1
|
Ebrahimi A, Ak G, Özel C, İzgördü H, Ghorbanpoor H, Hassan S, Avci H, Metintaş M. Clinical Perspectives and Novel Preclinical Models of Malignant Pleural Mesothelioma: A Critical Review. ACS Pharmacol Transl Sci 2024; 7:3299-3333. [PMID: 39539262 PMCID: PMC11555512 DOI: 10.1021/acsptsci.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Pleural mesothelioma (PM), a rare malignant tumor explicitly associated with asbestos and erionite exposures, has become a global health problem due to limited treatment options and a poor prognosis, in which the median life expectancy varies depending on the method of treatment. However, the importance of early diagnosis is emphasized, and the practical methods have not matured yet. This study provides a critical overview of PM, addressing various aspects like epidemiology, etiology, diagnosis, treatment options, and the potential use of advanced technologies like microfluidic chip-based models for research and diagnosis. It initially begins with fundamentals of clinical aspects and then discusses the identification of disease-specific biomarkers in patients' serum or plasma samples, which could potentially be used for early diagnosis. A detailed investigation of the sophisticated preclinical models is highlighted. Recent three-dimensional (3D) model accomplishments, including microarchitecture modeling by transwell coculture, spheroids, organoids, 3D bioprinting constructs, and ex vivo tumor slices, are discussed comprehensively. On-chip models that imitate physiological processes, such as detection chips and therapeutic screening chips, are assessed as potential techniques. The review concludes with a critical and constructive discussion of the growing interest in the topic and its limitations and suggestions.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Güntülü Ak
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Ceren Özel
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Hüseyin İzgördü
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Hamed Ghorbanpoor
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Biomedical Engineering, Eskişehir
Osmangazi University, Eskişehir 26040, Turkey
| | - Shabir Hassan
- Department
of Biological Sciences, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Huseyin Avci
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Muzaffer Metintaş
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
2
|
Selective Eradication of Colon Cancer Cells Harboring PI3K and/or MAPK Pathway Mutations in 3D Culture by Combined PI3K/AKT/mTOR Pathway and MEK Inhibition. Int J Mol Sci 2023; 24:ijms24021668. [PMID: 36675180 PMCID: PMC9863259 DOI: 10.3390/ijms24021668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer (CRC) is the second deadliest cancer in the world. Besides APC and p53 alterations, the PI3K/AKT/MTOR and MAPK pathway are most commonly mutated in CRC. So far, no treatment options targeting these pathways are available in routine clinics for CRC patients. We systematically analyzed the response of CRC cells to the combination of small molecular inhibitors targeting the PI3K and MAPK pathways. We used CRC cells in 2D, 3D spheroid, collagen gel cultures and freshly isolated organoids for drug response studies. Readout for drug response was spheroid or organoid growth, spheroid outgrowth, metabolic activity, Western blotting and immunofluorescence. We found profound tumor cell destruction under treatment with a combination of Torin 1 (inhibiting mTOR), MK2206 (targeting AKT) and selumetinib (inhibiting MEK) in 3D but not in 2D. Induction of cell death was due to apoptosis. Western blot analysis revealed efficient drug action. Gedatolisib, a dual PI3K/mTOR inhibitor, could replace Torin1/MK2206 with similar efficiency. The presence of PI3K and/or RAS-RAF-MAPK pathway mutations accounted for treatment responsiveness. Here, we identified a novel, efficient therapy, which induced proliferation stop and tumor cell destruction in vitro based on the genetic background. These preclinical findings show promise to further test this combi-treatment in vivo in mice and to potentially develop a mutation specific targeted therapy for CRC patients.
Collapse
|
3
|
Bui BP, Nguyen PL, Lee K, Cho J. Hypoxia-Inducible Factor-1: A Novel Therapeutic Target for the Management of Cancer, Drug Resistance, and Cancer-Related Pain. Cancers (Basel) 2022; 14:cancers14246054. [PMID: 36551540 PMCID: PMC9775408 DOI: 10.3390/cancers14246054] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates the transcription of many genes that are responsible for the adaptation and survival of tumor cells in hypoxic environments. Over the past few decades, tremendous efforts have been made to comprehensively understand the role of HIF-1 in tumor progression. Based on the pivotal roles of HIF-1 in tumor biology, many HIF-1 inhibitors interrupting expression, stabilization, DNA binding properties, or transcriptional activity have been identified as potential therapeutic agents for various cancers, yet none of these inhibitors have yet been successfully translated into clinically available cancer treatments. In this review, we briefly introduce the regulation of the HIF-1 pathway and summarize its roles in tumor cell proliferation, angiogenesis, and metastasis. In addition, we explore the implications of HIF-1 in the development of drug resistance and cancer-related pain: the most commonly encountered obstacles during conventional anticancer therapies. Finally, the current status of HIF-1 inhibitors in clinical trials and their perspectives are highlighted, along with their modes of action. This review provides new insights into novel anticancer drug development targeting HIF-1. HIF-1 inhibitors may be promising combinational therapeutic interventions to improve the efficacy of current cancer treatments and reduce drug resistance and cancer-related pain.
Collapse
|
4
|
Gao Y, Kruithof-de Julio M, Peng RW, Dorn P. Organoids as a Model for Precision Medicine in Malignant Pleural Mesothelioma: Where Are We Today? Cancers (Basel) 2022; 14:3758. [PMID: 35954422 PMCID: PMC9367391 DOI: 10.3390/cancers14153758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
MPM is an aggressive tumor originating from pleural mesothelial cells. A characteristic feature of the disease is the dominant prevalence of therapeutically intractable inactivating alterations in TSGs, making MPM one of the most difficult cancers to treat and the epitome of a cancer characterized by a significant lack of therapy options and an extremely poor prognosis (5-year survival rate of only 5% to 10%). Extensive interpatient heterogeneity poses another major challenge for targeted therapy of MPM, warranting stratified therapy for specific subgroups of MPM patients. Accurate preclinical models are critical for the discovery of new therapies and the development of personalized medicine. Organoids, an in vitro 'organ-like' 3D structure derived from patient tumor tissue that faithfully mimics the biology and complex architecture of cancer and largely overcomes the limitations of other existing models, are the next-generation tumor model. Although organoids have been successfully produced and used in many cancers, the development of MPM organoids is still in its infancy. Here, we provide an overview of recent advances in cancer organoids, focusing on the progress and challenges in MPM organoid development. We also elaborate the potential of MPM organoids for understanding MPM pathobiology, discovering new therapeutic targets, and developing personalized treatments for MPM patients.
Collapse
Affiliation(s)
- Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland;
- Department for BioMedical Research (DBMR), Translation Organoid Research, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
5
|
Shamseddin M, Obacz J, Garnett MJ, Rintoul RC, Francies HE, Marciniak SJ. Use of preclinical models for malignant pleural mesothelioma. Thorax 2021; 76:1154-1162. [PMID: 33692175 PMCID: PMC8526879 DOI: 10.1136/thoraxjnl-2020-216602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/08/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer most commonly caused by prior exposure to asbestos. Median survival is 12-18 months, since surgery is ineffective and chemotherapy offers minimal benefit. Preclinical models that faithfully recapitulate the genomic and histopathological features of cancer are critical for the development of new treatments. The most commonly used models of MPM are two-dimensional cell lines established from primary tumours or pleural fluid. While these have provided some important insights into MPM biology, these cell models have significant limitations. In order to address some of these limitations, spheroids and microfluidic chips have more recently been used to investigate the role of the three-dimensional environment in MPM. Efforts have also been made to develop animal models of MPM, including asbestos-induced murine tumour models, MPM-prone genetically modified mice and patient-derived xenografts. Here, we discuss the available in vitro and in vivo models of MPM and highlight their strengths and limitations. We discuss how newer technologies, such as the tumour-derived organoids, might allow us to address the limitations of existing models and aid in the identification of effective treatments for this challenging-to-treat disease.
Collapse
Affiliation(s)
- Marie Shamseddin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Joanna Obacz
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Robert Campbell Rintoul
- Department of Oncology, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Thoracic Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | | | - Stefan John Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| |
Collapse
|
6
|
Blanquart C, Jaurand MC, Jean D. The Biology of Malignant Mesothelioma and the Relevance of Preclinical Models. Front Oncol 2020; 10:388. [PMID: 32269966 PMCID: PMC7109283 DOI: 10.3389/fonc.2020.00388] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Malignant mesothelioma (MM), especially its more frequent form, malignant pleural mesothelioma (MPM), is a devastating thoracic cancer with limited therapeutic options. Recently, clinical trials that used immunotherapy strategies have yielded promising results, but the benefits are restricted to a limited number of patients. To develop new therapeutic strategies and define predictors of treatment response to existing therapy, better knowledge of the cellular and molecular mechanisms of MM tumors and sound preclinical models are needed. This review aims to provide an overview of our present knowledge and issues on both subjects. MM shows a complex pattern of molecular changes, including genetic, chromosomic, and epigenetic alterations. MM is also a heterogeneous cancer. The recently described molecular classifications for MPM could better consider inter-tumor heterogeneity, while histo-molecular gradients are an interesting way to consider both intra- and inter-tumor heterogeneities. Classical preclinical models are based on use of MM cell lines in culture or implanted in rodents, i.e., xenografts in immunosuppressed mice or isografts in syngeneic rodents to assess the anti-tumor immune response. Recent developments are tumoroids, patient-derived xenografts (PDX), xenografts in humanized mice, and genetically modified mice (GEM) that carry mutations identified in human MM tumor cells. Multicellular tumor spheroids are an interesting in vitro model to reduce animal experimentation; they are more accessible than tumoroids. They could be relevant, especially if they are co-cultured with stromal and immune cells to partially reproduce the human microenvironment. Even if preclinical models have allowed for major advances, they show several limitations: (i) the anatomical and biological tumor microenvironments are incompletely reproduced; (ii) the intra-tumor heterogeneity and immunological contexts are not fully reconstructed; and (iii) the inter-tumor heterogeneity is insufficiently considered. Given that these limitations vary according to the models, preclinical models must be carefully selected depending on the objectives of the experiments. New approaches, such as organ-on-a-chip technologies or in silico biological systems, should be explored in MM research. More pertinent cell models, based on our knowledge on mesothelial carcinogenesis and considering MM heterogeneity, need to be developed. These endeavors are mandatory to implement efficient precision medicine for MM.
Collapse
Affiliation(s)
- Christophe Blanquart
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Marie-Claude Jaurand
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors Laboratory, Paris, France
| |
Collapse
|
7
|
Cerruti F, Jocollè G, Salio C, Oliva L, Paglietti L, Alessandria B, Mioletti S, Donati G, Numico G, Cenci S, Cascio P. Proteasome stress sensitizes malignant pleural mesothelioma cells to bortezomib-induced apoptosis. Sci Rep 2017; 7:17626. [PMID: 29247244 PMCID: PMC5732203 DOI: 10.1038/s41598-017-17977-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Based on promising results in preclinical models, clinical trials have been performed to evaluate the efficacy of the first-in-class proteasome inhibitor bortezomib towards malignant pleural mesothelioma (MPM), an aggressive cancer arising from the mesothelium of the serous cavities following exposure to asbestos. Unexpectedly, only minimal therapeutic benefits were observed, thus implicating that MPM harbors inherent resistance mechanisms. Identifying the molecular bases of this primary resistance is crucial to develop novel pharmacologic strategies aimed at increasing the vulnerability of MPM to bortezomib. Therefore, we assessed a panel of four human MPM lines with different sensitivity to bortezomib, for functional proteasome activity and levels of free and polymerized ubiquitin. We found that highly sensitive MPM lines display lower proteasome activity than more bortezomib-resistant clones, suggesting that reduced proteasomal capacity might contribute to the intrinsic susceptibility of mesothelioma cells to proteasome inhibitors-induced apoptosis. Moreover, MPM equipped with fewer active proteasomes accumulated polyubiquitinated proteins, at the expense of free ubiquitin, a condition known as proteasome stress, which lowers the cellular apoptotic threshold and sensitizes mesothelioma cells to bortezomib-induced toxicity as shown herein. Taken together, our data suggest that an unfavorable load-versus-capacity balance represents a critical determinant of primary apoptotic sensitivity to bortezomib in MPM.
Collapse
Affiliation(s)
- Fulvia Cerruti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Genny Jocollè
- Medical Oncology Unit, Ospedale U. Parini, Viale Ginevra 3, 11100, Aosta, Italy
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Laura Oliva
- San Raffaele Scientific Institute, Division of Genetics and Cell Biology, Via Olgettina 60, 20132, Milan, Italy
| | - Luca Paglietti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Beatrice Alessandria
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Silvia Mioletti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Giovanni Donati
- Thoracic Surgery Unit, Ospedale U. Parini, Viale Ginevra 3, 11100, Aosta, Italy
| | - Gianmauro Numico
- Medical Oncology, Azienda Ospedaliera SS Antonio e Biagio e C Arrigo, Via Venezia 16, 15121, Alessandria, Italy
| | - Simone Cenci
- San Raffaele Scientific Institute, Division of Genetics and Cell Biology, Via Olgettina 60, 20132, Milan, Italy
| | - Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
8
|
Follo C, Barbone D, Richards WG, Bueno R, Broaddus VC. Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome. Autophagy 2016; 12:1180-94. [PMID: 27097020 PMCID: PMC4990992 DOI: 10.1080/15548627.2016.1173799] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Understanding the role of autophagy in cancer has been limited by the inability to measure this dynamic process in formalin-fixed tissue. We considered that 3-dimensional models including ex vivo tumor, such as we have developed for studying mesothelioma, would provide valuable insights. Using these models, in which we could use lysosomal inhibitors to measure the autophagic flux, we sought a marker of autophagy that would be valid in formalin-fixed tumor and be used to assess the role of autophagy in patient outcome. Autophagy was studied in mesothelioma cell lines, as 2-dimensional (2D) monolayers and 3-dimensional (3D) multicellular spheroids (MCS), and in tumor from 25 chemonaive patients, both as ex vivo 3D tumor fragment spheroids (TFS) and as formalin-fixed tissue. Autophagy was evaluated as autophagic flux by detection of the accumulation of LC3 after lysosomal inhibition and as autophagy initiation by detection of ATG13 puncta. We found that autophagic flux in 3D, but not in 2D, correlated with ATG13 positivity. In each TFS, ATG13 positivity was similar to that of the original tumor. When tested in tissue microarrays of 109 chemonaive patients, higher ATG13 positivity correlated with better prognosis and provided information independent of known prognostic factors. Our results show that ATG13 is a static marker of the autophagic flux in 3D models of mesothelioma and may also reflect autophagy levels in formalin-fixed tumor. If confirmed, this marker would represent a novel prognostic factor for mesothelioma, supporting the notion that autophagy plays an important role in this cancer.
Collapse
Affiliation(s)
- Carlo Follo
- a San Francisco General Hospital, University of California San Francisco , San Francisco , CA , USA
| | - Dario Barbone
- a San Francisco General Hospital, University of California San Francisco , San Francisco , CA , USA
| | - William G Richards
- b Division of Thoracic Surgery, Brigham and Women's Hospital , Boston , MA , USA
| | - Raphael Bueno
- b Division of Thoracic Surgery, Brigham and Women's Hospital , Boston , MA , USA
| | - V Courtney Broaddus
- a San Francisco General Hospital, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
9
|
Schunselaar LM, Quispel-Janssen JM, Neefjes JJC, Baas P. A catalogue of treatment and technologies for malignant pleural mesothelioma. Expert Rev Anticancer Ther 2016; 16:455-63. [DOI: 10.1586/14737140.2016.1162100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Analysis of Gene Expression in 3D Spheroids Highlights a Survival Role for ASS1 in Mesothelioma. PLoS One 2016; 11:e0150044. [PMID: 26982031 PMCID: PMC4794185 DOI: 10.1371/journal.pone.0150044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/08/2016] [Indexed: 11/25/2022] Open
Abstract
To investigate the underlying causes of chemoresistance in malignant pleural mesothelioma, we have studied mesothelioma cell lines as 3D spheroids, which acquire increased chemoresistance compared to 2D monolayers. We asked whether the gene expression of 3D spheroids would reveal mechanisms of resistance. To address this, we measured gene expression of three mesothelioma cell lines, M28, REN and VAMT, grown as 2D monolayers and 3D spheroids. A total of 209 genes were differentially expressed in common by the three cell lines in 3D (138 upregulated and 71 downregulated), although a clear resistance pathway was not apparent. We then compared the list of 3D genes with two publicly available datasets of gene expression of 56 pleural mesotheliomas compared to normal tissues. Interestingly, only three genes were increased in both 3D spheroids and human tumors: argininosuccinate synthase 1 (ASS1), annexin A4 (ANXA4) and major vault protein (MVP); of these, ASS1 was the only consistently upregulated of the three genes by qRT-PCR. To measure ASS1 protein expression, we stained 2 sets of tissue microarrays (TMA): one with 88 pleural mesothelioma samples and the other with additional 88 pleural mesotheliomas paired with matched normal tissues. Of the 176 tumors represented on the two TMAs, ASS1 was expressed in 87 (50%; staining greater than 1 up to 3+). For the paired samples, ASS1 expression in mesothelioma was significantly greater than in the normal tissues. Reduction of ASS1 expression by siRNA significantly sensitized mesothelioma spheroids to the pro-apoptotic effects of bortezomib and of cisplatin plus pemetrexed. Although mesothelioma is considered by many to be an ASS1-deficient tumor, our results show that ASS1 is elevated at the mRNA and protein levels in mesothelioma 3D spheroids and in human pleural mesotheliomas. We also have uncovered a survival role for ASS1, which may be amenable to targeting to undermine mesothelioma multicellular resistance.
Collapse
|
11
|
Kushitani K, Amatya VJ, Mawas AS, Miyata Y, Okada M, Takeshima Y. Use of Anti-Noxa Antibody for Differential Diagnosis between Epithelioid Mesothelioma and Reactive Mesothelial Hyperplasia. Pathobiology 2016; 83:33-40. [PMID: 26735863 DOI: 10.1159/000442092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The histological differential diagnosis between epithelioid mesothelioma (EM) and reactive mesothelial hyperplasia (RMH) is not always straightforward. The aim of the present study was to search for new immunohistochemical markers to distinguish EM from RMH. METHODS We evaluated and compared the expression of apoptosis-related genes in EM and RMH by real-time RT-PCR array analysis followed by clustering of significant gene expression. Immunohistochemical staining and statistical analysis of Noxa expression in 81 cases of EM and 55 cases of RMH were performed and compared with the utility of other previously reported antibodies such as Desmin, EMA, GLUT-1, IMP-3 and CD146. RESULTS Noxa mRNA expression levels were found to be increased in EM when compared to RMH by RT-PCR array analysis. In the immunohistochemical analysis, Noxa showed sensitivity of 69.0%, specificity of 93.6% and positive predictive value of 93.0% as a positive marker of EM in distinguishing it from RMH, and these values were almost similar to IMP-3. CONCLUSION Noxa is a marker with relatively high specificity, and can be used to distinguish EM from RMH. It would be a valuable addition to the current antibody panel used for the differential diagnosis of EM and RMH.
Collapse
Affiliation(s)
- Kei Kushitani
- Department of Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Lee YJ, Lee YJ, Lee SH. Resveratrol and clofarabine induces a preferential apoptosis-activating effect on malignant mesothelioma cells by Mcl-1 down-regulation and caspase-3 activation. BMB Rep 2015; 48:166-71. [PMID: 24924397 PMCID: PMC4453022 DOI: 10.5483/bmbrep.2015.48.3.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that resveratrol and clofarabine elicited a marked cytotoxicity on malignant mesothelioma (MM) MSTO-211H cells but not on the corresponding normal mesothelial MeT-5A cells. Little is known of the possible molecules that could be used to predict preferential chemosensitivity on MSTO-211H cells. Resveratrol and clofarabine induced down-regulation of Mcl-1 protein level in MSTO-211H cells. Treatment of cells with cycloheximide in the presence of proteasome inhibitor MG132 suggested that Mcl-1 protein levels were regulated at the post-translational step. The siRNA-based knockdown of Mcl-1 in MSTO-211H cells triggered more growth-inhibiting and apoptosis-inducing effects with the resultant cleavages of procaspase-3 and its substrate PARP, increased caspase-3/7 activity, and increased percentage of apoptotic propensities. However, the majority of the observed changes were not shown in MeT-5A cells. Collectively, these studies indicate that the preferential activation of caspase cascade in malignant cells might have important applications as a therapeutic target for MM. [BMB Reports 2015; 48(3): 166-171]
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Soonchunhyung Environmental Health Center for Asbestos; Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Cheonan 330-090, Korea
| | - Yong-Jin Lee
- Soonchunhyung Environmental Health Center for Asbestos, College of Medicine, Soonchunhyang University, Cheonan 330-090, Korea
| | - Sang-Han Lee
- Soonchunhyung Environmental Health Center for Asbestos; Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 330-090, Korea
| |
Collapse
|
13
|
Stadler M, Walter S, Walzl A, Kramer N, Unger C, Scherzer M, Unterleuthner D, Hengstschläger M, Krupitza G, Dolznig H. Increased complexity in carcinomas: Analyzing and modeling the interaction of human cancer cells with their microenvironment. Semin Cancer Biol 2015; 35:107-24. [DOI: 10.1016/j.semcancer.2015.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 02/08/2023]
|
14
|
Barbone D, Follo C, Echeverry N, Gerbaudo VH, Klabatsa A, Bueno R, Felley-Bosco E, Broaddus VC. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS One 2015; 10:e0134825. [PMID: 26284517 PMCID: PMC4540424 DOI: 10.1371/journal.pone.0134825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/14/2015] [Indexed: 11/19/2022] Open
Abstract
Malignant pleural mesothelioma is a highly chemoresistant solid tumor. We have studied this apoptotic resistance using in vitro and ex vivo three-dimensional models, which acquire a high level of chemoresistance that can be reduced by PI3K/mTOR inhibitors. Here, we investigate the activity of GDC-0980, a novel dual PI3K/mTOR inhibitor, which has been proposed to be effective in mesothelioma. In this work, we aimed to identify mechanisms and markers of efficacy for GDC-0980 by utilizing 3D models of mesothelioma, both in vitro multicellular spheroids and ex vivo tumor fragment spheroids grown from patient tumor samples. We found that a subset of mesothelioma spheroids is sensitive to GDC-0980 alone and to its combination with chemotherapy. Unexpectedly, this sensitivity did not correlate with the activation of the Akt/mTOR pathway. Instead, sensitivity to GDC-0980 correlated with the presence of constitutive ATG13 puncta, a feature of autophagy, a cellular program that supports cells under stress. In tumor fragment spheroids grown from 21 tumors, we also found a subset (n = 11) that was sensitive to GDC-0980, a sensitivity that also correlated with the presence of ATG13 puncta. Interference with autophagy by siRNA of ATG7, an essential autophagic protein, increased the response to chemotherapy, but only in the sensitive multicellular spheroids. In the spheroids resistant to GDC-0980, autophagy appeared to play no role. In summary, we show that GDC-0980 is effective in mesothelioma 3D models that display ATG13 puncta, and that blockade of autophagy increases their response to chemotherapy. For the first time, we show a role for autophagy in the response to chemotherapy of 3D models of mesothelioma and propose ATG13 as a potential biomarker of the therapeutic responsiveness of mesothelioma.
Collapse
Affiliation(s)
- Dario Barbone
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, 94110, United States of America
| | - Carlo Follo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, 94110, United States of America
| | - Nohemy Echeverry
- Clinic of Oncology, University Hospital Zurich, 8044 Zurich, Switzerland
| | - Victor H. Gerbaudo
- Division of Nuclear Medicine & Molecular Imaging, Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115, United States of America
| | - Astero Klabatsa
- Department of Research Oncology, King's College London, London, United Kingdom
| | - Raphael Bueno
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, United States of America
| | | | - V. Courtney Broaddus
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, 94110, United States of America
| |
Collapse
|
15
|
Narayanan S, Harshman LC, Srinivas S. Second-line therapies in metastatic urothelial carcinoma. Hematol Oncol Clin North Am 2015; 29:341-59, x. [PMID: 25836939 DOI: 10.1016/j.hoc.2014.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patients with relapsed or refractory urothelial carcinoma (UC) face a poor prognosis and a dearth of available treatment options that improve their survival. End-organ function and performance status play a vital role in the choice of second-line therapies. Evidence supporting the use of cytotoxic chemotherapy, as single agents or in combination, arises from small phase 2 studies with modest responses. With the evolution of genomic testing in UC, several pathways amenable to available targeted therapies have emerged. Encouraging patient participation in clinical trials is critical to improve patient outcomes and to advance the current modest treatment armamentarium.
Collapse
Affiliation(s)
- Sujata Narayanan
- Department of Medicine, Stanford University School of Medicine, Blake Wilbur Drive, Stanford, CA 94305, USA
| | - Lauren C Harshman
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, DANA 1230, Boston, MA 02215, USA
| | - Sandy Srinivas
- Department of Medicine, Stanford University School of Medicine, Blake Wilbur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Denis I, El Bahhaj F, Collette F, Delatouche R, Gueugnon F, Pouliquen D, Pichavant L, Héroguez V, Grégoire M, Bertrand P, Blanquart C. Vorinostat-polymer conjugate nanoparticles for Acid-responsive delivery and passive tumor targeting. Biomacromolecules 2014; 15:4534-43. [PMID: 25333409 DOI: 10.1021/bm501338r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In vivo histone deacetylase (HDAC) inhibition by vorinostat under clinically acceptable dosing is limited by its poor pharmacokinetics properties. A new type of nontoxic pH-responsive delivery system has been synthesized by ring-opening metathesis polymerization, allowing for the selective distribution of vorinostat in mesothelioma tumors in vivo and subsequent histone reacetylation. The delivery system is synthesized by generic click chemistry, possesses native stealth properties for passive tumor targeting, and does not need additional chemistry for cellular internalization. Although vorinostat alone at 50 mg/kg in mice showed no effect, our new delivery system with 2 mg/kg vorinostat promoted histone reacetylation in tumors without side effects, demonstrating that our strategy improves the activity of this HDAC inihibitor in vivo.
Collapse
Affiliation(s)
- Iza Denis
- Inserm, UMR 892 , Nantes F-44000, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gueugnon F, Cartron PF, Charrier C, Bertrand P, Fonteneau JF, Gregoire M, Blanquart C. New histone deacetylase inhibitors improve cisplatin antitumor properties against thoracic cancer cells. Oncotarget 2014; 5:4504-15. [PMID: 24980825 PMCID: PMC4147341 DOI: 10.18632/oncotarget.2056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/01/2014] [Indexed: 12/29/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) have shown promising antitumor effects on numerous cancer cells including malignant pleural mesothelioma (MPM) and lung adenocarcinoma (ADCA) cells. However, clinical trials using these compounds alone have shown limited efficacy against solid tumors. Therefore, new molecules are being developed and combinations with classical chemotherapeutic drugs are being tested. Here, we have evaluated on three MPM and three lung ADCA cell lines the antitumor potential of four new HDACi compounds, either alone or in combination with cisplatin. These effects were compared with those of vorinostat, an HDACi approved for cancer treatments. First, we characterized the HDAC mRNA expression profiles of tumor cells and showed an increase of the classI/classII HDAC ratio. We then treated cancer cells with these new HDACi and observed a cell-death induction and an increase of HDACi target genes and proteins expression. This was particularly evident for NODH compound (pan-HDACi) which had similar effects at nanomolar concentrations as micromolar concentrations of vorinostat. Interestingly, we observed that the HDACi/cisplatin combination strongly increased cell-death and limited resistance-phenotype emergence as compared with results obtained when the drugs were used alone. These results could be exploited to develop MPM and lung ADCA treatments combining chemotherapeutic approaches.
Collapse
Affiliation(s)
- Fabien Gueugnon
- Inserm, U892, F-44000, Nantes, France
- CNRS, UMR6299, F-44000, Nantes, France
- Université Nantes, F-44000, Nantes, France
| | - Pierre-François Cartron
- Inserm, U892, F-44000, Nantes, France
- CNRS, UMR6299, F-44000, Nantes, France
- Université Nantes, F-44000, Nantes, France
- Réseau Epigénétique du Canceropôle Grand Ouest
| | - Cedric Charrier
- CNRS, UMR7285, Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, France
| | - Philippe Bertrand
- Réseau Epigénétique du Canceropôle Grand Ouest
- CNRS, UMR7285, Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, France
| | - Jean-François Fonteneau
- Inserm, U892, F-44000, Nantes, France
- CNRS, UMR6299, F-44000, Nantes, France
- Université Nantes, F-44000, Nantes, France
| | - Marc Gregoire
- Inserm, U892, F-44000, Nantes, France
- CNRS, UMR6299, F-44000, Nantes, France
- Université Nantes, F-44000, Nantes, France
| | - Christophe Blanquart
- Inserm, U892, F-44000, Nantes, France
- CNRS, UMR6299, F-44000, Nantes, France
- Université Nantes, F-44000, Nantes, France
- Réseau Epigénétique du Canceropôle Grand Ouest
| |
Collapse
|
18
|
Canonical and new generation anticancer drugs also target energy metabolism. Arch Toxicol 2014; 88:1327-50. [PMID: 24792321 DOI: 10.1007/s00204-014-1246-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 01/05/2023]
Abstract
Significant efforts have been made for the development of new anticancer drugs (protein kinase or proteasome inhibitors, monoclonal humanized antibodies) with presumably low or negligible side effects and high specificity. However, an in-depth analysis of the side effects of several currently used canonical (platin-based drugs, taxanes, anthracyclines, etoposides, antimetabolites) and new generation anticancer drugs as the first line of clinical treatment reveals significant perturbation of glycolysis and oxidative phosphorylation. Canonical and new generation drug side effects include decreased (1) intracellular ATP levels, (2) glycolytic/mitochondrial enzyme/transporter activities and/or (3) mitochondrial electrical membrane potentials. Furthermore, the anti-proliferative effects of these drugs are markedly attenuated in tumor rho (0) cells, in which functional mitochondria are absent; in addition, several anticancer drugs directly interact with isolated mitochondria affecting their functions. Therefore, several anticancer drugs also target the energy metabolism, and hence, the documented inhibitory effect of anticancer drugs on cancer growth should also be linked to the blocking of ATP supply pathways. These often overlooked effects of canonical and new generation anticancer drugs emphasize the role of energy metabolism in maintaining cancer cells viable and its targeting as a complementary and successful strategy for cancer treatment.
Collapse
|
19
|
Pierceall WE, Lena RJ, Medeiros BC, Blake N, Doykan C, Elashoff M, Cardone MH, Walter RB. Mcl-1 dependence predicts response to vorinostat and gemtuzumab ozogamicin in acute myeloid leukemia. Leuk Res 2014; 38:564-8. [PMID: 24636337 DOI: 10.1016/j.leukres.2014.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
Older adults with acute myeloid leukemia (AML) are commonly considered for investigational therapies, which often only benefit subsets of patients. In this study, we assessed whether BH3 profiling of apoptotic functionality could predict outcomes following treatment with vorinostat (histone deacetylase inhibitor) and gemtuzumab ozogamicin (GO; CD33-targeted immunoconjugate). Flow cytometry of BH3 peptide priming with Noxa (anti-apoptotic protein Mcl-1 modulator) correlated with remission induction (p=.026; AUC=0.83 [CI: 0.65-1.00; p=.00042]: AUC=0.88 [CI:0.75-1.00] with age adjustment) and overall survival (p=.027 logistic regression; AUC=0.87 [0.64-1.00; p=.0017]). This Mcl-1-dependence suggests a pivotal role of Bcl-2 family protein-mediated apoptosis to vorinostat/GO in AML patients.
Collapse
Affiliation(s)
| | - Ryan J Lena
- Eutropics Pharmaceuticals, Inc., Cambridge, MA, United States
| | | | - Noel Blake
- Eutropics Pharmaceuticals, Inc., Cambridge, MA, United States
| | - Camille Doykan
- Eutropics Pharmaceuticals, Inc., Cambridge, MA, United States
| | | | | | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, United States; Department of Epidemiology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
20
|
Tavallai S, Hamed HA, Grant S, Poklepovic A, Dent P. Pazopanib and HDAC inhibitors interact to kill sarcoma cells. Cancer Biol Ther 2014; 15:578-85. [PMID: 24556916 DOI: 10.4161/cbt.28163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The present studies were to determine whether the multi-kinase inhibitor pazopanib interacted with histone deacetylase inhibitors (HDACI: valproate, vorinostat) to kill sarcoma cells. In multiple sarcoma cell lines, at clinically achievable doses, pazopanib and HDACI interacted in an additive to greater than additive fashion to cause tumor cell death. The drug combination increased the numbers of LC3-GFP and LC3-RFP vesicles. Knockdown of Beclin1 or ATG5 significantly suppressed drug combination lethality. Expression of c-FLIP-s, and to a lesser extent BCL-XL or dominant negative caspase 9 reduced drug combination toxicity; knock down of FADD or CD95 was protective. Expression of both activated AKT and activated MEK1 was required to strongly suppress drug combination lethality. The drug combination inactivated mTOR and expression of activated mTOR strongly suppressed drug combination lethality. Treatment of animals carrying sarcoma tumors with pazopanib and valproate resulted in a greater than additive reduction in tumor volume compared with either drug individually. As both pazopanib and HDACIs are FDA-approved agents, our data argue for further determination as to whether this drug combination is a useful sarcoma therapy in the clinic.
Collapse
Affiliation(s)
- Seyedmehrad Tavallai
- Department of Biochemistry and Molecular Biology; Virginia Commonwealth University; Richmond, VA USA
| | - Hossein A Hamed
- Department of Biochemistry and Molecular Biology; Virginia Commonwealth University; Richmond, VA USA
| | - Steven Grant
- Department of Medicine; Virginia Commonwealth University; Richmond, VA USA
| | - Andrew Poklepovic
- Department of Medicine; Virginia Commonwealth University; Richmond, VA USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
21
|
Booth L, Roberts JL, Conley A, Cruickshanks N, Ridder T, Grant S, Poklepovic A, Dent P. HDAC inhibitors enhance the lethality of low dose salinomycin in parental and stem-like GBM cells. Cancer Biol Ther 2013; 15:305-16. [PMID: 24351423 DOI: 10.4161/cbt.27309] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present studies determined whether the antibiotic salinomycin interacted with HDAC inhibitors to kill primary human GBM cells. Regardless of PTEN, ERBB1, or p53 mutational status salinomycin interacted with HDAC inhibitors in a synergistic fashion to kill GBM cells. Inhibition of CD95/Caspase 8 or of CD95/RIP-1/AIF signaling suppressed killing by the drug combination. Salinomycin increased the levels of autophagosomes that correlated with increased p62 and LC3II levels; valproate co-treatment correlated with reduced LC3II and p62 expression, and increased caspase 3 cleavage. Molecular inhibition of autophagosome formation was protective against drug exposure. The drug combination enhanced eIF2α phosphorylation and decreased expression of MCL-1 and phosphorylation of mTOR and p70 S6K. Activation of p70 S6K or mTOR promoted cell survival in the face of combined drug exposure. Overexpression of BCL-XL or c-FLIP-s was protective. Collectively our data demonstrate that the lethality of low nanomolar concentrations of salinomycin are enhanced by HDAC inhibitors in GBM cells and that increased death receptor signaling together with reduced mitochondrial function are causal in the combinatorial drug necro-apoptotic killing effect.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Neurosurgery; Virginia Commonwealth University; Richmond, VA USA
| | - Jane L Roberts
- Department of Neurosurgery; Virginia Commonwealth University; Richmond, VA USA
| | - Adam Conley
- Department of Neurosurgery; Virginia Commonwealth University; Richmond, VA USA
| | | | - Thomas Ridder
- Department of Neurosurgery; Virginia Commonwealth University; Richmond, VA USA
| | - Steven Grant
- Department of Medicine; Virginia Commonwealth University; Richmond, VA USA
| | - Andrew Poklepovic
- Department of Medicine; Virginia Commonwealth University; Richmond, VA USA
| | - Paul Dent
- Department of Neurosurgery; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
22
|
Kimlin L, Kassis J, Virador V. 3D in vitro tissue models and their potential for drug screening. Expert Opin Drug Discov 2013; 8:1455-66. [PMID: 24144315 DOI: 10.1517/17460441.2013.852181] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The development of one standard, simplified in vitro three-dimensional tissue model suitable to biological and pathological investigation and drug-discovery may not yet be feasible, but standardized models for individual tissues or organs are a possibility. Tissue bioengineering, while concerned with finding methods of restoring functionality in disease, is developing technology that can be miniaturized for high throughput screening (HTS) of putative drugs. Through collaboration between biologists, physicists and engineers, cell-based assays are expanding into the realm of tissue analysis. Accordingly, three-dimensional (3D) micro-organoid systems will play an increasing role in drug testing and therapeutics over the next decade. Nevertheless, important hurdles remain before these models are fully developed for HTS. AREAS COVERED We highlight advances in the field of tissue bioengineering aimed at enhancing the success of drug candidates through pre-clinical optimization. We discuss models that are most amenable to high throughput screening with emphasis on detection platforms and data modeling. EXPERT OPINION Modeling 3D tissues to mimic in-vivo architecture remains a major challenge. As technology advances to provide novel methods of HTS analysis, so do potential pitfalls associated with such models and methods. We remain hopeful that integration of biofabrication with HTS will significantly reduce attrition rates in drug development.
Collapse
Affiliation(s)
- Lauren Kimlin
- 1114 Riverview Terrace, St. Michaels, MD 21663 , USA
| | | | | |
Collapse
|
23
|
Dabir S, Kluge A, McColl K, Liu Y, Lam M, Halmos B, Wildey G, Dowlati A. PIAS3 activates the intrinsic apoptotic pathway in non-small cell lung cancer cells independent of p53 status. Int J Cancer 2013; 134:1045-54. [PMID: 23959540 DOI: 10.1002/ijc.28448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 08/07/2013] [Indexed: 01/10/2023]
Abstract
Protein inhibitor of activated signal transducer and activator of transcription 3 (STAT3) (PIAS3) is an endogenous inhibitor of STAT3 that negatively regulates STAT3 transcriptional activity and cell growth and demonstrates limited expression in the majority of human squamous cell carcinomas of the lung. In this study, we sought to determine whether PIAS3 inhibits cell growth in non-small cell lung cancer cell lines by inducing apoptosis. Our results demonstrate that overexpression of PIAS3 promotes mitochondrial depolarization, leading to cytochrome c release, caspase 9 and 3 activation and poly (ADP-ribose) polymerase cleavage. This intrinsic pathway activation was associated with decreased Bcl-xL expression and increased Noxa expression and was independent of p53 status. Furthermore, PIAS3 inhibition of STAT3 activity was also p53 independent. Microarray experiments were performed to discover STAT3-independent mediators of PIAS3-induced apoptosis by comparing the apoptotic gene expression signature induced by PIAS3 overexpression with that induced by STAT3 siRNA. The results showed that a subset of apoptotic genes was uniquely expressed only after PIAS3 expression. Thus, PIAS3 may represent a promising lung cancer therapeutic target because of its p53-independent efficacy and its potential to synergize with Bcl-2 targeted inhibitors.
Collapse
Affiliation(s)
- Snehal Dabir
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Vandermeers F, Neelature Sriramareddy S, Costa C, Hubaux R, Cosse JP, Willems L. The role of epigenetics in malignant pleural mesothelioma. Lung Cancer 2013; 81:311-318. [PMID: 23790315 DOI: 10.1016/j.lungcan.2013.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/18/2013] [Accepted: 05/22/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Fabian Vandermeers
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Sathya Neelature Sriramareddy
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Chrisostome Costa
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Roland Hubaux
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Jean-Philippe Cosse
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium.
| |
Collapse
|
25
|
Cruickshanks N, Hamed HA, Booth L, Tavallai S, Syed J, Sajithlal GB, Grant S, Poklepovic A, Dent P. Histone deacetylase inhibitors restore toxic BH3 domain protein expression in anoikis-resistant mammary and brain cancer stem cells, thereby enhancing the response to anti-ERBB1/ERBB2 therapy. Cancer Biol Ther 2013; 14:982-96. [PMID: 24025251 PMCID: PMC3926895 DOI: 10.4161/cbt.26234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The present studies focused on defining the mechanisms by which anoikis-resistant (AR) mammary carcinoma cells can be reverted to a therapy-sensitive phenotype. AR mammary carcinoma cells had reduced expression of the toxic BH3 domain proteins BAX, BAK, NOXA, and PUMA. In AR cells expression of the protective BCL-2 family proteins BCL-XL and MCL-1 was increased. AR cells were resistant to cell killing by multiple anti-tumor cell therapies, including ERBB1/2 inhibitor + MCL-1 inhibitor treatment, and had a reduced autophagic flux response to these therapies, despite similarly exhibiting increased levels of LC3II processing. Knockdown of MCL-1 and BCL-XL caused necro-apoptosis in AR cells to a greater extent than in parental cells. Pre-treatment of anoikis-resistant cells with histone deacetylase inhibitors (HDACIs) for 24 h increased the levels of toxic BH3 domain proteins, reduced MCL-1 levels, and restored/re-sensitized the cell death response of AR tumor cells to multiple toxic therapies. In vivo, pre-treatment of AR breast tumors in the brain with valproate restored the chemo-sensitivity of the tumors and prolonged animal survival. These data argue that one mechanism to enhance the anti-tumor effect of chemotherapy could be HDACI pre-treatment.
Collapse
|
26
|
Szulkin A, Nilsonne G, Mundt F, Wasik AM, Souri P, Hjerpe A, Dobra K. Variation in drug sensitivity of malignant mesothelioma cell lines with substantial effects of selenite and bortezomib, highlights need for individualized therapy. PLoS One 2013; 8:e65903. [PMID: 23840376 PMCID: PMC3688685 DOI: 10.1371/journal.pone.0065903] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/29/2013] [Indexed: 12/20/2022] Open
Abstract
Background Malignant mesothelioma cells have an epithelioid or sarcomatoid morphology, both of which may be present in the same tumor. The sarcomatoid phenotype is associated with worse prognosis and heterogeneity of mesothelioma cells may contribute to therapy resistance, which is often seen in mesothelioma. This study aimed to investigate differences in sensitivity between mesothelioma cell lines to anti-cancer drugs. We studied two novel drugs, selenite and bortezomib and compared their effect to four conventional drugs. We also investigated the immunoreactivity of potential predictive markers for drug sensitivity; Pgp, MRP-1, ERCC1, RRM1, TS, xCT and proteasome 20S subunit. Materials and methods We treated six mesothelioma cell lines with selenite, bortezomib, carboplatin, pemetrexed, doxorubicin or gemcitabine as single agents and in combinations. Viability was measured after 24 and 48 hours. Immunocytochemistry was used to detect predictive markers. Results As a single agent, selenite was effective on four out of six cell lines, and in combination with bortezomib yielded the greatest response in the studied mesothelioma cell lines. Cells with an epithelioid phenotype were generally more sensitive to the different drugs than the sarcomatoid cells. Extensive S-phase arrest was seen in pemetrexed-sensitive cell lines. MRP-1 predicted sensitivity of cell lines to treatment with carboplatin and xCT predicted pemetrexed effect. Conclusions The observed heterogeneity in sensitivity of mesothelioma cell lines with different morphology highlights the need for more individualized therapy, requiring development of methods to predict drug sensitivity of individual tumors. Selenite and bortezomib showed a superior effect compared to conventional drugs, motivating clinical testing of these agents as future treatment regime components for patients with malignant mesothelioma.
Collapse
Affiliation(s)
- Adam Szulkin
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
- * E-mail:
| | - Gustav Nilsonne
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
- Stockholm University, Stress Research Institute, Stockholm, Sweden
| | - Filip Mundt
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
| | - Agata M. Wasik
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
| | - Pega Souri
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
| | - Anders Hjerpe
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
| | - Katalin Dobra
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
| |
Collapse
|