1
|
VanSlyke JK, Boswell BA, Musil LS. ErbBs in Lens Cell Fibrosis and Secondary Cataract. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 37418274 PMCID: PMC10337807 DOI: 10.1167/iovs.64.10.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Purpose TGFβ-induced epithelial-to-myofibroblast transition (EMyT) of lens cells has been linked to the most common vision-disrupting complication of cataract surgery-namely, posterior capsule opacification (PCO; secondary cataract). Although inhibitors of the ErbB family of receptor tyrosine kinases have been shown to block some PCO-associated processes in model systems, our knowledge of ErbB signaling in the lens is very limited. Here, we investigate the expression of ErbBs and their ligands in primary cultures of chick lens epithelial cells (dissociated cell-derived monolayer cultures [DCDMLs]) and how TGFβ affects ErbB function. Methods DCDMLs were analyzed by immunofluorescence microscopy and Western blotting under basal and profibrotic conditions. Results Small-molecule ErbB kinase blockers, including the human therapeutic lapatinib, selectively inhibit TGFβ-induced EMyT of DCDMLs. Lens cells constitutively express ErbB1 (EGFR), ErbB2, and ErbB4 protein on the plasma membrane and release into the medium ErbB-activating ligand. Culturing DCDMLs with TGFβ increases soluble bioactive ErbB ligand and markedly alters ErbBs, reducing total and cell surface ErbB2 and ErbB4 while increasing ErbB1 expression and homodimer formation. Similar, TGFβ-dependent changes in relative ErbB expression are induced when lens cells are exposed to the profibrotic substrate fibronectin. A single, 1-hour treatment with lapatinib inhibits EMyT in DCDMLs assessed 6 days later. Short-term exposure to lower doses of lapatinib is also capable of eliciting a durable response when combined with suboptimal levels of a mechanistically distinct multikinase inhibitor. Conclusions Our findings support ErbB1 as a therapeutic target for fibrotic PCO, which could be leveraged to pharmaceutically preserve the vision of millions of patients with cataracts.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
2
|
Gnosa S, Puig-Blasco L, Piotrowski KB, Freiberg ML, Savickas S, Madsen DH, Auf dem Keller U, Kronqvist P, Kveiborg M. ADAM17-mediated EGFR ligand shedding directs macrophage promoted cancer cell invasion. JCI Insight 2022; 7:155296. [PMID: 35998057 DOI: 10.1172/jci.insight.155296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Macrophages in the tumor microenvironment have a significant impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of ADAM proteases, which are key mediators of cell-cell signaling, to the expression of pro-tumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several pro-tumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified HB-EGF and AREG, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-seq and ELISA experiments revealed that ADAM17-dependent HB-EGF-ligand release induces the expression and secretion of CXCL chemokines in macrophages, which in turn stimulates cancer cell invasion.In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.
Collapse
Affiliation(s)
| | - Laia Puig-Blasco
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | | | - Marie L Freiberg
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | - Daniel H Madsen
- Center for Cancer Immune Therapy (CCIT), Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | | | | |
Collapse
|
3
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Shen Y, Ruan L, Lian C, Li R, Tu Z, Liu H. Discovery of HB-EGF binding peptides and their functional characterization in ovarian cancer cell lines. Cell Death Discov 2019; 5:82. [PMID: 30937184 PMCID: PMC6433920 DOI: 10.1038/s41420-019-0163-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/03/2019] [Accepted: 02/10/2019] [Indexed: 01/29/2023] Open
Abstract
Ovarian cancer is one of the most frequent causes of cancer death among all gynecologic cancers. Though standard therapy often results in temporary clinical remission, most patients suffer from recurrence and metastasis of ovarian cancer, which highlights the need for developing new therapeutic agents targeting specific molecules. Previous studies have demonstrated that the native ligand of epidermal growth factor receptor (EGFR) and ErbB4, heparin-binding EGF-like growth factor (HB-EGF), plays a critical role in the progression of ovarian cancer and is associated with prognosis of ovarian cancer. In the current study, we tried to develop a peptide-based treatment for ovarian cancer by targeting HB-EGF. After the functions of HB-EGF in promoting migration and invasion of SKOV3 and HO-8910 cells were confirmed, phage display was used to discover peptides binding to HB-EGF. Two peptides, no. 7 and no. 29 were found mildly binding to HB-EGF. Then the effects of these peptides on HB-EGF functions were examined and both peptides no. 7 and no. 29 were found indeed inhibiting the functions of HB-EGF in promoting migration and invasion of SKOV3 and HO-8910 cells in vitro. Further mechanism investigation showed that peptides no. 7 and no. 29 inhibited HB-EGF-promoted cell migration and invasion through attenuating activation of the EGFR signaling pathway manifested by decreased p-Erk1/2 and Snail levels. More importantly, peptides no. 7 and no. 29 showed strong activities in inhibiting migration of SKOV3 cells in vivo. These results provide a proof of concept method for developing novel peptide drugs to combat ovarian cancer through interfering with HB-EGF mediated signaling pathways.
Collapse
Affiliation(s)
- Yanting Shen
- 1School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Lingling Ruan
- 1School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Caixia Lian
- 2Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Ruyan Li
- 2Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Zhigang Tu
- 2Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Hanqing Liu
- 1School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| |
Collapse
|
5
|
Wang X, Yuan W, Wang X, Qi J, Qin Y, Shi Y, Zhang J, Gong J, Dong Z, Liu X, Sun C, Chai R, Le Noble F, Liu D. The somite-secreted factor Maeg promotes zebrafish embryonic angiogenesis. Oncotarget 2018; 7:77749-77763. [PMID: 27780917 PMCID: PMC5363618 DOI: 10.18632/oncotarget.12793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/12/2016] [Indexed: 01/06/2023] Open
Abstract
MAM and EGF containing gene (MAEG), also called Epidermal Growth Factor-like domain multiple 6 (EGFL6), belongs to the epidermal growth factor repeat superfamily. The role of Maeg in zebrafish angiogenesis remains unclear. It was demonstrated that maeg was dynamically expressed in zebrafish developing somite during a time window encompassing many key steps in embryonic angiogenesis. Maeg loss-of-function embryos showed reduced endothelial cell number and filopodia extensions of intersegmental vessels (ISVs). Maeg gain-of-function induced ectopic sprouting evolving into a hyperbranched and functional perfused vasculature. Mechanistically we demonstrate that Maeg promotes angiogenesis dependent on RGD domain and stimulates activation of Akt and Erk signaling in vivo. Loss of Maeg or Itgb1, augmented expression of Notch receptors, and inhibiting Notch signaling or Dll4 partially rescued angiogenic phenotypes suggesting that Notch acts downstream of Itgb1. We conclude that Maeg acts as a positive regulator of angiogenic cell behavior and formation of functional vessels.
Collapse
Affiliation(s)
- Xin Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Yuan
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xueqian Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Jialing Qi
- Medical College, Nantong University, Nantong, China
| | - Yinyin Qin
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Yunwei Shi
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Jie Zhang
- Medical College, Nantong University, Nantong, China
| | - Jie Gong
- School of life science, Nantong University, Nantong, China
| | - Zhangji Dong
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Chen Sun
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ferdinand Le Noble
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
6
|
Limoge M, Safina A, Truskinovsky AM, Aljahdali I, Zonneville J, Gruevski A, Arteaga CL, Bakin AV. Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors. Oncotarget 2017; 8:61969-61981. [PMID: 28977919 PMCID: PMC5617479 DOI: 10.18632/oncotarget.18755] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 01/10/2023] Open
Abstract
The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease.
Collapse
Affiliation(s)
- Michelle Limoge
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Ieman Aljahdali
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Justin Zonneville
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Aleksandar Gruevski
- State University of New York at Buffalo, Department of Biological Sciences, Buffalo, New York, USA
| | - Carlos L. Arteaga
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Andrei V. Bakin
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
7
|
Kim S, Yang L, Kim S, Lee RG, Graham MJ, Berliner JA, Lusis AJ, Cai L, Temel RE, Rateri DL, Lee S. Targeting hepatic heparin-binding EGF-like growth factor (HB-EGF) induces anti-hyperlipidemia leading to reduction of angiotensin II-induced aneurysm development. PLoS One 2017; 12:e0182566. [PMID: 28792970 PMCID: PMC5549937 DOI: 10.1371/journal.pone.0182566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Objective The upregulated expression of heparin binding EGF-like growth factor (HB-EGF) in the vessel and circulation is associated with risk of cardiovascular disease. In this study, we tested the effects of HB-EGF targeting using HB-EGF-specific antisense oligonucleotide (ASO) on the development of aortic aneurysm in a mouse aneurysm model. Approach and results Low-density lipoprotein receptor (LDLR) deficient mice (male, 16 weeks of age) were injected with control and HB-EGF ASOs for 10 weeks. To induce aneurysm, the mice were fed a high fat diet (22% fat, 0.2% cholesterol; w/w) at 5 week point of ASO administration and infused with angiotensin II (AngII, 1,000ng/kg/min) for the last 4 weeks of ASO administration. We confirmed that the HB-EGF ASO administration significantly downregulated HB-EGF expression in multiple tissues including the liver. Importantly, the HB-EGF ASO administration significantly suppressed development of aortic aneurysms including thoracic and abdominal types. Interestingly, the HB-EGF ASO administration induced a remarkable anti-hyperlipidemic effect by suppressing very low density lipoprotein (VLDL) level in the blood. Mechanistically, the HB-EGF targeting suppressed hepatic VLDL secretion rate without changing heparin-releasable plasma triglyceride (TG) hydrolytic activity or fecal neutral cholesterol excretion rate. Conclusion This result suggested that the HB-EGF targeting induced protection against aneurysm development through anti-hyperlipidemic effects. Suppression of hepatic VLDL production process appears to be a key mechanism for the anti-hyperlipidemic effects by the HB-EGF targeting.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Lihua Yang
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Seongu Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Richard G. Lee
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Mark J. Graham
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Judith A. Berliner
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Aldons J. Lusis
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Lei Cai
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Ryan E. Temel
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Debra L. Rateri
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Sangderk Lee
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
8
|
Shin CH, Robinson JP, Sonnen JA, Welker AE, Yu DX, VanBrocklin MW, Holmen SL. HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss. Oncogene 2017; 36:4610-4618. [PMID: 28368403 PMCID: PMC5552427 DOI: 10.1038/onc.2017.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 12/19/2022]
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is a ligand for the epidermal growth factor receptor (EGFR), one of the most commonly amplified receptor tyrosine kinases (RTK) in glioblastoma. While HBEGF has been found to be expressed in a subset of malignant gliomas, its sufficiency for glioma initiation has not been evaluated. In this study, we demonstrate that HBEGF can initiate glioblastoma (GBM) in mice in the context of Ink4a/Arf and Pten loss, and that these tumors are similar to the classical GBM subtype observed in patients. Isogenic astrocytes from these mice showed activation not only of Egfr but also the RTK Axl in response to HBEGF stimulation. Deletion of either Egfr or Axl decreased the tumorigenic properties of HBEGF transformed cells; however only EGFR was able to rescue the phenotype in cells lacking both RTKs indicating that Egfr is required for activation of Axl in this context. Silencing of HBEGF in vivo resulted in tumor regression and significantly increased survival suggesting that HBEGF may be a clinically relevant target.
Collapse
Affiliation(s)
- C H Shin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - J P Robinson
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - J A Sonnen
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,ARUP Laboratories, Salt Lake City, UT, USA
| | - A E Welker
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA
| | - D X Yu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - M W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - S L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Shetty P, Patil VS, Mohan R, D’souza LC, Bargale A, Patil BR, Dinesh US, Haridas V, Kulkarni SP. Annexin A2 and its downstream IL-6 and HB-EGF as secretory biomarkers in the differential diagnosis of Her-2 negative breast cancer. Ann Clin Biochem 2016; 54:463-471. [DOI: 10.1177/0004563216665867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background AnnexinA2 (AnxA2) membrane deposition has a critical role in HB-EGF shedding as well as IL-6 secretion in breast cancer cells. This autocrine cycle has a major role in cancer cell proliferation, migration and metastasis. The objective of the study is to demonstrate annexinA2-mediated autocrine regulation via HB-EGF and IL-6 in Her-2 negative breast cancer progression. Methods Secretory annexinA2, HB-EGF and IL-6 were analysed in the peripheral blood sample of Her-2 negative ( n = 20) and positive breast cancer patients ( n = 16). Simultaneously, tissue expression was analysed by immunohistochemistry. The membrane deposition of these secretory ligands and their autocrine regulation was demonstrated using triple-negative breast cancer cell line model. Results Annexina2 and HB-EGF expression are inversely correlated with Her-2, whereas IL-6 expression is seen in both Her-2 negative and positive breast cancer cells. RNA interference studies and upregulation of annexinA2 proved that annexinA2 is the upstream of this autocrine pathway. Abundant soluble serum annexinA2 is secreted in Her-2 negative breast cancer (359.28 ± 63.73 ng/mL) compared with normal (286.10 ± 70.04 ng/mL, P < 0.01) and Her-2 positive cases (217.75 ± 60.59 ng/mL, P < 0.0001). In Her-2 negative cases, the HB-EGF concentrations (179.16 ± 118.81 pg/mL) were highly significant compared with normal (14.92 ± 17.33 pg/mL, P < 0.001). IL-6 concentrations were increased significantly in both the breast cancer phenotypes as compared with normal ( P < 0.001). Conclusion The specific expression pattern of annexinA2 and HB-EGF in triple-negative breast cancer tissues, increased secretion compared with normal cells, and their major role in the regulation of EGFR downstream signalling makes these molecules as a potential tissue and serum biomarker and an excellent therapeutic target in Her-2 negative breast cancer.
Collapse
Affiliation(s)
- Praveenkumar Shetty
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Vidya S Patil
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Rajashekar Mohan
- Department of Surgery, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Leonard Clinton D’souza
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Anil Bargale
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | | | - US Dinesh
- Department of Pathology, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Vikram Haridas
- Department of Medicine, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Shrirang P Kulkarni
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| |
Collapse
|
10
|
Shim JW, Sandlund J, Hameed MQ, Blazer-Yost B, Zhou FC, Klagsbrun M, Madsen JR. Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus. Sci Rep 2016; 6:26794. [PMID: 27243144 PMCID: PMC4886677 DOI: 10.1038/srep26794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/10/2016] [Indexed: 01/19/2023] Open
Abstract
Heparin binding epidermal growth factor-like growth factor (HB-EGF) is an angiogenic factor mediating radial migration of the developing forebrain, while vascular endothelial growth factor (VEGF) is known to influence rostral migratory stream in rodents. Cell migratory defects have been identified in animal models of hydrocephalus; however, the relationship between HB-EGF and hydrocephalus is unclear. We show that mice overexpressing human HB-EGF with β-galactosidase reporter exhibit an elevated VEGF, localization of β-galactosidase outside the subventricular zone (SVZ), subarachnoid hemorrhage, and ventriculomegaly. In Wistar polycystic kidney rats with hydrocephalus, alteration of migratory trajectory is detected. Furthermore, VEGF infusions into the rats result in ventriculomegaly with an increase of SVZ neuroblast in rostral migratory stream, whereas VEGF ligand inhibition prevents it. Our results support the idea that excess HB-EGF leads to a significant elevation of VEGF and ventricular dilatation. These data suggest a potential pathophysiological mechanism that elevated HB-EGF can elicit VEGF induction and hydrocephalus.
Collapse
Affiliation(s)
- Joon W Shim
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Johanna Sandlund
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive L235, Stanford, CA 94305, USA.,Clinical Microbiology Laboratory, Stanford University Medical Center, 3375 Hillview Avenue Palo, Alto, CA 94304, USA
| | - Mustafa Q Hameed
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bonnie Blazer-Yost
- Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Klagsbrun
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Surgery and Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Lian C, Ruan L, Shang D, Wu Y, Lu Y, Lü P, Yang Y, Wei Y, Dong X, Ren D, Chen K, Liu H, Tu Z. Heparin-Binding Epidermal Growth Factor-Like Growth Factor as a Potent Target for Breast Cancer Therapy. Cancer Biother Radiopharm 2016; 31:85-90. [DOI: 10.1089/cbr.2015.1956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Caixia Lian
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lingling Ruan
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dongsheng Shang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yongjin Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yuhua Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yajun Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Xiaojing Dong
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dewan Ren
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Lim Y, Yoo J, Kim MS, Hur M, Lee EH, Hur HS, Lee JC, Lee SN, Park TW, Lee K, Chang KH, Kim K, Kang Y, Hong KW, Kim SH, Kim YG, Yoon Y, Nam DH, Yang H, Kim DG, Cho HS, Won J. GC1118, an Anti-EGFR Antibody with a Distinct Binding Epitope and Superior Inhibitory Activity against High-Affinity EGFR Ligands. Mol Cancer Ther 2015; 15:251-63. [PMID: 26586721 DOI: 10.1158/1535-7163.mct-15-0679] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022]
Abstract
The EGFR-targeted monoclonal antibodies are a valid therapeutic strategy for patients with metastatic colorectal cancer (mCRC). However, only a small subset of mCRC patients has therapeutic benefits and there are high demands for EGFR therapeutics with a broader patient pool and more potent efficacy. In this study, we report GC1118 exhibiting a different character in terms of binding epitope, affinity, mode of action, and efficacy from other anti-EGFR antibodies. Structural analysis of the EGFR-GC1118 crystal complex revealed that GC1118 recognizes linear, discrete N-terminal epitopes of domain III of EGFR, critical for EGF binding but not overlapping with those of other EGFR-targeted antibodies. GC1118 exhibited superior inhibitory activity against high-affinity EGFR ligands in terms of EGFR binding, triggering EGFR signaling, and proliferation compared with cetuximab and panitumumab. EGFR signaling driven by low-affinity ligands, on the contrary, was well inhibited by all the antibodies tested. GC1118 demonstrated robust antitumor activity in tumor xenografts with elevated expression of high-affinity ligands in vivo, whereas cetuximab did not. Considering the significant role of high-affinity EGFR ligands in modulating tumor microenvironment and inducing resistance to various cancer therapeutics, our study suggests a potential therapeutic advantage of GC1118 in terms of efficacy and a range of benefited patient pool. Mol Cancer Ther; 15(2); 251-63. ©2015 AACR.
Collapse
Affiliation(s)
- Yangmi Lim
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Jiho Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Min-Soo Kim
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Minkyu Hur
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea. Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Eun Hee Lee
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Hyung-Suk Hur
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Jae-Chul Lee
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Shi-Nai Lee
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Tae Wook Park
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Kyuhyun Lee
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Ki Hwan Chang
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Kuglae Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - YingJin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kwang-Won Hong
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Se-Ho Kim
- University-Industry Cooperation Foundation, and Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-Do, Republic of Korea
| | - Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Yeup Yoon
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea. Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea. Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Heekyoung Yang
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea. Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea. Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Dong Geon Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Jonghwa Won
- MOGAM Biotechnology Institute, Yongin, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
13
|
Hu Y, Lin X, Wang P, Xue YX, Li Z, Liu LB, Yu B, Feng TD, Liu YH. CRM197 in Combination With shRNA Interference of VCAM-1 Displays Enhanced Inhibitory Effects on Human Glioblastoma Cells. J Cell Physiol 2015; 230:1713-28. [PMID: 25201410 DOI: 10.1002/jcp.24798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/02/2014] [Indexed: 01/01/2023]
Abstract
CRM197 is a naturally nontoxic diphtheria toxin mutant that binds and inhibits heparin-binding epidermal growth factor-like growth factor. CRM197 serves as carrier protein for vaccine and other therapeutic agents. CRM197 also inhibits the growth, migration, invasion, and induces apoptosis in various tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we aimed to investigate the role and mechanism of CRM197 combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion, and apoptosis of glioblastoma cells. U87 and U251 human glioblastoma cells were treated with CRM197 (10 µg/ml) and shRNA interfering technology was employed to silence VCAM-1 expression. Cell viability, migration, invasiveness, and apoptosis were assessed with CCK8, Transwell and Annexin V-PE/7-AAD staining. Activation of cleaved caspase-3, 8, and 9, activity of matrix metalloproteinase-2/9 (MMP-2/9), and expression of phosphorylated Akt (p-Akt) were also checked. Results showed that CRM197 and shRNA-VCAM-1 not only significantly inhibited the cell proliferation, migration, invasion, but also promoted the apoptosis of U87 and U251 cells. Combined treatment of both displayed enhanced inhibitory effects on the malignant biological behavior of glioma cells. The activation of cleaved caspase-3, 8, 9 was promoted, activity of MMP-2 and MMP-9 and expression of p-Akt were inhibited significantly by the treatment of CRM197 and shRNA-VCAM-1 alone or in combination, indicating that the combination of CRM197 with shRNA-VCAM-1 additively inhibited the malignant behavior of human glioblastoma cells via activating caspase-3, 8, 9 as well as inhibiting MMP-2, MMP-9, and Akt pathway.
Collapse
Affiliation(s)
- Yi Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
An antibody to amphiregulin, an abundant growth factor in patients’ fluids, inhibits ovarian tumors. Oncogene 2015; 35:438-47. [DOI: 10.1038/onc.2015.93] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 02/03/2023]
|
15
|
Wylie PG, Onley DJ, Hammerstein AF, Bowen WP. Advances in Laser Scanning Imaging Cytometry for High-Content Screening. Assay Drug Dev Technol 2015; 13:66-78. [DOI: 10.1089/adt.2014.607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Paul G. Wylie
- TTP Labtech Limited, Melbourn, Hertfordshire, United Kingdom
| | - David J. Onley
- TTP Labtech Limited, Melbourn, Hertfordshire, United Kingdom
| | | | - Wayne P. Bowen
- TTP Labtech Limited, Melbourn, Hertfordshire, United Kingdom
| |
Collapse
|
16
|
Taylor S, Markesbery M, Harding P. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) and proteolytic processing by a disintegrin and metalloproteinases (ADAM): A regulator of several pathways. Semin Cell Dev Biol 2014; 28:22-30. [DOI: 10.1016/j.semcdb.2014.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 03/03/2014] [Indexed: 12/11/2022]
|
17
|
Identification of the cancer cell proliferation and survival functions of proHB-EGF by using an anti-HB-EGF antibody. PLoS One 2013; 8:e54509. [PMID: 23349913 PMCID: PMC3549951 DOI: 10.1371/journal.pone.0054509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The membrane-bound proHB-EGF is known to be a precursor of the soluble form of HB-EGF (sHB-EGF), which promotes cell proliferation and survival. While the functions of sHB-EGF have been extensively studied, it is not yet fully understood if proHB-EGF is also involved in cellular signaling events. In this study, we utilized the anti-HB-EGF monoclonal antibodies Y-142 and Y-073, which have differential specificities toward proHB-EGF, in order to elucidate proHB-EGF functions in cancer cells. EXPERIMENTAL DESIGN The biological activities of proHB-EGF were assessed in cell proliferation, caspase activation, and juxtacrine activity assays by using a 3D spheroid culture of NUGC-3 cells. RESULTS Y-142 and Y-073 exhibited similar binding and neutralizing activities for sHB-EGF. However, only Y-142 bound to proHB-EGF. We could detect the function of endogenously expressed proHB-EGF in a 3D spheroid culture. Blocking proHB-EGF with Y-142 reduced spheroid formation, suppressed cell proliferation, and increased caspase activation in the 3D spheroid culture of NUGC-3 cells. CONCLUSIONS Our results show that proHB-EGF acts as a cell proliferation and cell survival factor in cancer cells. The results suggest that proHB-EGF may play an important role in tumor progression.
Collapse
|