1
|
Zimmerman H, Yin Z, Zou F, Everett ET. Interfrontal Bone Among Inbred Strains of Mice and QTL Mapping. Front Genet 2019; 10:291. [PMID: 31001328 PMCID: PMC6454051 DOI: 10.3389/fgene.2019.00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/18/2019] [Indexed: 11/24/2022] Open
Abstract
The interfrontal bone (IF) is a minor skeletal trait residing between the frontal bones. IF is considered a quasi-continuous trait. Genetic and environmental factors appear to play roles in its development. The mechanism(s) underlying IF bone development are poorly understood. We sought to survey inbred strains of mice for the prevalence of IF and to perform QTL mapping studies. Archived mouse skulls from a mouse phenome project (MPP) were available for this study. 27 inbred strains were investigated with 6–20 mice examined for each strain. Skulls were viewed dorsally and the IF measured using a zoom stereomicroscope equipped with a calibrated reticle. A two generation cross between C3H/HeJ and C57BL/6J mice was performed to generate a panel of 468 F2 mice. F2 mice were phenotyped for presence or absence of IF bone and among mice with the IF bone maximum widths and lengths were measured. F2 mice were genotyped for 573 SNP markers informative between the two strains and subjected to linkage map construction and interval QTL mapping. Results: Strain dependent differences in the prevalence of IF bones were observed. Overall, 77.8% or 21/27, of the inbred strains examined had IF bones. Six strains (C3H/HeJ, MOLF/EiJ, NZW/LacJ, SPRET/EiJ, SWR/J, and WSB/EiJ) lack IF bones. Among the strains with IF bones, the prevalence ranged from 100% for C57BL/6J, C57/LJ, CBA/J, and NZB/B1NJ and down to 5% for strains such as CAST/Ei. QTL mapping for IF bone length and widths identifies for each trait one strong QTL detected on chromosome 14 along with several other significant QTLs on chromosomes 3, 4, 7, and 11. Strain dependent differences in IF will facilitate investigation of genetic factors contributing to IF development. IF bone formation may be a model to understand intrasutural bone formation.
Collapse
Affiliation(s)
- Heather Zimmerman
- Dental Research, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zhaoyu Yin
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric T Everett
- Dental Research, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pediatric Dentistry, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Kawai S, Yamauchi M, Amano A. Zinc-finger transcription factor Odd-skipped related 1 regulates cranial bone formation. J Bone Miner Metab 2018; 36:640-647. [PMID: 29234951 DOI: 10.1007/s00774-017-0885-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 11/15/2017] [Indexed: 11/25/2022]
Abstract
Knowledge of the molecular mechanisms of bone formation has been advanced by novel findings related to genetic control. Odd-skipped related 1 (Osr1) is known to play important roles in embryonic, heart, and urogenital development. To elucidate the in vivo function of Osr1 in bone formation, we generated transgenic mice overexpressing full-length Osr1 under control of its 2.8-kb promoter, which were smaller than their wild-type littermates. Notably, abnormalities in the skull of Osr1 transgenic mice were revealed by analysis of X-ray, skeletal preparation, and morphological findings, including round skull and cranial dysraphism. Furthermore, primary calvarial cells obtained from these mice showed increased proliferation and expression of chondrocyte markers, while expression of osteoblast markers was decreased. BMP2 reduced Osr1 expression and Osr1 knockdown by siRNA-induced alkaline phosphatase and osteocalcin expression in mesenchymal and osteoblastic cells. Together, our results suggest that Osr1 plays a coordinating role in appropriate skull closure and cranial bone formation by negative regulation.
Collapse
Affiliation(s)
- Shinji Kawai
- Challenge to Intractable Oral Diseases, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masashi Yamauchi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
3
|
Lu T, Li M, Xu X, Xiong J, Huang C, Zhang X, Hu A, Peng L, Cai D, Zhang L, Wu B, Xiong F. Whole exome sequencing identifies an AMBN missense mutation causing severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int J Oral Sci 2018; 10:26. [PMID: 30174330 PMCID: PMC6119682 DOI: 10.1038/s41368-018-0027-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Tooth development is a complex process that involves precise and time-dependent orchestration of multiple genetic, molecular, and cellular interactions. Ameloblastin (AMBN, also named “amelin” or “sheathlin”) is the second most abundant enamel matrix protein known to have a key role in amelogenesis. Amelogenesis imperfecta (AI [MIM: 104500]) refers to a genetically and phenotypically heterogeneous group of conditions characterized by inherited developmental enamel defects. The hereditary dentin disorders comprise a variety of autosomal-dominant genetic symptoms characterized by abnormal dentin structure affecting either the primary or both the primary and secondary teeth. The vital role of Ambn in amelogenesis has been confirmed experimentally using mouse models. Only two cases have been reported of mutations of AMBN associated with non-syndromic human AI. However, no AMBN missense mutations have been reported to be associated with both human AI and dentin disorders. We recruited one kindred with autosomal-dominant amelogenesis imperfecta (ADAI) and dentinogenesis imperfecta/dysplasia characterized by generalized severe enamel and dentin defects. Whole exome sequencing of the proband identified a novel heterozygous C-T point mutation at nucleotide position 1069 of the AMBN gene, causing a Pro to Ser mutation at the conserved amino acid position 357 of the protein. Exfoliated third molar teeth from the affected family members were found to have enamel and dentin of lower mineral density than control teeth, with thinner and easily fractured enamel, short and thick roots, and pulp obliteration. This study demonstrates, for the first time, that an AMBN missense mutation causes non-syndromic human AI and dentin disorders. A mutation on a gene involved in healthy tooth development may cause both enamel and dentin disorders. The ameloblastin enamel protein, and its associated gene, AMBN, play vital roles in enamel formation and tooth remodelling. Mutations on AMBN can cause amelogenesis imperfecta (AI), a genetic and hereditory condition resulting in enamel defects and severe tooth decay. Now, Fu Xiong and Bu-Ling Wu at Southern Medical University in Guangzhou, China, and co-workers have identified an AMBN mutation found in both enamel and dentin defect disorders. The researchers analyzed extracted teeth from a Chinese patient with both AI and a severe dentin disorder, along with teeth from affected and non-affected members of the same family, and compared the results with a control group. They identified a rare mutation on AMBN common to all affected individuals.
Collapse
Affiliation(s)
- Ting Lu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.,Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiyi Li
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Biological Chip, Guangzhou, Guangdong, China
| | - Jun Xiong
- Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Huang
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuelian Zhang
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Aiqin Hu
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Peng
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Decheng Cai
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Key Laboratory of Biological Chip, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Ameloblastin and enamelin prevent osteoclast formation by suppressing RANKL expression via MAPK signaling pathway. Biochem Biophys Res Commun 2017; 485:621-626. [PMID: 28161637 DOI: 10.1016/j.bbrc.2017.01.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/31/2017] [Indexed: 11/23/2022]
Abstract
Ameloblastin (Ambn) and enamelin (Enam) play a pivotal role in enamel mineralization. Previous studies have demonstrated that these enamel-related gene products also affect bone growth and remodeling; however, the underlying mechanisms have not been elucidated. In the present study, we examined the effects of Ambn and Enam on the receptor activator of nuclear factor kappa-B ligand (RANKL) expression induced with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and dexamethasone (DEX) on mouse bone marrow stromal cell line ST2 cells. We then verified the effect of Ambn and Enam on osteoclastogenesis. We found that pretreatment with recombinant human Ambn (rhAmbn) and recombinant human Enam (rhEnam) remarkably suppressed RANKL mRNA and protein expression induced with 1,25(OH)2D3 and DEX. Interestingly, rhAmbn and rhEnam attenuated the phosphorylation of mitogen-activated protein kinases (MAPK), including ERK1/2, JNK, and p38 in ST2 cells stimulated with 1,25(OH)2D3 and DEX. Moreover, pretreatment with specific inhibitors of ERK1/2 and p38, but not JNK, blocked RANKL mRNA and protein expression. Cell co-culture results showed that rhAmbn and rhEnam downregulated mouse bone marrow cell differentiation into osteoclasts induced with 1,25(OH)2D3 and DEX-stimulated ST2 cells. These results suggest that Ambn and Enam may indirectly suppress RANKL-induced osteoclastogenesis via downregulation of p38 and ERK1/2 MAPK signaling pathways in bone marrow stromal cells.
Collapse
|
5
|
Lu X, Fukumoto S, Yamada Y, Evans CA, Diekwisch TG, Luan X. Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization. J Bone Miner Res 2016; 31:1235-46. [PMID: 26766111 DOI: 10.1002/jbmr.2788] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 11/07/2022]
Abstract
Matrix molecules such as the enamel-related calcium-binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN-deficient mice (AMBN(Δ5-6) ) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis-related growth factors, such as insulin-like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN-deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN-deficient BMSCs. Confirming the effects of AMBN on long bone growth, back-crossing of mutant mice with full-length AMBN overexpressors resulted in a complete rescue of AMBN(Δ5-6) bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis-related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the skeletogenesis of adolescent tooth-bearing vertebrates. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xuanyu Lu
- Department of Oral Biology, Brodie Laboratory for Craniofacial Genetics, University of Illinois College of Dentistry, Chicago, IL, USA
| | - Satoshi Fukumoto
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Yoshihiko Yamada
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Carla A Evans
- Department of Orthodontics, Brodie Laboratory for Craniofacial Genetics, University of Illinois College of Dentistry, Chicago, IL, USA
| | - Thomas Gh Diekwisch
- Department of Oral Biology, Brodie Laboratory for Craniofacial Genetics, University of Illinois College of Dentistry, Chicago, IL, USA
| | - Xianghong Luan
- Department of Oral Biology, Brodie Laboratory for Craniofacial Genetics, University of Illinois College of Dentistry, Chicago, IL, USA.,Department of Orthodontics, Brodie Laboratory for Craniofacial Genetics, University of Illinois College of Dentistry, Chicago, IL, USA
| |
Collapse
|
6
|
Cifuentes-Mendiola S, Pérez-Martínez I, Muñoz-Saavedra Á, Torres-Contreras J, García-Hernández A. Clinical applications of molecular basis for Craniosynostosis. A narrative review. JOURNAL OF ORAL RESEARCH 2016. [DOI: 10.17126/joralres.2016.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
7
|
The ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing. Matrix Biol 2016; 52-54:113-126. [PMID: 26899203 DOI: 10.1016/j.matbio.2016.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) provides structural support, cell migration anchorage, cell differentiation cues, and fine-tuned cell proliferation signals during all stages of bone fracture healing, including cartilaginous callus formation, callus remodeling, and bony bridging of the fracture gap. In the present study we have defined the role of the extracellular matrix protein ameloblastin (AMBN) in fracture resistance and fracture healing of mouse long bones. To this end, long bones from WT and AMBN(Δ5-6) truncation model mice were subjected to biomechanical analysis, fracture healing assays, and stem cell colony formation comparisons. The effect of exogenous AMBN addition to fracture sites was also determined. Our data indicate that lack of a functional AMBN in the bone matrix resulted in 31% decreased femur bone mass and 40% reduced energy to failure. On a cellular level, AMBN function inhibition diminished the proliferative capacity of fracture repair callus cells, as evidenced by a 58% reduction in PCNA and a 40% reduction in Cyclin D1 gene expression, as well as PCNA immunohistochemistry. In terms of fracture healing, AMBN truncation was associated with an enhanced and prolonged chondrogenic phase, resulting in delayed mineralized tissue gene expression and delayed ossification of the fracture repair callus. Underscoring a role of AMBN in fracture healing, there was a 6.9-fold increase in AMBN expression at the fracture site one week after fracture, and distinct AMBN immunolabeling in the fracture gap. Finally, application of exogenous AMBN protein to bone fracture sites accelerated callus formation and bone fracture healing (33% increase in bone volume and 19% increase in bone mineral density), validating the findings of our AMBN loss of function studies. Together, these data demonstrate the functional importance of the AMBN extracellular matrix protein in bone fracture prevention and rapid fracture healing.
Collapse
|
8
|
Zhou X, Luan X, Chen Z, Francis M, Gopinathan G, Li W, Lu X, Li S, Wu C, Diekwisch TGH. MicroRNA-138 Inhibits Periodontal Progenitor Differentiation under Inflammatory Conditions. J Dent Res 2015; 95:230-7. [PMID: 26518300 DOI: 10.1177/0022034515613043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammatory conditions as they occur during periodontal disease often result in decreased alveolar bone levels and a loss of connective tissue homeostasis. Here we have focused on the effect of microRNA-138 (miR-138) as a potential regulator of periodontal stem cells as they affect homeostasis during inflammatory conditions. Our data indicate that miR-138 was significantly upregulated in our periodontal disease animal model. Interaction of miR-138 with a predicted targeting site on the osteocalcin (OC) promoter resulted in a 3.7-fold reduction of luciferase activity in promoter assays compared with controls; and miR-138 overexpression in periodontal progenitors significantly inhibited OC (3.4-fold), Runx2 (2.8-fold), and collagen I (2.6-fold). Moreover, treatment with inflammatory modulators such as interleukin (IL)-6 and lipopolysaccharide (LPS) resulted in a significant 2.2-fold (IL-6) or 1.9-fold (LPS) increase in miR-138 expression, while OC and Runx2 expression was significantly decreased as a result of treatment with each inflammatory mediator. Further defining the role of miR-138 in the OC-mediated control of mineralization, we demonstrated that the LPS-induced downregulation of OC expression was partially reversed after miR-138 knockdown. LPS, miR-138 mimic, and OC small interfering RNA inhibited osteoblast differentiation marker alkaline phosphatase activity, while miR-138 inhibitor and OC protein addition enhanced alkaline phosphatase activity. Supporting the role of OC as an essential modulator of osteoblast differentiation, knockdown of miR-138 or addition of OC protein partially rescued alkaline phosphatase activity in periodontal ligament (PDL) cells subjected to LPS treatment. Our data establish miR-138 inhibitor as a potential therapeutic agent for the prevention of the bone loss associated with advanced periodontal disease.
Collapse
Affiliation(s)
- X Zhou
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - X Luan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Z Chen
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - M Francis
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - G Gopinathan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - W Li
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - X Lu
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - S Li
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - C Wu
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - T G H Diekwisch
- Department of Periodontics, Baylor College of Dentistry, Dallas, TX, USA
| |
Collapse
|
9
|
Jacques J, Hotton D, Asselin A, De la Dure-Molla M, Coudert AE, Isaac J, Berdal A. Ameloblastin as a putative marker of specific bone compartments. Connect Tissue Res 2014; 55 Suppl 1:117-20. [PMID: 25158194 DOI: 10.3109/03008207.2014.923849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ameloblastin (AMBN), a member of the enamel matrix protein family, has been recently identified as integral part of the skeleton beyond the enamel. However, the specific role of endogenous AMBN in bone tissue is not fully elucidated. This study aims at investigating mRNA expression of AMBN in wild-type mice in different bone sites from early embryonic to adult stages. AMBN mRNA expression started at pre-dental stages in mouse embryos (E10.5) in both head and body parts. Using laser capture microdissection on 3-day-old mice, we showed an unambiguous mRNA expression of AMBN in extra-dental tissue (mandible bone). Screening of AMBN mRNA expression in adult mice (15-week-old) revealed that mRNA expression of AMBN varied according to the bone site; a higher mRNA levels in mandibular and frontal bone compartments were observed when compared to tibia and occipital bones. These results strongly suggest that AMBN expression may be regulated in a site-specific manner and identify AMBN as a putative in vivo marker of the site-specific fingerprint of bone organs.
Collapse
Affiliation(s)
- Jaime Jacques
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5 , Paris , France
| | | | | | | | | | | | | |
Collapse
|
10
|
Jacques J, Hotton D, De la Dure-Molla M, Petit S, Asselin A, Kulkarni AB, Gibson CW, Brookes SJ, Berdal A, Isaac J. Tracking endogenous amelogenin and ameloblastin in vivo. PLoS One 2014; 9:e99626. [PMID: 24933156 PMCID: PMC4059656 DOI: 10.1371/journal.pone.0099626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/16/2014] [Indexed: 01/05/2023] Open
Abstract
Research on enamel matrix proteins (EMPs) is centered on understanding their role in enamel biomineralization and their bioactivity for tissue engineering. While therapeutic application of EMPs has been widely documented, their expression and biological function in non-enamel tissues is unclear. Our first aim was to screen for amelogenin (AMELX) and ameloblastin (AMBN) gene expression in mandibular bones and soft tissues isolated from adult mice (15 weeks old). Using RT-PCR, we showed mRNA expression of AMELX and AMBN in mandibular alveolar and basal bones and, at low levels, in several soft tissues; eyes and ovaries were RNA-positive for AMELX and eyes, tongues and testicles for AMBN. Moreover, in mandibular tissues AMELX and AMBN mRNA levels varied according to two parameters: 1) ontogenic stage (decreasing with age), and 2) tissue-type (e.g. higher level in dental epithelial cells and alveolar bone when compared to basal bone and dental mesenchymal cells in 1 week old mice). In situ hybridization and immunohistodetection were performed in mandibular tissues using AMELX KO mice as controls. We identified AMELX-producing (RNA-positive) cells lining the adjacent alveolar bone and AMBN and AMELX proteins in the microenvironment surrounding EMPs-producing cells. Western blotting of proteins extracted by non-dissociative means revealed that AMELX and AMBN are not exclusive to mineralized matrix; they are present to some degree in a solubilized state in mandibular bone and presumably have some capacity to diffuse. Our data support the notion that AMELX and AMBN may function as growth factor-like molecules solubilized in the aqueous microenvironment. In jaws, they might play some role in bone physiology through autocrine/paracrine pathways, particularly during development and stress-induced remodeling.
Collapse
Affiliation(s)
- Jaime Jacques
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
- UFR d'Odontologie, Paris Diderot University - Paris 7, Paris, France
- Unit of Periodontology, Department of Stomatology, University of Talca, Talca, Chile
| | - Dominique Hotton
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
| | - Muriel De la Dure-Molla
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
- UFR d'Odontologie, Paris Diderot University - Paris 7, Paris, France
- Center of Rare Malformations of the Face and Oral Cavity (MAFACE), Hospital Rothschild, AP-HP, Paris, France
| | - Stephane Petit
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
| | - Audrey Asselin
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Carolyn Winters Gibson
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, United States of America
| | - Steven Joseph Brookes
- Department of Oral Biology, School of Dentistry, University of Leeds, United Kingdom
| | - Ariane Berdal
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
- UFR d'Odontologie, Paris Diderot University - Paris 7, Paris, France
- Center of Rare Malformations of the Face and Oral Cavity (MAFACE), Hospital Rothschild, AP-HP, Paris, France
| | - Juliane Isaac
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team Berdal, Cordeliers Research Center, Pierre and Marie Curie University - Paris 6, Paris Descartes University - Paris 5, Paris, France
- Laboratory of Morphogenesis Molecular Genetics, Department of Developmental and Stem Cells Biology, Institut Pasteur, CNRS URA 2578, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Poulter JA, Murillo G, Brookes SJ, Smith CEL, Parry DA, Silva S, Kirkham J, Inglehearn CF, Mighell AJ. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta. Hum Mol Genet 2014; 23:5317-24. [PMID: 24858907 PMCID: PMC4168819 DOI: 10.1093/hmg/ddu247] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid.
Collapse
Affiliation(s)
- James A Poulter
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | | | | | - Claire E L Smith
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - David A Parry
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Sandra Silva
- Biology, Molecular Cellular Centre (CBCM), University of Costa Rica, San Pedro, Costa Rica
| | | | - Chris F Inglehearn
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Alan J Mighell
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK School of Dentistry, University of Leeds, Leeds LS2 9LU, UK
| |
Collapse
|
12
|
New insights into the functions of enamel matrices in calcified tissues. JAPANESE DENTAL SCIENCE REVIEW 2014. [DOI: 10.1016/j.jdsr.2014.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|