1
|
Li H, Xie L, Zhu L, Li Z, Wang R, Liu X, Huang Z, Chen B, Gao Y, Wei L, He C, Ju R, Liu Y, Liu X, Zheng Y, Su W. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat Commun 2022; 13:5866. [PMID: 36195600 PMCID: PMC9532430 DOI: 10.1038/s41467-022-33502-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Uveitis is a severe autoimmune disease, and a common cause of blindness; however, its individual cellular dynamics and pathogenic mechanism remain poorly understood. Herein, by performing single-cell RNA sequencing (scRNA-seq) on experimental autoimmune uveitis (EAU), we identify disease-associated alterations in cell composition and transcriptional regulation as the disease progressed, as well as a disease-related molecule, PIM1. Inhibiting PIM1 reduces the Th17 cell proportion and increases the Treg cell proportion, likely due to regulation of PIM1 to the protein kinase B (AKT)/Forkhead box O1 (FOXO1) pathway. Moreover, inhibiting PIM1 reduces Th17 cell pathogenicity and reduces plasma cell differentiation. Importantly, the upregulation of PIM1 in CD4+ T cells and plasma cells is conserved in a human uveitis, Vogt-Koyanagi-Harada disease (VKH), and inhibition of PIM1 reduces CD4+ T and B cell expansion. Collectively, a dynamic immune cellular atlas during uveitis is developed and implicate that PIM1 may be a potential therapeutic target for VKH. Uveitis is a complex autoimmune inflammatory disease of the eye and defining molecules involved is a priority. Here the authors use scRNA sequencing in mouse experimental autoimmune uveitis (EAU) and show PIM1 promotes the imbalance of Th17 and Treg cells, and find elevated PIM-1 in human uveitis disease.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China. .,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Mahata S, Sahoo PK, Pal R, Sarkar S, Mistry T, Ghosh S, Nasare VD. PIM1/STAT3 axis: a potential co-targeted therapeutic approach in triple-negative breast cancer. Med Oncol 2022; 39:74. [PMID: 35568774 DOI: 10.1007/s12032-022-01675-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/01/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer lacks an expression of ER, PR, and Her-2, has a poor prognosis, and there are no target therapies available. Therapeutic options to treat TNBC are limited and urgently needed. Strong evidence indicates that molecular signaling pathways have a significant function to regulate biological mechanisms and their abnormal expression endows with the development of cancer. PIM kinase is overexpressed in various human cancers including TNBC which is regulated by various signaling pathways that are crucial for cancer cell proliferation and survival and also make PIM kinase as an attractive drug target. One of the targets of the STAT3 signaling pathway is PIM1 that plays a key role in tumor progression and transformation. In this review, we accumulate the current scenario of the PIM-STAT3 axis that provides insights into the PIM1 and STAT3 inhibitors which can be developed as potential co-inhibitors as prospective anticancer agents.
Collapse
Affiliation(s)
- Sutapa Mahata
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Pranab K Sahoo
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Ranita Pal
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Sinjini Sarkar
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Tanuma Mistry
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Sushmita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Vilas D Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
3
|
Karouta C, Kucharski R, Hardy K, Thomson K, Maleszka R, Morgan I, Ashby R. Transcriptome-based insights into gene networks controlling myopia prevention. FASEB J 2021; 35:e21846. [PMID: 34405458 DOI: 10.1096/fj.202100350rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Myopia (short-sightedness), usually caused by excessive elongation of the eye during development, has reached epidemic proportions worldwide. In animal systems including the chicken model, several treatments have been shown to inhibit ocular elongation and experimental myopia. Although diverse in their apparent mechanism of action, each one leads to a reduction in the rate of ocular growth. We hypothesize that a defined set of retinal molecular changes may underlie growth inhibition, irrespective of the treatment agent used. Accordingly, across five well-established but diverse methods of inhibiting myopia, significant overlap is seen in the retinal transcriptome profile (transcript levels and alternative splicing events) in chicks when analyzed by RNA-seq. Within the two major pathway networks enriched during growth inhibition, that of cell signaling and circadian entrainment, transcription factors form the largest functional grouping. Importantly, a large percentage of those genes forming the defined retinal response are downstream targets of the transcription factor EGR1 which itself shows a universal response to all five growth-inhibitory treatments. This supports EGR1's previously implicated role in ocular growth regulation. Finally, by contrasting our data with human linkage and GWAS studies on refractive error, we confirm the applicability of our study to the human condition. Together, these findings suggest that a universal set of transcriptome changes, which sit within a well-defined retinal network that cannot be bypassed, is fundamental to growth regulation, thus paving a way for designing novel targets for myopia therapies.
Collapse
Affiliation(s)
- Cindy Karouta
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Robert Kucharski
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Kristine Hardy
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Kate Thomson
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ian Morgan
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
4
|
Asati V, Agarwal S, Mishra M, Das R, Kashaw SK. Structural prediction of novel pyrazolo-pyrimidine derivatives against PIM-1 kinase: In-silico drug design studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Zhang S, Shuai L, Wang D, Huang T, Yang S, Miao M, Liu F, Xu J. Pim-1 Protects Retinal Ganglion Cells by Enhancing Their Regenerative Ability Following Optic Nerve Crush. Exp Neurobiol 2020; 29:249-272. [PMID: 32624507 PMCID: PMC7344373 DOI: 10.5607/en20019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022] Open
Abstract
Provirus integration site Moloney murine leukemia virus (Pim-1) is a proto-oncogene reported to be associated with cell proliferation, differentiation and survival. This study was to explore the neuroprotective role of Pim-1 in a rat model subjected to optic nerve crush (ONC), and discuss its related molecules in improving the intrinsic regeneration ability of retinal ganglion cells (RGCs). Immunofluorescence staining showed that AAV2- Pim-1 infected 71% RGCs and some amacrine cells in the retina. Real-time PCR and Western blotting showed that retina infection with AAV2- Pim-1 up-regulated the Pim-1 mRNA and protein expressions compared with AAV2-GFP group. Hematoxylin-Eosin (HE) staining, γ-synuclein immunohistochemistry, Cholera toxin B (CTB) tracing and TUNEL showed that RGCs transduction with AAV2-Pim-1 prior to ONC promoted the survival of damaged RGCs and decreased cell apoptosis. RITC anterograde labeling showed that Pim-1 overexpression increased axon regeneration and promoted the recovery of visual function by pupillary light reflex and flash visual evoked potential. Western blotting showed that Pim- 1 overexpression up-regulated the expression of Stat3, p-Stat3, Akt1, p-Akt1, Akt2 and p-Akt2, as well as βIII-tubulin, GAP-43 and 4E-BP1, and downregulated the expression of SOCS1 and SOCS3, Cleaved caspase 3, Bad and Bax. These results demonstrate that Pim-1 exerted a neuroprotective effect by promoting nerve regeneration and functional recovery of RGCs. In addition, it enhanced the intrinsic regeneration capacity of RGCs after ONC by activating Stat3, Akt1 and Akt2 pathways, and inhibiting the mitochondrial apoptosis pathways. These findings suggest that Pim-1 may prove to be a potential therapeutic target for the clinical treatment of optic nerve injury.
Collapse
Affiliation(s)
- Shoumei Zhang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Shuai
- Department of Health Administration, Second Military Medical University, Shanghai 200433, China
| | - Dong Wang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Tingting Huang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Shengsheng Yang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China
| | - Mingyong Miao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China
| | - Fang Liu
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Jiajun Xu
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Identification of duplicated suppressor of cytokine signaling 3 (SOCS3) genes in blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol B Biochem Mol Biol 2020; 239:110348. [DOI: 10.1016/j.cbpb.2019.110348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/03/2019] [Accepted: 09/04/2019] [Indexed: 12/28/2022]
|
7
|
PIM-Related Kinases Selectively Regulate Olfactory Sensations in Caenorhabditis elegans. eNeuro 2019; 6:ENEURO.0003-19.2019. [PMID: 31387876 PMCID: PMC6709224 DOI: 10.1523/eneuro.0003-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
The mammalian PIM family of serine/threonine kinases regulate several cellular functions, such as cell survival and motility. Because PIM expression is observed in sensory organs, such as olfactory epithelium, we now wanted to explore the physiological roles of PIM kinases there. As our model organism, we used the Caenorhabditis elegans nematodes, which express two PIM-related kinases, PRK-1 and PRK-2. We demonstrated PRKs to be true PIM orthologs with similar substrate specificity as well as sensitivity to PIM-inhibitory compounds. When we analyzed the effects of pan-PIM inhibitors on C. elegans sensory functions, we observed that PRK activity is selectively required to support olfactory sensations to volatile repellents and attractants sensed by AWB and AWCON neurons, respectively, but is dispensable for gustatory sensations. Analyses of prk-deficient mutant strains confirmed these findings and suggested that PRK-1, but not PRK-2 is responsible for the observed effects on olfaction. This regulatory role of PRK-1 is further supported by its observed expression in the head and tail neurons, including AWB and AWC neurons. Based on the evolutionary conservation of PIM-related kinases, our data may have implications in regulation of also mammalian olfaction.
Collapse
|
8
|
Breves JP. Prolactin controls branchial clcn2c but not atp1a1a.2 in zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2019; 94:168-172. [PMID: 30367725 DOI: 10.1111/jfb.13854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
This study examined the branchial epithelium of stenohaline zebrafish Danio rerio, and in particular Na+ -Cl- cotransporter-like 2 (Slc12a10.2)-expressing ionocytes (Na+ -Cl- cotransporter [Ncc]-cells), which mediate the active uptake of ions from freshwater environments. The study assessed whether the pituitary hormone prolactin (Prl) stimulates the expression of messenger (m)RNAs encoding a Clc Cl- channel family member (clcn2c) and a Na+ -K+ -ATPase α1 subunit (atp1a1a.2) expressed in Ncc-cells. Branchial clcn2c, but not atp1a1a.2 levels, were sensitive to Prl both in vitro and in vivo. These observations suggest that Prl contributes to maintaining systemic Cl- balance via the regulation of clcn2c.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
9
|
Zhang S, Wang D, Huang T, Liu F, Shuai L, Xu J. Pim-1 Expression in Rat Retina and its Changes after Optic Nerve Crush. Anat Rec (Hoboken) 2018; 301:1968-1976. [PMID: 30299595 DOI: 10.1002/ar.23947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 01/19/2018] [Accepted: 02/16/2018] [Indexed: 11/11/2022]
Abstract
Pim-1 is a proto-oncogene which has been discovered to involve in cell proliferation, differentiation, and survival. In this study, we observed the expression of Pim-1 in neonatal and adult rat retina and the changes in rat retina following optic nerve crush (ONC) in order to explore the relationship between Pim-1 and the survival of retinal ganglion cells (RGC). We discovered that Pim-1 was distributed mainly in retinal pigment epithelial cells (RPE) and retinal ganglion cell layer (GCL) in normal newborn rats, and it appeared in RPE, cone rod cell layer and GCL in normal adult rats by immunohistochemistry. Our double immunofluorescent staining of Pim-1 and γ-synuclein further confirmed that Pim-1 was localized in 80% of RGC. Moreover, we found that the amount of Pim-1 mRNA and protein in adult rat retina was transiently increased after ONC and then decreased 2 weeks after ONC, and the expression level was lower than that of neonatal rat retina under all conditions. We also discovered that Pim-1 expression in GCL detected by immunohistochemistry was upregulated at Day 1 and Day 3 after ONC, but downregulated at Day 14 after ONC when the survival of RGC was decreased and the apoptotic cells in GCL were increased by hematoxylin-eosin staining, immunohistochemistry, and TUNEL detection. We suggest that the overexpression of Pim-1 in the RGC is related to the optic nerve repair while the low expression of Pim-1 in RGC may be associated with apoptosis and weak intrinsic regeneration ability of RGC. Anat Rec, 301:1968-1976, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shoumei Zhang
- Department of Anatomy, Second Military Medical University, Shanghai, China
| | - Dong Wang
- Department of Anatomy, Second Military Medical University, Shanghai, China
| | - Tingting Huang
- Department of Anatomy, Second Military Medical University, Shanghai, China
| | - Fang Liu
- Department of Anatomy, Second Military Medical University, Shanghai, China
| | - Li Shuai
- Department of Health Administration, Second Military Medical University, Shanghai, China
| | - Jiajun Xu
- Department of Anatomy, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Ward R, Sundaramurthi H, Di Giacomo V, Kennedy BN. Enhancing Understanding of the Visual Cycle by Applying CRISPR/Cas9 Gene Editing in Zebrafish. Front Cell Dev Biol 2018; 6:37. [PMID: 29696141 PMCID: PMC5904205 DOI: 10.3389/fcell.2018.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/19/2018] [Indexed: 01/23/2023] Open
Abstract
During the vertebrate visual cycle, all-trans-retinal is exported from photoreceptors to the adjacent RPE or Müller glia wherein 11-cis-retinal is regenerated. The 11-cis chromophore is returned to photoreceptors, forming light-sensitive visual pigments with opsin GPCRs. Dysfunction of this process perturbs phototransduction because functional visual pigment cannot be generated. Mutations in visual cycle genes can result in monogenic inherited forms of blindness. Though key enzymatic processes are well characterized, questions remain as to the physiological role of visual cycle proteins in different retinal cell types, functional domains of these proteins in retinoid biochemistry and in vivo pathogenesis of disease mutations. Significant progress is needed to develop effective and accessible treatments for inherited blindness arising from mutations in visual cycle genes. Here, we review opportunities to apply gene editing technology to two crucial visual cycle components, RPE65 and CRALBP. Expressed exclusively in the human RPE, RPE65 enzymatically converts retinyl esters into 11-cis retinal. CRALBP is an 11-cis-retinal binding protein expressed in human RPE and Muller glia. Loss-of-function mutations in either protein results in autosomal recessive forms of blindness. Modeling these human conditions using RPE65 or CRALBP murine knockout models have enhanced our understanding of their biochemical function, associated disease pathogenesis and development of therapeutics. However, rod-dominated murine retinae provide a challenge to assess cone function. The cone-rich zebrafish model is amenable to cost-effective maintenance of a variety of strains. Interestingly, gene duplication in zebrafish resulted in three Rpe65 and two Cralbp isoforms with differential temporal and spatial expression patterns. Functional investigations of zebrafish Rpe65 and Cralbp were restricted to gene knockdown with morpholino oligonucleotides. However, transient silencing, off-target effects and discrepancies between knockdown and knockout models, highlight a need for more comprehensive alternatives for functional genomics. CRISPR/Cas9 in zebrafish has emerged as a formidable technology enabling targeted gene knockout, knock-in, activation, or silencing to single base-pair resolution. Effective, targeted gene editing by CRISPR/Cas9 in zebrafish enables unprecedented opportunities to create genetic research models. This review will discuss existing knowledge gaps regarding RPE65 and CRALBP. We explore the benefits of CRISPR/Cas9 to establish innovative zebrafish models to enhance knowledge of the visual cycle.
Collapse
Affiliation(s)
- Rebecca Ward
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Husvinee Sundaramurthi
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Breandán N. Kennedy
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- *Correspondence: Breandán N. Kennedy
| |
Collapse
|
11
|
A missense mutation in zbtb17 blocks the earliest steps of T cell differentiation in zebrafish. Sci Rep 2017; 7:44145. [PMID: 28266617 PMCID: PMC5339814 DOI: 10.1038/srep44145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
T cells are an evolutionarily conserved feature of the adaptive immune systems of vertebrates. Comparative studies using evolutionarily distant species hold great promise for unraveling the genetic landscape underlying this process. To this end, we used ENU mutagenesis to generate mutant zebrafish with specific aberrations in early T cell development. Here, we describe the identification of a recessive missense mutation in the transcriptional regulator zbtb17 (Q562K), which affects the ninth zinc finger module of the protein. Homozygous mutant fish exhibit an early block of intrathymic T cell development, as a result of impaired thymus colonization owing to reduced expression of the gene encoding the homing receptor ccr9a, and inefficient T cell differentiation owing to reduced expression of socs1a. Our results reveal the zbtb17-socs1 axis as an evolutionarily conserved central regulatory module of early T cell development of vertebrates.
Collapse
|
12
|
Daly C, Yin J, Kennedy BN. Histone Deacetylase: Therapeutic Targets in Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:455-61. [PMID: 26427446 DOI: 10.1007/978-3-319-17121-0_61] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous studies report that retinitis pigmentosa (RP) patients treated with the histone deacetylase inhibitor (HDACi) valproic acid (VPA) present with improved visual fields and delayed vision loss. However, other studies report poor efficacy and safety of HDACi in other cohorts of retinal degeneration patients. Furthermore, the molecular mechanisms by which HDACi can improve visual function is unknown, albeit HDACi can attenuate pro-apoptotic stimuli and induce expression of neuroprotective factors. Thus, further analysis of HDACi is warranted in pre-clinical models of retinal degeneration including zebrafish. Analysis of HDAC expression in developing zebrafish reveals diverse temporal expression patterns during development and maturation of visual function.
Collapse
Affiliation(s)
- Conor Daly
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, 4, Dublin, Ireland.
| | - Jun Yin
- Department of Genetics, Yale University School of Medicine, 06520, New Haven, CT, USA.
| | - Breandán N Kennedy
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, 4, Dublin, Ireland.
| |
Collapse
|
13
|
Tursynbay Y, Zhang J, Li Z, Tokay T, Zhumadilov Z, Wu D, Xie Y. Pim-1 kinase as cancer drug target: An update. Biomed Rep 2015; 4:140-146. [PMID: 26893828 DOI: 10.3892/br.2015.561] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Proviral integration site for Moloney murine leukemia virus-1 (Pim-1) is a serine/threonine kinase that regulates multiple cellular functions such as cell cycle, cell survival, drug resistance. Aberrant elevation of Pim-1 kinase is associated with numerous types of cancer. Two distinct isoforms of Pim-1 (Pim-1S and Pim-1L) show distinct cellular functions. Pim-1S predominately localizes to the nucleus and Pim-1L localizes to plasma membrane for drug resistance. Recent studies show that mitochondrial Pim-1 maintains mitochondrial integrity. Pim-1 is emerging as a cancer drug target, particularly in prostate cancer. Recently the potent new functions of Pim-1 in immunotherapy, senescence bypass, metastasis and epigenetic dynamics have been found. The aim of the present updated review is to provide brief information regarding networks of Pim-1 kinase and focus on its recent advances as a novel drug target.
Collapse
Affiliation(s)
- Yernar Tursynbay
- Department of Biology, Nazarbayev University School of Science and Technology, Astana 010000, Republic of Kazakhstan
| | - Jinfu Zhang
- Institute of International Medical Research, Department of Urology and Andrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Zhi Li
- Department of Pathology, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Tursonjan Tokay
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Republic of Kazakhstan
| | - Zhaxybay Zhumadilov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Republic of Kazakhstan
| | - Denglong Wu
- Department of Urology, Tong Ji Hospital, Tong Ji University, Shanghai 200065, P.R. China
| | - Yingqiu Xie
- Department of Biology, Nazarbayev University School of Science and Technology, Astana 010000, Republic of Kazakhstan
| |
Collapse
|
14
|
Mitchell DM, Stevens CB, Frey RA, Hunter SS, Ashino R, Kawamura S, Stenkamp DL. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish. PLoS Genet 2015; 11:e1005483. [PMID: 26296154 PMCID: PMC4546582 DOI: 10.1371/journal.pgen.1005483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array.
Collapse
Affiliation(s)
- Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig B. Stevens
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ruth A. Frey
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
| | - Ryuichi Ashino
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- Neuroscience Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
15
|
Xu T, Zhao J, Yin D, Zhao Q, Dong B. High-throughput RNA sequencing reveals the effects of 2,2',4,4' -tetrabromodiphenyl ether on retina and bone development of zebrafish larvae. BMC Genomics 2015; 16:23. [PMID: 25614096 PMCID: PMC4312473 DOI: 10.1186/s12864-014-1194-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022] Open
Abstract
Background 2,2′,4,4′-Tetrabromodiphenyl ether (BDE47) is a prevalent environmental pollutant and has been demonstrated to be a serious toxicant in both humans and animals, but little is known about the molecular mechanism underlying its toxic effect on the early development of vertebrates. BDE47-treated zebrafish larvae were found to present the light-related locomotion reduction in our previous study, therefore, we aimed to use high throughput sequencing to investigate the possible reasons from a transcriptomic perspective. Results By exposing zebrafish embryos/larvae to 5 μg/l and 500 μg/l BDE47, we measured the influence of BDE47 on the mRNA expression profiles of zebrafish larvae until 6 days post-fertilization, using Illumina HiSeq 2000 sequencing. Differential expression analysis and gene enrichment analysis respectively revealed that a great number of genes, and gene sets based on two popular terminologies, were affected by the treatment of 500 μg/l BDE47. Among them, BDE47 caused changes in the retinal metabolism and related biological processes involving eye morphogenesis and visual perception, as confirmed by disordered photoreceptor arrangement and thickened bipolar cell layer of larval retina from histological observations. Other altered genes such as pth1a and collaborative cathepsin family exhibited disrupted bone development, which was consistent with the body curvature phenotype. The transcriptome of larvae was not significantly affected by the treatment of 5 μg/l BDE47, as well as the treatment of DMSO vehicle. Conclusions Our results suggest that high BDE47 concentrations disrupt the eye and bone development of zebrafish larvae based on both transcriptomic and morphological evidences. The abnormal visual perception may result in the alteration of dark adaption, which was probably responsible for the abnormal larval locomotion. Body curvature arose from enhanced bone resorption because of the intensive up-regulation of related genes. We also proposed the larval retina as a novel potential target tissue for BDE47 exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1194-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Xu
- Post-doctoral Research Station of Civil Engineering, Tongji University, Shanghai, 200092, China. .,Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai, 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai, 200092, China.
| | - Qingshun Zhao
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, 210061, China.
| | - Bingzhi Dong
- Post-doctoral Research Station of Civil Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
16
|
Arnold CR, Lamont RE, Walker JT, Spice PJ, Chan CK, Ho CY, Childs SJ. Comparative analysis of genes regulated by Dzip1/iguana and hedgehog in zebrafish. Dev Dyn 2015; 244:211-23. [PMID: 25476803 DOI: 10.1002/dvdy.24237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/04/2014] [Accepted: 11/30/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The zebrafish genetic mutant iguana (igu) has defects in the ciliary basal body protein Dzip1, causing improper cilia formation. Dzip1 also interacts with the downstream transcriptional activators of Hedgehog (Hh), the Gli proteins, and Hh signaling is disrupted in igu mutants. Hh governs a wide range of developmental processes, including stabilizing developing blood vessels to prevent hemorrhage. Using igu mutant embryos and embryos treated with the Hh pathway antagonist cyclopamine, we conducted a microarray to determine genes involved in Hh signaling mediating vascular stability. RESULTS We identified 40 genes with significantly altered expression in both igu mutants and cyclopamine-treated embryos. For a subset of these, we used in situ hybridization to determine localization during embryonic development and confirm the expression changes seen on the array. CONCLUSIONS Through comparing gene expression changes in a genetic model of vascular instability with a chemical inhibition of Hh signaling, we identified a set of 40 differentially expressed genes with potential roles in vascular stabilization.
Collapse
Affiliation(s)
- Corey R Arnold
- Department of Biochemistry and Molecular Biology and Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Yin J, Morrissey ME, Shine L, Kennedy C, Higgins DG, Kennedy BN. Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis. BMC Genomics 2014; 15:825. [PMID: 25266257 PMCID: PMC4190348 DOI: 10.1186/1471-2164-15-825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 09/24/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The genetic cascades underpinning vertebrate early eye morphogenesis are poorly understood. One gene family essential for eye morphogenesis encodes the retinal homeobox (Rx) transcription factors. Mutations in the human retinal homeobox gene (RAX) can lead to gross morphological phenotypes ranging from microphthalmia to anophthalmia. Zebrafish rx3 null mutants produce a similar striking eyeless phenotype with an associated expanded forebrain. Thus, we used zebrafish rx3-/- mutants as a model to uncover an Rx3-regulated gene network during early eye morphogenesis. RESULTS Rx3-regulated genes were identified using whole transcriptomic sequencing (RNA-seq) of rx3-/- mutants and morphologically wild-type siblings during optic vesicle morphogenesis. A gene co-expression network was then constructed for the Rx3-regulated genes, identifying gene cross-talk during early eye development. Genes highly connected in the network are hub genes, which tend to exhibit higher expression changes between rx3-/- mutants and normal phenotype siblings. Hub genes down-regulated in rx3-/- mutants encompass homeodomain transcription factors and mediators of retinoid-signaling, both associated with eye development and known human eye disorders. In contrast, genes up-regulated in rx3-/- mutants are centered on Wnt signaling pathways, associated with brain development and disorders. The temporal expression pattern of Rx3-regulated genes was further profiled during early development from maternal stage until visual function is fully mature. Rx3-regulated genes exhibited synchronized expression patterns, and a transition of gene expression during the early segmentation stage when Rx3 was highly expressed. Furthermore, most of these deregulated genes are enriched with multiple RAX-binding motif sequences on the gene promoter. CONCLUSIONS Here, we assembled a comprehensive model of Rx3-regulated genes during early eye morphogenesis. Rx3 promotes optic vesicle morphogenesis and represses brain development through a highly correlated and modulated network, exhibiting repression of genes mediating Wnt signaling and concomitant enhanced expression of homeodomain transcription factors and retinoid-signaling genes.
Collapse
Affiliation(s)
- Jun Yin
- />UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 Ireland
- />Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Maria E Morrissey
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Lisa Shine
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Ciarán Kennedy
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Desmond G Higgins
- />UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Breandán N Kennedy
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| |
Collapse
|
18
|
Deeti S, O'Farrell S, Kennedy BN. Early safety assessment of human oculotoxic drugs using the zebrafish visualmotor response. J Pharmacol Toxicol Methods 2013; 69:1-8. [PMID: 24091134 DOI: 10.1016/j.vascn.2013.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/22/2013] [Accepted: 09/23/2013] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Many prescribed drugs can adversely affect the eye by causing damage to the function of visual pathways or toxicity to the retina. Zebrafish have the potential to efficiently predict drugs with adverse ocular effects at pre-clinical stages of development. In this study, we explore the potential of using a semi-automated visual behaviour assay to predict drug-induced ocular toxicity in wild-type zebrafish larvae. METHODS 3 dpf larvae were treated with six known oculotoxic drugs and five control drugs in embryo medium containing 0.1% DMSO. After 48 h, larvae were assessed using the visualmotor response (VMR), an assay which quantifies locomotor responses to light changes; the optokinetic response (OKR), a behavioural assay that quantifies saccadic eye responses to rotating stimuli; and the touch response, a locomotor response to tactile stimuli. RESULTS 9 of 10 negative control drugs had no effect on zebrafish visual behaviour. 5 of the 6 known oculotoxic drugs (digoxin, gentamicin, ibuprofen, minoxidil and quinine) showed adverse effects on zebrafish visual behaviour assessed by OKR or the more automated VMR. No gross morphological changes were observed in treated larvae. The general locomotor activity of treated larvae, tested using the touch response assay, showed no differences with respect to controls. Overall the VMR assay had a sensitivity of 83%, a specificity of 100% and a positive predictive value of 100%. DISCUSSION This study confirms the suitability of the VMR assay as an efficient and predictive pre-clinical approach to evaluate adverse ocular effects of drugs on visual function in vivo.
Collapse
Affiliation(s)
- Sudhakar Deeti
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sean O'Farrell
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland. sean.o'
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
19
|
Abstract
INTRODUCTION The metastatic dissemination of primary tumors is directly linked to patient survival in many tumor entities. The previously undescribed gene metastasis-associated in colon cancer 1 (MACC1) was discovered by genome-wide analyses in colorectal cancer (CRC) tissues. MACC1 is a tumor stage-independent predictor for CRC metastasis linked to metastasis-free survival. AREAS COVERED In this review, the discovery of MACC1 is briefly presented. In the following, the overwhelming confirmation of these data is provided supporting MACC1 as a new remarkable biomarker for disease prognosis and prediction of therapy response for CRC and also for a variety of additional forms of solid cancers. Lastly, the potential clinical utility of MACC1 as a target for prevention or restriction of tumor progression and metastasis is envisioned. EXPERT OPINION MACC1 has been identified as a prognostic biomarker in a variety of solid cancers. MACC1 correlated with tumor formation and progression, development of metastases and patient survival representing a decisive driver for tumorigenesis and metastasis. MACC1 was also demonstrated to be of predictive value for therapy response. MACC1 is a promising therapeutic target for anti-tumor and anti-metastatic intervention strategies of solid cancers. Its clinical utility, however, must be demonstrated in clinical trials.
Collapse
Affiliation(s)
- Ulrike Stein
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine, Berlin , Germany.
| |
Collapse
|