity of T lymphocytes, which might partially explain the mechanism of immune tolerance induced by melanoma cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Suping Ren
- Department of Immunohematology, Beijing Institute of Transfusion Medicine, Beijing, China
- * E-mail: (SR); (QY)
| | - Lina Chai
- Department of Immunohematology, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Chunyan Wang
- Department of Immunohematology, Beijing Institute of Transfusion Medicine, Beijing, China
- Department of poisoning treatment, Beijing 307 hospital, Beijing, China
| | - Changlan Li
- Department of Immunohematology, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Qiquan Ren
- People’s Hospital of Anqiu City, Anqiu, Shandong, China
| | - Lihua Yang
- People’s Hospital of Anqiu City, Anqiu, Shandong, China
| | - Fumei Wang
- People’s Hospital of Anqiu City, Anqiu, Shandong, China
| | - Zhixin Qiao
- Department of Immunohematology, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Weijing Li
- Department of Immunohematology, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Min He
- Department of Immunohematology, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Adam I. Riker
- Advocate Christ Medical Center, Advocate Cancer Institute, Oak Lawn, IL, United States of America
| | - Ying Han
- Department of Immunohematology, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Qun Yu
- Department of Immunohematology, Beijing Institute of Transfusion Medicine, Beijing, China
- * E-mail: (SR); (QY)
| |
Collapse
|
10
|
Overexpression of meloe gene in melanomas is controlled both by specific transcription factors and hypomethylation. PLoS One 2013; 8:e75421. [PMID: 24086527 PMCID: PMC3783405 DOI: 10.1371/journal.pone.0075421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigens MELOE-1 and MELOE-2 are encoded by a messenger, called meloe, overexpressed in melanomas compared with other tumour cell types and healthy tissues. They are both able to elicit melanoma-specific T cell responses in melanoma patients, and MELOE-1-specific CD8 T cells have been involved in melanoma immunosurveillance. With the aim to develop immunotherapies targeting this antigen, we investigated the transcriptional mechanisms leading to the preferential expression of meloe messenger in the melanocytic lineage. We defined the minimal promoter region of meloe gene and identified binding motifs for a set of transcription factors. Using mutagenesis, co-transfection experiments and chromatin immunoprecipitation, we showed that transcription factors involved in meloe promoter activity in melanomas were the melanocytic specific SOX9 and SOX10 proteins together with the activated P-CREB protein. Furthermore, we showed that meloe promoter was hypomethylated in melanomas and melanocytes, and hypermethylated in colon cancer cell lines and mesotheliomas, thus explaining the absence of P-CREB binding in these cell lines. This was a second key to explain the overerexpression of meloe messenger in the melanocytic lineage. To our knowledge, such a dual transcriptional control conferring tissue-specificity has never been described for the expression of tumour antigens.
Collapse
|