1
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
2
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
3
|
Genome-Wide Analysis of Ribosomal Protein GhRPS6 and Its Role in Cotton Verticillium Wilt Resistance. Int J Mol Sci 2021; 22:ijms22041795. [PMID: 33670294 PMCID: PMC7918698 DOI: 10.3390/ijms22041795] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Verticillium wilt is threatening the world’s cotton production. The pathogenic fungus Verticillium dahliae can survive in the soil in the form of microsclerotia for a long time, colonize through the root of cotton, and invade into vascular bundles, causing yellowing and wilting of cotton leaves, and in serious cases, leading to plant death. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. In previous studies, proteomic analysis was carried out on different cotton varieties inoculated with V. dahliae strain Vd080. It was found that GhRPS6 was phosphorylated after inoculation, and the phosphorylation level in resistant cultivars was 1.5 times than that in susceptible cultivars. In this study, knockdown of GhRPS6 expression results in the reduction of SA and JA content, and suppresses a series of defensive response, enhancing cotton plants susceptibility to V. dahliae. Overexpression in Arabidopsis thaliana transgenic plants was found to be more resistant to V. dahliae. Further, serines at 237 and 240 were mutated to phenylalanine, respectively and jointly. The transgenic Arabidopsis plants demonstrated that seri-237 compromised the plant resistance to V. dahliae. Subcellular localization in Nicotiana benthamiana showed that GhRPS6 was localized in the nucleus. Additionally, the pathogen inoculation and phosphorylation site mutation did not change its localization. These results indicate that GhRPS6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.
Collapse
|
4
|
Melnikov S, Kwok HS, Manakongtreecheep K, van den Elzen A, Thoreen CC, Söll D. Archaeal Ribosomal Proteins Possess Nuclear Localization Signal-Type Motifs: Implications for the Origin of the Cell Nucleus. Mol Biol Evol 2020; 37:124-133. [PMID: 31501901 DOI: 10.1093/molbev/msz207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic cells are divided into the nucleus and the cytosol, and, to enter the nucleus, proteins typically possess short signal sequences, known as nuclear localization signals (NLSs). Although NLSs have long been considered as features unique to eukaryotic proteins, we show here that similar or identical protein segments are present in ribosomal proteins from the Archaea. Specifically, the ribosomal proteins uL3, uL15, uL18, and uS12 possess NLS-type motifs that are conserved across all major branches of the Archaea, including the most ancient groups Microarchaeota and Diapherotrites, pointing to the ancient origin of NLS-type motifs in the Archaea. Furthermore, by using fluorescence microscopy, we show that the archaeal NLS-type motifs can functionally substitute eukaryotic NLSs and direct the transport of ribosomal proteins into the nuclei of human cells. Collectively, these findings illustrate that the origin of NLSs preceded the origin of the cell nucleus, suggesting that the initial function of NLSs was not related to intracellular trafficking, but possibly was to improve recognition of nucleic acids by cellular proteins. Overall, our study reveals rare evolutionary intermediates among archaeal cells that can help elucidate the sequence of events that led to the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Sergey Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Hui-Si Kwok
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | | | | | - Carson C Thoreen
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Department of Chemistry, Yale University, New Haven, CT
| |
Collapse
|
5
|
Abstract
Ribosome is a vital molecular machine for protein translation in the cell. Defects in several ribosomal proteins including RPS19, RPL11 and RPS14 have been observed in two types of anemia: Diamond Blackfan Anemia and 5q- syndrome. In zebrafish, deficiency of these ribosomal proteins shows similar anemic phenotype. It remains to be determined if any other ribosome proteins are similarly involved in regulating erythropoiesis. Here we generated mutations in zebrafish rps9, a rarely studied ribosomal protein gene, and investigated its function. Analysis of this mutant demonstrates that rps9 disruption leads to impairment of erythrocyte maturation, resulting in anemia. In addition, the overall phenotype including the anemic state is p53-dependent in rps9 mutants. Furthermore, this anemic state can be partially relieved by the treatment of L-leucine, and dexamethasone, which have been previously used in rescuing the phenotype of other ribosomal protein mutants. Finally, by comparing the phenotype, we show that there are considerable differences in morphology, cytomorphology, and hemoglobin levels for four ribosomal protein mutants in zebrafish. Based on the observed difference, we suggest that the level of anemic severity correlates with the delayed status of erythrocyte maturation in zebrafish models.
Collapse
|
6
|
Sharma V, Nandan A, Singh H, Agarwal S, Tripathi R, Sinha DN, Mehrotra R. Events of alternative splicing in head and neck cancer via RNA sequencing - an update. BMC Genomics 2019; 20:442. [PMID: 31159745 PMCID: PMC6545735 DOI: 10.1186/s12864-019-5794-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 05/10/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) is a regulatory mechanism used to create many forms of mature messengers RNAs (mRNAs) from the same gene. Sequencing of RNA (RNA-Seq) is an advanced technology, which has been utilized by different studies to find AS mechanisms in head and neck cancer (HNC). Hitherto, there is no available review that could inform us of the major findings from these studies. Hence, we aim to perform a systematic literature search following PRISMA guidelines to study AS events in HNC identified through RNA-Seq studies. RESULTS A total of five records were identified that utilized RNA-Seq data for identifying AS events in HNC. Five software was used in these records to identify AS events. Two genes influenced by AS i.e. MLL3 and RPS9 were found to be common in 4 out of 5 records. Likewise, 38 genes were identified to be similar in at least 3 records. CONCLUSIONS Alternative splicing in HNC is a multifaceted regulatory mechanism of gene expression. It can be studied via RNA-Seq using different bioinformatics tools. Genes MLL3, as well as RPS9, were repeatedly found to be associated with HNC, however needs further functional validation.
Collapse
Affiliation(s)
- Vishwas Sharma
- Department of Health Research, National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh India
| | - Amrita Nandan
- Society for Life Science and Human Health, Allahabad, Uttar Pradesh India
| | - Harpreet Singh
- ICMR Computational Genomics Centre, Indian Council of Medical Research, New Delhi, 110029 India
- Informatics, Systems and Research Management, Indian Council of Medical Research, New Delhi, 110029 India
| | - Suyash Agarwal
- ICMR Computational Genomics Centre, Indian Council of Medical Research, New Delhi, 110029 India
- Informatics, Systems and Research Management, Indian Council of Medical Research, New Delhi, 110029 India
| | - Richa Tripathi
- Division of Molecular Cytology, National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh India
| | - Dhirendra Narain Sinha
- WHO FCTC Global Knowledge Hub on Smokeless Tobacco, National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh India
| | - Ravi Mehrotra
- Department of Health Research, National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh India
| |
Collapse
|
7
|
Ditlev JA, Case LB, Rosen MK. Who's In and Who's Out-Compositional Control of Biomolecular Condensates. J Mol Biol 2018; 430:4666-4684. [PMID: 30099028 PMCID: PMC6204295 DOI: 10.1016/j.jmb.2018.08.003] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 02/06/2023]
Abstract
Biomolecular condensates are two- and three-dimensional compartments in eukaryotic cells that concentrate specific collections of molecules without an encapsulating membrane. Many condensates behave as dynamic liquids and appear to form through liquid-liquid phase separation driven by weak, multivalent interactions between macromolecules. In this review, we discuss current models and data regarding the control of condensate composition, and we describe our current understanding of the composition of representative condensates including PML nuclear bodies, P-bodies, stress granules, the nucleolus, and two-dimensional membrane localized LAT and nephrin clusters. Specific interactions, such as interactions between modular binding domains, weaker interactions between intrinsically disorder regions and nucleic acid base pairing, and nonspecific interactions, such as electrostatic interactions and hydrophobic interactions, influence condensate composition. Understanding how specific condensate composition is determined is essential to understanding condensates as biochemical entities and ultimately discerning their cellular and organismic functions.
Collapse
Affiliation(s)
- Jonathon A Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Lindsay B Case
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Wen LM, Lü GD, Zhao J, Lu S, Gao HJ, Chen B, Ma YF, Xiao YF, Yuan Y, Zhang HB, Liu H, Wang JH. Molecular Cloning and Characterization of Ribosomal Protein RPS9 in Echinococcus granulosus. J Parasitol 2017; 103:699-707. [PMID: 28902565 DOI: 10.1645/16-164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ribosomal protein S9 (RPS9) is an essential functional gene that participates in DNA repair and developmental regulations. A sequence homolog of RPS9 has been found to be upregulated in the protoscoleces (PSCs) of Echinococcus granulosus treated with artemisinin. However, E. granulosus RPS9 (EgRPS9) has not been identified before. In the present study, the 657-base pair (bp) cDNA encoding EgRPS9 was cloned. Amino acid sequence analysis showed that EgRPS9 was similar to the RSP9 proteins from Schistosoma japonicum (SjRPS9, 86%) and Schistosoma mansoni (SmRPS9, 79%). Phylogenetic tree analysis showed that EgRPS9, SmRPS9, and SjRPS9 were clustered together. We detected the EgRPS9 gene and protein expression in PSCs exposed to artesunate (AS) which displayed a dose-dependent reduction in PSC viability for 24 hr. The results showed that the EgRPS9 ratio of the 10-μM AS-treated ( P < 0.01) and 40-μM AS-treated ( P < 0.05) groups were increased from that of the control group. In addition, the level of reactive oxygen species (ROS) in the AS-treated groups increased in a dose-dependent manner compared to the level in the control group. In conclusion, the expression of EgRPS9 could be induced by ROS and might participate in the oxidative damage-based anti-parasite mechanism of AS treatment.
Collapse
Affiliation(s)
- L M Wen
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| | - G D Lü
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| | - J Zhao
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| | - S Lu
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| | - H J Gao
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| | - B Chen
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| | - Y F Ma
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| | - Y F Xiao
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| | - Y Yuan
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| | - H B Zhang
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| | - H Liu
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| | - J H Wang
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi 830054, Xinjiang, China
| |
Collapse
|
9
|
Cheng DD, Zhu B, Li SJ, Yuan T, Yang QC, Fan CY. Down-regulation of RPS9 Inhibits Osteosarcoma Cell Growth through Inactivation of MAPK Signaling Pathway. J Cancer 2017; 8:2720-2728. [PMID: 28928861 PMCID: PMC5604204 DOI: 10.7150/jca.19130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/17/2017] [Indexed: 01/10/2023] Open
Abstract
Objectives: Osteosarcoma is the most common malignant bone tumor in adolescents; however, the mechanisms involved in the pathogenesis and progression of osteosarcoma remain to be elucidated. Researchers have provided valuable insights into the tumorigenesis of Ribosomal protein S9 (RPS9) in some cancers. The purpose of this study was to elucidate the expression, functions, and mechanisms of RPS9 in human osteosarcoma. Methods: The expression of RPS9 in osteosarcoma tissues and cell lines was evaluated by qRT-PCR and western blotting. Knockdown of RPS9 induced by RNA interference (RNAi) method in three osteosarcoma cell lines (MNNG/HOS, MG63, and U2OS) was employed to analyze the effects of RPS9 on cell proliferation and cell cycle distribution. The host signaling pathways affected by RPS9 were detected using the intracellular signaling antibody array kit PathScan®. Results: The expression of RPS9 was found to be up-regulated in human osteosarcoma tissues and cell lines. Its expression was positively correlated with Enneking stage and the tumor recurrence. Down-regulation of RPS9 inhibited osteosarcoma cell proliferation, colony-forming ability, and cell cycle G1 phase in vitro. In addition, our data demonstrated that knockdown of RPS9 repressed the protein levels of phospho-SAPK/JNK and phospho-p38. Conclusion: RPS9 is up-regulated and has a pro-tumor effect in osteosarcoma through the activation of MAPK signaling pathway and thus can be used as a potential target for gene therapy.
Collapse
Affiliation(s)
- Dong-Dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bin Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shi-Jie Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ting Yuan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qing-Cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cun-Yi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
10
|
Li JY, Cai F, Ye XG, Liang JS, Li JK, Wu MY, Zhao D, Jiang ZD, You ZY, Zhong BX. Comparative Proteomic Analysis of Posterior Silk Glands of Wild and Domesticated Silkworms Reveals Functional Evolution during Domestication. J Proteome Res 2017; 16:2495-2507. [DOI: 10.1021/acs.jproteome.7b00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian-ying Li
- Institute
of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | | | | | | | - Jian-ke Li
- Institute
of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
11
|
Mai W, Huang F, Chen H, Zhou Y, Chen Y. Nervous necrosis virus capsid protein exploits nucleolar phosphoprotein Nucleophosmin (B23) function for viral replication. Virus Res 2016; 230:1-6. [PMID: 28034778 DOI: 10.1016/j.virusres.2016.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/01/2016] [Accepted: 12/16/2016] [Indexed: 01/15/2023]
Abstract
Nucleolar proteins facilitate the replication of certain human and animal viruses through interaction with viral proteins. In this study, an interaction between nervous necrosis virus capsid protein and nucleolar phosphoprotein B23 was identified using in vitro experimental approaches. The capsid protein binds to B23 early during the viral infection and accumulates in the nucleus, particularly in the nucleolus. However, over the course of the infection B23 is redistributed from the nucleoli to the nucleoplasm. siRNA-mediated knockdown of B23 reduced viral replication and cytopathic effect. Thus, B23 targets capsid protein to the nucleus and facilitates NNV replication. The results provide the first demonstration that nucleolar protein B23 has a direct role in the nodavirus replication process.
Collapse
Affiliation(s)
- Weijun Mai
- The Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Fang Huang
- The Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huiqing Chen
- The Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yajing Zhou
- The Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yan Chen
- The Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
12
|
Hernández-Ibarra JA, Laredo-Cisneros MS, Mondragón-González R, Santamaría-Guayasamín N, Cisneros B. Localization of α-Dystrobrevin in Cajal Bodies and Nucleoli: A New Role for α-Dystrobrevin in the Structure/Stability of the Nucleolus. J Cell Biochem 2016; 116:2755-65. [PMID: 25959029 DOI: 10.1002/jcb.25218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/05/2015] [Indexed: 11/11/2022]
Abstract
α-Dystrobrevin (α-DB) is a cytoplasmic component of the dystrophin-associated complex involved in cell signaling; however, its recently revealed nuclear localization implies a role for this protein in the nucleus. Consistent with this, we demonstrated, in a previous work that α-DB1 isoform associates with the nuclear lamin to maintain nuclei morphology. In this study, we show the distribution of the α-DB2 isoform in different subnuclear compartments of N1E115 neuronal cells, including nucleoli and Cajal bodies, where it colocalizes with B23/nucleophosmin and Nopp140 and with coilin, respectively. Recovery in a pure nucleoli fraction undoubtedly confirms the presence of α-DB2 in the nucleolus. α-DB2 redistributes in a similar fashion to that of fibrillarin and Nopp140 upon actinomycin-mediated disruption of nucleoli and to that of coilin after disorganization of Cajal bodies through ultraviolet-irradiation, with relocalization of the proteins to the corresponding reassembled structures after cessation of the insults, which implies α-DB2 in the plasticity of these nuclear bodies. That localization of α-DB2 in the nucleolus is physiologically relevant is demonstrated by the fact that downregulation of α-DB2 resulted in both altered nucleoli structure and decreased levels of B23/nucleophosmin, fibrillarin, and Nopp140. Since α-DB2 interacts with B23/nucleophosmin and overexpression of the latter protein favors nucleolar accumulation of α-DB2, it appears that targeting of α-DB2 to the nucleolus is dependent on B23/nucleophosmin. In conclusion, we show for the first time localization of α-DB2 in nucleoli and Cajal bodies and provide evidence that α-DB2 is involved in the structure of nucleoli and might modulate nucleolar functions.
Collapse
Affiliation(s)
- Jose Anselmo Hernández-Ibarra
- Departamento de Gen, é, tica y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV- IPN), Mexico City, Mexico
| | - Marco Samuel Laredo-Cisneros
- Departamento de Gen, é, tica y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV- IPN), Mexico City, Mexico
| | - Ricardo Mondragón-González
- Departamento de Gen, é, tica y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV- IPN), Mexico City, Mexico
| | - Natalie Santamaría-Guayasamín
- Departamento de Ciencias de la Vida, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Bulmaro Cisneros
- Departamento de Gen, é, tica y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV- IPN), Mexico City, Mexico
| |
Collapse
|
13
|
Mitrea DM, Cika JA, Guy CS, Ban D, Banerjee PR, Stanley CB, Nourse A, Deniz AA, Kriwacki RW. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 2016; 5:13571. [PMID: 26836305 PMCID: PMC4786410 DOI: 10.7554/elife.13571] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/21/2016] [Indexed: 12/21/2022] Open
Abstract
The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus. DOI:http://dx.doi.org/10.7554/eLife.13571.001 Inside cells, machines called ribosomes assemble proteins from building blocks known as amino acids. Cells can alter the numbers of ribosomes they produce to match the cell’s demand for new proteins. For instance, when cells grow they require a lot of new proteins and therefore more ribosomes are produced. However, when cells face harsh conditions that cause stress (e.g. exposure to UV radiation or a harmful chemical) they generally stop growing and therefore need fewer ribosomes. In human and other eukaryotic cells, ribosomes are assembled in a structure called the nucleolus. However, because the nucleolus is not separated from the rest of the cell by a membrane, it was not clear how it is able to accumulate large quantities of the proteins and other molecules needed to make ribosomes. Recent work suggests that the nucleolus is formed through a process referred to as “phase separation” in which the liquid in a particular region of the cell has different physical properties to the liquid surrounding it. This is like how oil and water form separate layers when mixed. A protein called nucleophosmin is found at high levels in the nucleolus where it interacts with many other proteins, including those involved in making ribosomes. Nucleophosmin binds to motifs within these proteins that contain multiple copies of an amino acid called arginine (referred to as R-motifs). Now, Mitrea et al. investigate how nucleophosmin binds to R-motif proteins and whether this is important for assembling the nucleolus. A search for R-motifs in a list of over a hundred proteins known to bind to nucleophosmin showed that the majority of these proteins contained multiple R-motifs. Furthermore, when high levels of nucleophosmin and the R-motif proteins were present, they underwent phase separation. Next, Mitrea et al. examine the changes in how nucleophosmin and a ribosomal protein interact before and after phase separation. The experiments show that many molecules of nucleophosmin bind to each other and that multiple regions in nucleophosmin are able to interact with the R-motifs. Together, these interactions produce large assemblies of proteins that result in the creation of separate liquid layers. Furthermore, the experiments show that R-motif proteins and other molecules needed to make ribosomes can be brought together within the same liquid phase by nucleophosmin. Mitrea et al.’s findings provide the first insights into the role of nucleophosmin in the molecular organisation of the nucleolus. The next challenge is to understand how this organisation promotes the production of ribosomes and helps the cell to respond to stressful situations. DOI:http://dx.doi.org/10.7554/eLife.13571.002
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Jaclyn A Cika
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States.,Integrative Biomedical Sciences Program, University of Tennessee Health Sciences Center, Memphis, United States
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, United States
| | - David Ban
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Priya R Banerjee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Christopher B Stanley
- Biology and Biomedical Sciences Group, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, United States
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States.,Molecular Interactions Analysis Shared Resource, St. Jude Children's Research Hospital, Memphis, United States
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, United States
| |
Collapse
|
14
|
Li JY, Ye LP, Che JQ, Song J, You ZY, Yun KC, Wang SH, Zhong BX. Comparative proteomic analysis of the silkworm middle silk gland reveals the importance of ribosome biogenesis in silk protein production. J Proteomics 2015; 126:109-20. [DOI: 10.1016/j.jprot.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 01/20/2023]
|
15
|
Melnikov S, Ben-Shem A, Yusupova G, Yusupov M. Insights into the origin of the nuclear localization signals in conserved ribosomal proteins. Nat Commun 2015; 6:7382. [PMID: 26066547 PMCID: PMC4490412 DOI: 10.1038/ncomms8382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/30/2015] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic ribosomal proteins, unlike their bacterial homologues, possess nuclear localization signals (NLSs) to enter the cell nucleus during ribosome assembly. Here we provide a comprehensive comparison of bacterial and eukaryotic ribosomes to show that NLSs appear in conserved ribosomal proteins via remodelling of their RNA-binding domains. This finding enabled us to identify previously unknown NLSs in ribosomal proteins from humans, and suggests that, apart from promoting protein transport, NLSs may facilitate folding of ribosomal RNA. Eukaryotic ribosomal proteins contain nuclear localization signals (NLSs) that their bacterial counterparts lack. Here the authors compare homologous proteins from bacterial and eukaryotic ribosomes to show how NLSs could emerge in the course of evolution, and use this knowledge to identify novel NLSs.
Collapse
Affiliation(s)
- Sergey Melnikov
- 1] Strasbourg University, 4 Rue Blaise Pascal, 67081 Strasbourg, France [2] Institute of Genetics and Molecular and Cellular Biology, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France [3] Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Adam Ben-Shem
- 1] Strasbourg University, 4 Rue Blaise Pascal, 67081 Strasbourg, France [2] Institute of Genetics and Molecular and Cellular Biology, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Gulnara Yusupova
- 1] Strasbourg University, 4 Rue Blaise Pascal, 67081 Strasbourg, France [2] Institute of Genetics and Molecular and Cellular Biology, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Marat Yusupov
- 1] Strasbourg University, 4 Rue Blaise Pascal, 67081 Strasbourg, France [2] Institute of Genetics and Molecular and Cellular Biology, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France [3] CNRS, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
16
|
A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:101-10. [DOI: 10.1016/j.bbamcr.2014.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 01/19/2023]
|
17
|
Xu DH, Liu F, Li X, Chen XF, Jing GJ, Wu FY, Shi SL, Li QF. Regulatory role of nucleophosmin during the differentiation of human liver cancer cells. Int J Oncol 2014; 45:264-72. [PMID: 24787960 DOI: 10.3892/ijo.2014.2407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/11/2014] [Indexed: 11/05/2022] Open
Abstract
Nucleophosmin (NPM, also known as B23), mainly localized in the nucleolus, has been reported to be overexpressed in many types of human cancer, including colon, ovarian, prostate and gastric cancer. NPM was identified while screening the differential nuclear matrix proteins during HMBA-induced differentiation of human liver cancer cells. We investigated the aberrant expression and subcellular localization of NPM in clinical liver cancer tissues and a cell line with the aim of providing more evidence for revealing the roles of NPM on regulating liver cancer cell proliferation and differentiation. In addition, we studied the potential interaction between NPM and several important proteins. Our results revealed that NPM protein was overexpressed in cancer cells, which was in accordance with the overexpressed mRNA in cancer tissues compared to the corresponding non-cancer tissues. We also found a decrease of NPM in protein and mRNA levels upon treatment with the differentiation reagent HMBA. We focused on the aberrant localization of NPM. Immunochemistry and immunofluorescence revealed aberrant cytoplasmic and nucleoplasm localization of NPM in liver cancer tissues and its colocalization with c-Myc, c-Fos, P53 and Rb in the SMMC-7721 cell line. The interactions between NPM and the above proteins were confirmed by GST pull-down assay and co-immunoprecipitation assay. These findings indicate that NPM plays a regulatory role in liver cancer, which deserves in-depth investigation.
Collapse
Affiliation(s)
- Dong-Hui Xu
- Department of Hepatic Biliary Pancreatic Vascular Surgery, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Fan Liu
- Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiao Li
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiang-Feng Chen
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Guang-Jun Jing
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Fu-Yun Wu
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Song-Lin Shi
- Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Qi-Fu Li
- Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
18
|
Mitrea DM, Grace CR, Buljan M, Yun MK, Pytel NJ, Satumba J, Nourse A, Park CG, Madan Babu M, White SW, Kriwacki RW. Structural polymorphism in the N-terminal oligomerization domain of NPM1. Proc Natl Acad Sci U S A 2014; 111:4466-71. [PMID: 24616519 PMCID: PMC3970533 DOI: 10.1073/pnas.1321007111] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleophosmin (NPM1) is a multifunctional phospho-protein with critical roles in ribosome biogenesis, tumor suppression, and nucleolar stress response. Here we show that the N-terminal oligomerization domain of NPM1 (Npm-N) exhibits structural polymorphism by populating conformational states ranging from a highly ordered, folded pentamer to a highly disordered monomer. The monomer-pentamer equilibrium is modulated by posttranslational modification and protein binding. Phosphorylation drives the equilibrium in favor of monomeric forms, and this effect can be reversed by Npm-N binding to its interaction partners. We have identified a short, arginine-rich linear motif in NPM1 binding partners that mediates Npm-N oligomerization. We propose that the diverse functional repertoire associated with NPM1 is controlled through a regulated unfolding mechanism signaled through posttranslational modifications and intermolecular interactions.
Collapse
Affiliation(s)
- Diana M. Mitrea
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Christy R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Marija Buljan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; and
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Nicholas J. Pytel
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - John Satumba
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Cheon-Gil Park
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - M. Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; and
| | - Stephen W. White
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
19
|
The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication. Virology 2014; 452-453:212-22. [PMID: 24606698 DOI: 10.1016/j.virol.2014.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/28/2013] [Accepted: 01/17/2014] [Indexed: 01/14/2023]
Abstract
The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process.
Collapse
|