1
|
Zhang CY, Zhang NH. Temperature-dependent ejection evolution arising from active and passive effects in DNA viruses. Biophys J 2024; 123:3317-3330. [PMID: 39091028 PMCID: PMC11480759 DOI: 10.1016/j.bpj.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Recent experiments have demonstrated that the ejection velocity of different species of DNA viruses is temperature dependent, potentially influencing the cellular infection mechanisms of these viruses. However, due to the challenge in quantifying the multiscale characteristics of DNA virus systems, there is currently a lack of systematic theoretical research on the temperature-dependent evolution of ejection dynamics. This work presents a multiscale model to quantitatively explore the temperature-dependent mechanical properties during the virus ejection process, and unveil the underlying mechanisms. Two different assumptions of DNA structures, featuring two or single domains, are used for the early and later stages of ejection, respectively. Temperature is introduced as an influencing variable into the mesoscopic energy model by considering the temperature dependence of Debye length, DNA persistence length, molecular kinetic energy, and other parameters. The results indicate that temperature variations alter the energy landscape associated with DNA structure, leading to the changes in the energy minimum and corresponding DNA structure remaining in the capsid. These changes affect both the active ejection force and passive friction during the DNA ejection, ultimately leading to a significant increase in ejection velocity at higher temperatures. Furthermore, our model supports the previous hypothesis that temperature-induced changes in the size of viral portal pore could dramatically enhance DNA ejection velocity.
Collapse
Affiliation(s)
- Cheng-Yin Zhang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University, Shanghai, China; Department of Engineering Mechanics, Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Neng-Hui Zhang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University, Shanghai, China.
| |
Collapse
|
2
|
Scaling Theory of a Polymer Ejecting from a Cavity into a Semi-Space. Polymers (Basel) 2020; 12:polym12123014. [PMID: 33339450 PMCID: PMC7766115 DOI: 10.3390/polym12123014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
A two-stage model is developed in order to understand the scaling behaviors of single polymers ejecting from a spherical cavity through a nanopore. The dynamics of ejection is derived by balancing the free energy change with the energy dissipation during a process. The ejection velocity is found to vary with the number of monomers in the cavity, m, as mz1/(Nx1D3z1) at the confined stage, and it turns to be m−z2 at the non-confined stage, where N is the chain length and D the cavity diameter. The exponents are shown to be z1=(3ν−1)−1, z2=2ν and x1=1/3, with ν being the Flory exponent. The profile of the velocity is carefully verified by performing Langevin dynamics simulations. The simulations further reveal that, at the starting point, the decreasing of m can be stalled for a good moment. It suggests the existence of a pre-stage that can be explained by using the concept of a classical nucleation theory. By trimming the pre-stage, the ejection time are properly studied by varying N, D, and ϕ0 (the initial volume fraction). The scaling properties of the nucleation time are also analyzed. The results fully support the predictions of the theory. The physical pictures are given for various ejection conditions that cover the entire parameter space.
Collapse
|
3
|
Al-Naamani N, Ali I. Packing of semiflexible polymers into viral capsid in crowded environments. Phys Rev E 2019; 100:052412. [PMID: 31869914 DOI: 10.1103/physreve.100.052412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 11/07/2022]
Abstract
We use coarse-grained Langevin dynamics simulations to study packing of semiflexible polymers into a spherical capsid, with and without a tail, inside a crowded cell. We use neutral and charged, but highly screened, polymers and compare packing rates of the two. Such packing conditions are relevant, for example, to λ DNA packing inside Escherichia coli bacterial cells, where the crowd particles are proteins, bacterial DNA, and salts. For a neutral polymer packing into a capsid with a tail, attractive interactions with the crowd particles make packing slightly harder at higher crowd densities, but repulsive interactions make it easier. Our results indicate that packing into a tailless capsid is less efficient at low crowd densities than into one with a long tail. However, this trend becomes opposite at higher densities. In addition, packing into a capsid with a long tail shows a highly variable waiting time before packing initiates, a feature absent for a tailless capsid. Electrical interactions at physiological conditions do not have much effect. Some bacterial cells, such as Pseudomonas chlororaphis, form a nucleuslike structure encapsulating the phage 201ϕ2-1 DNA. We also study here the packing dynamics with the nucleus present. We find packing is faster compared to the case of no-nucleus packing. We also observe knot formations but these knots untangle quickly while the polymer translocates. This knot formation is independent of polymer charge and presence of crowd particles.
Collapse
Affiliation(s)
- N Al-Naamani
- Department of Physics, College of Science, P.O. Box 36, Sultan Qaboos University, Al-Khod 123, Oman
| | - I Ali
- Department of Physics, College of Science, P.O. Box 36, Sultan Qaboos University, Al-Khod 123, Oman
| |
Collapse
|
4
|
Polson JM, Heckbert DR. Polymer translocation into cavities: Effects of confinement geometry, crowding, and bending rigidity on the free energy. Phys Rev E 2019; 100:012504. [PMID: 31499877 DOI: 10.1103/physreve.100.012504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Monte Carlo simulations are used to study the translocation of a polymer into a cavity. Modeling the polymer as a hard-sphere chain with a length up to N=601 monomers, we use a multiple-histogram method to measure the variation of the conformational free energy of the polymer with respect to the number of translocated monomers. The resulting free-energy functions are then used to obtain the confinement free energy for the translocated portion of the polymer. We characterize the confinement free energy for a flexible polymer in cavities with constant cross-sectional area A for various cavity shapes (cylindrical, rectangular, and triangular) as well as for tapered cavities with pyramidal and conical shape. The scaling of the free energy with cavity volume and translocated polymer subchain length is generally consistent with predictions from simple scaling arguments, with small deviations in the scaling exponents likely due to finite-size effects. The confinement free energy depends strongly on cavity shape anisometry and is a minimum for an isometric cavity shape with a length-to-width ratio of unity. Entropic depletion at the edges or vertices of the confining cavity are evident in the results for constant-A and pyramidal cavities. For translocation into infinitely long cones, the scaling of the free energy with taper angle is consistent with a theoretical prediction employing the blob model. We also examine the effects of polymer bending rigidity on the translocation free energy for cylindrical cavities. For isometric cavities, the observed scaling behavior is in partial agreement with theoretical predictions, with discrepancies arising from finite-size effects that prevent the emergence of well-defined scaling regimes. In addition, translocation into highly anisometric cylindrical cavities leads to a multistage folding process for stiff polymers. Finally, we examine the effects of crowding agents inside the cavity. We find that the confinement free energy increases with crowder density. At constant packing fraction the magnitude of this effect lessens with increasing crowder size for a crowder-to-monomer size ratio ≥1.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - David R Heckbert
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| |
Collapse
|
5
|
Linna RP, Suhonen PM, Piili J. Rigidity-induced scale invariance in polymer ejection from capsid. Phys Rev E 2017; 96:052402. [PMID: 29347730 DOI: 10.1103/physreve.96.052402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Indexed: 06/07/2023]
Abstract
While the dynamics of a fully flexible polymer ejecting a capsid through a nanopore has been extensively studied, the ejection dynamics of semiflexible polymers has not been properly characterized. Here we report results from simulations of ejection dynamics of semiflexible polymers ejecting from spherical capsids. Ejections start from strongly confined polymer conformations of constant initial monomer density. We find that, unlike for fully flexible polymers, for semiflexible polymers the force measured at the pore does not show a direct relation to the instantaneous ejection velocity. The cumulative waiting time t(s), that is, the time at which a monomer s exits the capsid the last time, shows a clear change when increasing the polymer rigidity κ. The major part of an ejecting polymer is driven out of the capsid by internal pressure. At the final stage the polymer escapes the capsid by diffusion. For the driven part there is a crossover from essentially exponential growth of t with s of the fully flexible polymers to a scale-invariant form. In addition, a clear dependence of t on polymer length N_{0} was found. These findings combined give the dependence t(s)∝N_{0}^{0.55}s^{1.33} for the strongly rigid polymers. This crossover in dynamics where κ acts as a control parameter is reminiscent of a phase transition. This analogy is further enhanced by our finding a perfect data collapse of t for polymers of different N_{0} and any constant κ.
Collapse
Affiliation(s)
- R P Linna
- Department of Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland
| | - P M Suhonen
- Department of Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland
| | - J Piili
- Department of Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland
| |
Collapse
|
6
|
Piili J, Suhonen PM, Linna RP. Uniform description of polymer ejection dynamics from capsid with and without hydrodynamics. Phys Rev E 2017; 95:052418. [PMID: 28618585 DOI: 10.1103/physreve.95.052418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 06/07/2023]
Abstract
We use stochastic rotation dynamics (SRD) to examine the dynamics of the ejection of an initially strongly confined flexible polymer from a spherical capsid with and without hydrodynamics. The results obtained using stochastic rotation dynamics (SRD) are compared to similar Langevin simulations. Inclusion of hydrodynamic modes speeds up the ejection but also allows the part of the polymer outside the capsid to expand closer to equilibrium. This shows as higher values of radius of gyration when hydrodynamics are enabled. By examining the waiting times of individual polymer beads, we find that the waiting time t_{w} grows with the number of ejected monomers s as a sum of two exponents. When ≈63% of the polymer has ejected, the ejection enters the regime of slower dynamics. The functional form of t_{w} versus s is universal for all ejection processes starting from the same initial monomer densities. Inclusion of hydrodynamics only reduces its magnitude. Consequently, we define a universal scaling function h such that the cumulative waiting time t=N_{0}h(s/N_{0}) for large N_{0}. Our unprecedentedly precise measurements of force indicate that this form for t_{w}(s) originates from the corresponding force toward the pore decreasing superexponentially at the end of the ejection. Our measured t_{w}(s) explains the apparent superlinear scaling of the ejection time with the polymer length for short polymers. However, for asymptotically long polymers, t_{w}(s) predicts linear scaling.
Collapse
Affiliation(s)
- J Piili
- Department of Computer Science, Aalto University, P. O. Box 15400, FI-00076 Aalto, Finland
| | - P M Suhonen
- Department of Computer Science, Aalto University, P. O. Box 15400, FI-00076 Aalto, Finland
| | - R P Linna
- Department of Computer Science, Aalto University, P. O. Box 15400, FI-00076 Aalto, Finland
| |
Collapse
|
7
|
The Semiflexible Polymer Translocation into Laterally Unbounded Region between Two Parallel Flat Membranes. Polymers (Basel) 2016; 8:polym8090332. [PMID: 30974609 PMCID: PMC6431992 DOI: 10.3390/polym8090332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022] Open
Abstract
Using the dynamic Monte Carlo method, we investigate dynamics of semiflexible polymer translocation through a nanopore into laterally unbounded region between two parallel flat membranes with separation R in presence of an electric field inside the pore. The average translocation time τ initially decreases rapidly with increase of R in the range of R < 10 and then almost keeps constant for R ≥ 10, and the decline range increases with increase of dimensionless bending stiffness κ. We mainly study the effect of chain length N, κ and electric field strength E on the translocation process for R = 5. The translocation dynamics is significantly altered in comparison to an unconfined environment. We find τ ~ Nα, where the exponent α increases with increase of E for small κ. α initially increases slowly with increase of E and then keeps constant for moderate κ. α decreases with increase of E for large κ. However, α decreases with increase of κ under various E. In addition, we find τ ~ κβ. β decreases with increase of N under various E. These behaviors are interpreted in terms of the probability distribution of translocation time and the waiting time of an individual monomer segment passing through the pore during translocation.
Collapse
|
8
|
Polson JM. Polymer translocation into and out of an ellipsoidal cavity. J Chem Phys 2015; 142:174903. [DOI: 10.1063/1.4919642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- James M. Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
9
|
Cao Q, Bachmann M. Dynamics and limitations of spontaneous polyelectrolyte intrusion into a charged nanocavity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:060601. [PMID: 25615036 DOI: 10.1103/physreve.90.060601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 06/04/2023]
Abstract
We systematically investigate the spontaneous packaging mechanism of a single polyelectrolyte chain into an oppositely charged nanocavity by Langevin molecular dynamics simulations of a generic coarse-grained model. Intrusion dynamics and packaging rate, as well as the self-assembly process inside turn out to depend sensitively on the stiffness of the polyelectrolyte, the surface charge density inside the capsid, and the radius of the cavity. Further analysis shows that, depending on the stiffness, thermal fluctuations and charge inversion can be important factors to overcome barriers that slow down the intrusion and packaging dynamics. These results help advance our understanding of the function of charges on the inner surface of viral capsids and the possibility to design capsids as synthetic nanocarriers.
Collapse
Affiliation(s)
- Qianqian Cao
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA and Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA and Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso, Brazil and Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
DE FRUTOS M, LEFORESTIER A, LIVOLANT F. RELATIONSHIP BETWEEN THE GENOME PACKING IN THE BACTERIOPHAGE CAPSID AND THE KINETICS OF DNA EJECTION. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013500069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a general survey of experimental and theoretical observations of DNA structure and in vitro ejection kinetics for different bacteriophage species. In some species, like T5, the ejection may present pauses and arrests that have not been detected in others species like Lambda. We propose hypotheses to explain such differences and we discuss how the experimental conditions may be important for their detection. Our work highlights the role of DNA organization inside the bacteriophage capsid on the stochastic and out of equilibrium nature of the ejection process.
Collapse
Affiliation(s)
- M. DE FRUTOS
- Institut de Biologie et Biochimie Moléculaire et Cellulaire, UMR CNRS 8619, Bât 430, Université Paris Sud, 91405 Orsay cedex, France
| | - A. LEFORESTIER
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, Bât 510, Orsay 91405, France
| | - F. LIVOLANT
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, Bât 510, Orsay 91405, France
| |
Collapse
|