1
|
Powell NR, Silvola RM, Howard JS, Badve S, Skaar TC, Ipe J. Quantification of spatial pharmacogene expression heterogeneity in breast tumors. Cancer Rep (Hoboken) 2023; 6:e1686. [PMID: 35906899 PMCID: PMC9875649 DOI: 10.1002/cnr2.1686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chemotherapeutic drug concentrations vary across different regions of tumors and this is thought to be involved in development of chemotherapy resistance. Insufficient drug delivery to some regions of the tumor may be due to spatial differences in expression of genes involved in the disposition, transport, and detoxification of drugs (pharmacogenes). Therefore, in this study, we analyzed the spatial expression of 286 pharmacogenes in six breast cancer tissues using the recently developed Visium spatial transcriptomics platform to (1) determine if these pharmacogenes are expressed heterogeneously across tumor tissue and (2) to determine which pharmacogenes have the most spatial expression heterogeneity. METHODS AND RESULTS The spatial transcriptomics technology sequences the transcriptome of 55 um diameter barcoded sections (spots) across a tissue sample. We analyzed spatial gene expression profiles of four biobank-sourced breast tumor samples in addition to two breast tumor sample datasets from 10× Genomics. We define heterogeneity as the interquartile range of read counts. Collectively, we identified 8887 spots in tumor regions, 3814 in stroma, 44 in lymphocytes, and 116 in normal regions based on pathologist annotation of the tissues. We showed statistically significant differences in expression of pharmacogenes in tumor regions compared to surrounding non-tumor regions. We also observed that the most heterogeneously expressed genes within tumor regions were involved in reactive oxygen species (ROS) handling and detoxification mechanisms. GPX4, GSTP1, MGST3, SOD1, CYP4Z1, CYB5R3, GSTK1, and NAT1 showed the most heterogeneous expression within tumor regions. CONCLUSIONS The heterogeneous expression of these pharmacogenes may have important implications for cancer therapy due to their ability to impact drug distribution and efficacy throughout the tumor. Our results suggest that chemoresistance caused by expression of GPX4, GSTP1, MGST3, and SOD1 may be intrinsic, not acquired, since the heterogeneity is not specific to chemotherapy-treated samples or cell type. Additionally, we identified candidate chemoresistance pharmacogenes that can be further tested through focused follow-up studies.
Collapse
Affiliation(s)
- Nicholas R. Powell
- Department of Medicine, Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rebecca M. Silvola
- Department of Medicine, Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - John S. Howard
- Department of Medicine, Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sunil Badve
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Todd C. Skaar
- Department of Medicine, Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Joseph Ipe
- Department of Medicine, Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
2
|
Qian W, Wang L, Li P, Hu Y, Wang Q, Yi K, Wu M, Xu Y, Song J, Chen P, Zhang H, Ma J, Xie Y. Efficiency and Tolerability of Induction and Consolidation Therapy with Arsenic Trioxide/Bortezomib/Ascorbic Acid/Dexamethasone (ABCD) Regimen Compared to Bortezomib/Dexamethasone (BD) Regimen in Newly Diagnosed Myeloma Patients. Cancer Manag Res 2020; 12:431-441. [PMID: 32021455 PMCID: PMC6980852 DOI: 10.2147/cmar.s212455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose This study was aimed at comparing the efficacy and tolerability of an arsenic trioxide/bortezomib/ascorbic acid/dexamethasone (ABCD) regimen with efficacy and tolerability of a bortezomib/dexamethasone (BD) regimen in patients with newly diagnosed myeloma. Patients and Methods Fifty-seven and sixty-four patients were treated with the ABCD and BD regimens, respectively. Eligible and agreeable patients received autologous hematopoietic stem cell transplantation followed by consolidation. Results The response rates (above VGPR) were 74.1% and 32.8% in the ABCD- and BD-treated groups, respectively (P = 0.000). Compared to BD regimen, ABCD regimen significantly improved PFS (P = 0.026) and OS (P = 0.000) in newly diagnosed patients. Patients with a high tumor burden, low or standard risk, and without auto-HSCT seemed to especially benefit compared to the same group with BD regimen. ABCD also showed better tolerability with lower bone marrow suppression (P = 0.026). Furthermore, complete response or near CR after induction therapy was a good prognostic factor for ABCD-associated OS and PFS. Conclusion ABCD is an effective and tolerable regimen compared with BD regimen in newly diagnosed myeloma patients. ABCD regimen could be an economical, effective, and tolerable choice in low- and standard-risk patients.
Collapse
Affiliation(s)
- Wensi Qian
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| | - Li Wang
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Pei Li
- Department of Hematology, Huashan Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| | - Yingwei Hu
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| | - Qian Wang
- Department of Hematology, Huashan Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| | - Ke Yi
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| | - Min Wu
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| | - Yu Xu
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| | - Jin Song
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| | - Pingping Chen
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| | - Hongdi Zhang
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| | - Jiexian Ma
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| | - Yanhui Xie
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol 2019; 10:203. [PMID: 30967773 PMCID: PMC6438930 DOI: 10.3389/fphar.2019.00203] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer heterogeneity constitutes the major source of disease progression and therapy failure. Tumors comprise functionally diverse subpopulations, with cancer stem cells (CSCs) as the source of this heterogeneity. Since these cells bear in vivo tumorigenicity and metastatic potential, survive chemotherapy and drive relapse, its elimination may be the only way to achieve long-term survival in patients. Thanks to the great advances in the field over the last few years, we know now that cellular metabolism and stemness are highly intertwined in normal development and cancer. Indeed, CSCs show distinct metabolic features as compared with their more differentiated progenies, though their dominant metabolic phenotype varies across tumor entities, patients and even subclones within a tumor. Following initial works focused on glucose metabolism, current studies have unveiled particularities of CSC metabolism in terms of redox state, lipid metabolism and use of alternative fuels, such as amino acids or ketone bodies. In this review, we describe the different metabolic phenotypes attributed to CSCs with special focus on metabolism-based therapeutic strategies tested in preclinical and clinical settings.
Collapse
Affiliation(s)
- Petra Jagust
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz Parejo-Alonso
- Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
4
|
Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. ENVIRONMENT INTERNATIONAL 2018; 112:183-197. [PMID: 29275244 DOI: 10.1016/j.envint.2017.12.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
More than 200 million people in 70 countries are exposed to arsenic through drinking water. Chronic exposure to this metalloid has been associated with the onset of many diseases, including cancer. Epidemiological evidence supports its carcinogenic potential, however, detailed molecular mechanisms remain to be elucidated. Despite the global magnitude of this problem, not all individuals face the same risk. Susceptibility to the toxic effects of arsenic is influenced by alterations in genes involved in arsenic metabolism, as well as biological factors, such as age, gender and nutrition. Moreover, chronic arsenic exposure results in several genotoxic and epigenetic alterations tightly associated with the arsenic biotransformation process, resulting in an increased cancer risk. In this review, we: 1) review the roles of inter-individual DNA-level variations influencing the susceptibility to arsenic-induced carcinogenesis; 2) discuss the contribution of arsenic biotransformation to cancer initiation; 3) provide insights into emerging research areas and the challenges in the field; and 4) compile a resource of publicly available arsenic-related DNA-level variations, transcriptome and methylation data. Understanding the molecular mechanisms of arsenic exposure and its subsequent health effects will support efforts to reduce the worldwide health burden and encourage the development of strategies for managing arsenic-related diseases in the era of personalized medicine.
Collapse
Affiliation(s)
- Brenda C Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Adam P Sage
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Dawood M, Hamdoun S, Efferth T. Multifactorial Modes of Action of Arsenic Trioxide in Cancer Cells as Analyzed by Classical and Network Pharmacology. Front Pharmacol 2018; 9:143. [PMID: 29535630 PMCID: PMC5835320 DOI: 10.3389/fphar.2018.00143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
Arsenic trioxide is a traditional remedy in Chinese Medicine since ages. Nowadays, it is clinically used to treat acute promyelocytic leukemia (APL) by targeting PML/RARA. However, the drug's activity is broader and the mechanisms of action in other tumor types remain unclear. In this study, we investigated molecular modes of action by classical and network pharmacological approaches. CEM/ADR5000 resistance leukemic cells were similar sensitive to As2O3 as their wild-type counterpart CCRF-CEM (resistance ratio: 1.88). Drug-resistant U87.MG ΔEGFR glioblastoma cells harboring mutated epidermal growth factor receptor were even more sensitive (collateral sensitive) than wild-type U87.MG cells (resistance ratio: 0.33). HCT-116 colon carcinoma p53-/- knockout cells were 7.16-fold resistant toward As2O3 compared to wild-type cells. Forty genes determining cellular responsiveness to As2O3 were identified by microarray and COMPARE analyses in 58 cell lines of the NCI panel. Hierarchical cluster analysis-based heat mapping revealed significant differences between As2O3 sensitive cell lines and resistant cell lines with p-value: 1.86 × 10-5. The genes were subjected to Galaxy Cistrome gene promoter transcription factor analysis to predict the binding of transcription factors. We have exemplarily chosen NF-kB and AP-1, and indeed As2O3 dose-dependently inhibited the promoter activity of these two transcription factors in reporter cell lines. Furthermore, the genes identified here and those published in the literature were assembled and subjected to Ingenuity Pathway Analysis for comprehensive network pharmacological approaches that included all known factors of resistance of tumor cells to As2O3. In addition to pathways related to the anticancer effects of As2O3, several neurological pathways were identified. As arsenic is well-known to exert neurotoxicity, these pathways might account for neurological side effects. In conclusion, the activity of As2O3 is not restricted to acute promyelocytic leukemia. In addition to PML/RARA, numerous other genes belonging to diverse functional classes may also contribute to its cytotoxicity. Network pharmacology is suited to unravel the multifactorial modes of action of As2O3.
Collapse
Affiliation(s)
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Chen J, Wei H, Cheng J, Xie B, Wang B, Yi J, Tian B, Liu Z, Wang F, Zhang Z. Characteristics of doxorubicin-selected multidrug-resistant human leukemia HL-60 cells with tolerance to arsenic trioxide and contribution of leukemia stem cells. Oncol Lett 2017; 15:1255-1262. [PMID: 29399180 DOI: 10.3892/ol.2017.7353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/09/2017] [Indexed: 01/26/2023] Open
Abstract
The present study selected and characterized a multidrug-resistant HL-60 human acute promyelocytic leukemia cell line, HL-60/RS, by exposure to stepwise incremental doses of doxorubicin. The drug-resistant HL-60/RS cells exhibited 85.68-fold resistance to doxorubicin and were cross-resistant to other chemotherapeutics, including cisplatin, daunorubicin, cytarabine, vincristine and etoposide. The cells over-expressed the transporters P-glycoprotein, multidrug-resistance-related protein 1 and breast-cancer-resistance protein, encoded by the adenosine triphosphate-binding cassette (ABC)B1, ABCC1 and ABCG2 genes, respectively. Unlike other recognized chemoresistant leukemia cell lines, HL-60/RS cells were also strongly cross-resistant to arsenic trioxide. The proportion of leukemia stem cells (LSCs) increased synchronously with increased of drug resistance in the doxorubicin-induced HL-60 cell population. The present study confirmed that doxorubicin-induced HL-60 cells exhibited multidrug-resistance and high arsenic-trioxide resistance. Drug-resistance in these cells may be due to surviving chemoresistant LSCs in the HL-60 population, which have been subjected to long and consecutive selection by doxorubicin.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jie Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bei Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Baoying Tian
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhuan Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Feifei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhewen Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
7
|
Cholujova D, Bujnakova Z, Dutkova E, Hideshima T, Groen RW, Mitsiades CS, Richardson PG, Dorfman DM, Balaz P, Anderson KC, Jakubikova J. Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma. Br J Haematol 2017; 179:756-771. [PMID: 29048129 DOI: 10.1111/bjh.14974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM), a B cell malignancy characterized by clonal proliferation of plasma cells in the bone marrow, remains incurable despite the use of novel and conventional therapies. In this study, we demonstrated MM cell cytotoxicity triggered by realgar (REA; As4 S4 ) nanoparticles (NREA) versus Arsenic trioxide (ATO) against MM cell lines and patient cells. Both NREA and ATO showed in vivo anti-MM activity, resulting in significantly decreased tumour burden. The anti-MM activity of NREA and ATO is associated with apoptosis, evidenced by DNA fragmentation, depletion of mitochondrial membrane potential, cleavage of caspases and anti-apoptotic proteins. NREA induced G2 /M cell cycle arrest and modulation of cyclin B1, p53 (TP53), p21 (CDKN1A), Puma (BBC3) and Wee-1 (WEE1). Moreover, NREA induced modulation of key regulatory molecules in MM pathogenesis including JNK activation, c-Myc (MYC), BRD4, and histones. Importantly, NREA, but not ATO, significantly depleted the proportion and clonogenicity of the MM stem-like side population, even in the context of the bone marrow stromal cells. Finally, our study showed that both NREA and ATO triggered synergistic anti-MM activity when combined with lenalidomide or melphalan. Taken together, the anti-MM activity of NREA was more potent compared to ATO, providing the preclinical framework for clinical trials to improve patient outcome in MM.
Collapse
Affiliation(s)
- Danka Cholujova
- Cancer Research Institute, Biomedical Research Center SAS, Bratislava, Slovakia
| | | | | | - Teru Hideshima
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard W Groen
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Constantine S Mitsiades
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul G Richardson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David M Dorfman
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter Balaz
- Institute of Geotechnics SAS, Košice, Slovakia
| | - Kenneth C Anderson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jana Jakubikova
- Cancer Research Institute, Biomedical Research Center SAS, Bratislava, Slovakia.,Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Chen J, Cheng J, Yi J, Xie B, Lin L, Liu Z, Zhao H, Wang B, Ai Z, Yang Y, Wei H. Differential expression and response to arsenic stress of MRPs and ASAN1 determine sensitivity of classical multidrug-resistant leukemia cells to arsenic trioxide. Leuk Res 2016; 50:116-122. [PMID: 27736728 DOI: 10.1016/j.leukres.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 11/29/2022]
Abstract
There is no cross-resistance between arsenic trioxide and conventional chemotherapeutics. Classical multi-drug resistant (MDR) cells remain sensitive to arsenic trioxide, which may even reverse the drug resistance. Arsenic trioxide is also effective in leukemias/tumors that persist despite conventional cytotoxic or targeted drugs. We obtained a highly arsenic-resistant MDR leukemic cell line, HL-60/RS, by exposing leukemic HL-60 cells to adriamycin selection. We compared the arsenic sensitivity, and the expression and responses to arsenic of the arsenic-related transporters, MRP1, MRP2, and ASNA1, in paired parent/arsenic-resistant HL-60/RS/HL-60 and arsenic-sensitive/parental K562/ADM/K562 cells. Expression levels of MRP1, MRP2, and ASNA1 were negatively correlated with cell sensitivities to arsenic trioxide, and ASNA1 expression notably was highest in HL-60/RS cells and lowest in K562/ADM cells. Expression levels of MRP1, MRP2, and ASNA1 were significantly enhanced in HL-60/RS cells and inhibited in K562/ADM cells by arsenic trioxide treatment, compared with their parental sensitive cells, in accord with the high-resistance of HL-60/RS cells and high-sensitivity of K562/ADM cells. In conclusion, the cross-resistance of conventional chemotherapeutics-resistant leukemic cells to arsenic trioxide is determined by both levels of MRP1, MRP2, and ASNA1, and also by the responses of these transporters to arsenic stress.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jie Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Bei Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhuan Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Huaishun Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Bei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ziying Ai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yue Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
9
|
Salem K, McCormick ML, Wendlandt E, Zhan F, Goel A. Copper-zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma. Redox Biol 2014; 4:23-33. [PMID: 25485927 PMCID: PMC4309843 DOI: 10.1016/j.redox.2014.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ) is a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In primary human MM samples, increased gene expression of copper–zinc superoxide dismutase (CuZnSOD or SOD1) correlated with cancer progression, high-risk disease, and adverse overall and event-free survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266) and the BTZ-resistant (BR) lines (MM.1SBR, 8226BR) were utilized to determine the role of antioxidants in intrinsic or acquired BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1), and glutathione (GSH) were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced overexpression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram (DSF) augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity. Multiple myeloma (MM) displays intrinsic/adaptive resistance to bortezomib (BTZ). An up-regulation of antioxidant levels is observed in BTZ-resistant MM cell lines. Inhibition of CuZnSOD increases BTZ cytotoxicity in BTZ naïve/resistant cells. We propose disulfiram as a combination chemotherapy drug to inhibit relapse in MM.
Collapse
Affiliation(s)
- Kelley Salem
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, Iowa City, IA, USA
| | - Michael L McCormick
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, Iowa City, IA, USA
| | - Erik Wendlandt
- Department of Internal Medicine, The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Fenghuang Zhan
- Department of Internal Medicine, The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Apollina Goel
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, Iowa City, IA, USA.
| |
Collapse
|
10
|
He X, Yang K, Chen P, Liu B, Zhang Y, Wang F, Guo Z, Liu X, Lou J, Chen H. Arsenic trioxide-based therapy in relapsed/refractory multiple myeloma patients: a meta-analysis and systematic review. Onco Targets Ther 2014; 7:1593-9. [PMID: 25246802 PMCID: PMC4166211 DOI: 10.2147/ott.s67165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple myeloma (MM) is a clonal malignancy characterized by the proliferation of malignant plasma cells in the bone marrow and the production of monoclonal immunoglobulin. Although some newly approved drugs (thalidomide, lenalidomide, and bortezomib) demonstrate significant benefit for MM patients with improved survival, all MM patients still relapse. Arsenic trioxide (ATO) is the most active single agent in acute promyelocytic leukemia, the antitumor activity of which is partly dependent on the production of reactive oxygen species. Due to its multifaceted effects observed on MM cell lines and primary myeloma cells, Phase I/II trials have been conducted in heavily pretreated patients with relapsed or refractory MM. Therapy regimens varied dramatically as to the dosage of ATO and monotherapy versus combination therapy with other agents available for the treatment of MM. Although ATO-based combination treatment was well tolerated by most patients, most trials found that ATO has limited effects on MM patients. However, since small numbers of patients were randomized to different treatment arms, trials have not been statistically powered to determine the differences in progression-free survival and overall survival among the experimental arms. Therefore, large Phase III studies of ATO-based randomized controlled trials will be needed to establish whether ATO has any potential beneficial effects in the clinical setting.
Collapse
Affiliation(s)
- Xuepeng He
- Department of Hematology, General Hospital of Beijing Military Area of PLA, Beijing, People's Republic of China
| | - Kai Yang
- Department of Hematology, General Hospital of Beijing Military Area of PLA, Beijing, People's Republic of China
| | - Peng Chen
- Department of Hematology, General Hospital of Beijing Military Area of PLA, Beijing, People's Republic of China
| | - Bing Liu
- Department of Hematology, General Hospital of Beijing Military Area of PLA, Beijing, People's Republic of China
| | - Yuan Zhang
- Department of Hematology, General Hospital of Beijing Military Area of PLA, Beijing, People's Republic of China
| | - Fang Wang
- Department of Hematology, General Hospital of Beijing Military Area of PLA, Beijing, People's Republic of China
| | - Zhi Guo
- Department of Hematology, General Hospital of Beijing Military Area of PLA, Beijing, People's Republic of China
| | - Xiaodong Liu
- Department of Hematology, General Hospital of Beijing Military Area of PLA, Beijing, People's Republic of China
| | - Jinxing Lou
- Department of Hematology, General Hospital of Beijing Military Area of PLA, Beijing, People's Republic of China
| | - Huiren Chen
- Department of Hematology, General Hospital of Beijing Military Area of PLA, Beijing, People's Republic of China
| |
Collapse
|
11
|
YU YAO, YANG YU, WANG JING. Anti-apoptotic and apoptotic pathway analysis of arsenic trioxide-induced apoptosis in human gastric cancer SGC-7901 cells. Oncol Rep 2014; 32:973-8. [DOI: 10.3892/or.2014.3276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/28/2014] [Indexed: 11/05/2022] Open
|