1
|
Chavan A, Isenhart R, Nguyen SC, Kotb NM, Harke J, Sintsova A, Ulukaya G, Uliana F, Ashiono C, Kutay U, Pegoraro G, Rangan P, Joyce EF, Jagannathan M. A nuclear architecture screen in Drosophila identifies Stonewall as a link between chromatin position at the nuclear periphery and germline stem cell fate. Genes Dev 2024; 38:415-435. [PMID: 38866555 PMCID: PMC11216176 DOI: 10.1101/gad.351424.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
The association of genomic loci to the nuclear periphery is proposed to facilitate cell type-specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ∼1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein Stonewall (Stwl) as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.
Collapse
Affiliation(s)
- Ankita Chavan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich 8093, Switzerland
- Bringing Materials to Life Consortium, ETH Zürich, Zürich 8093, Switzerland
- Life Science Zürich Graduate School, Zürich 8057, Switzerland
| | - Randi Isenhart
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Son C Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Noor M Kotb
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jailynn Harke
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Gulay Ulukaya
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich 8093, Switzerland
| | - Caroline Ashiono
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich 8093, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich 8093, Switzerland
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Eric F Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Madhav Jagannathan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich 8093, Switzerland;
- Bringing Materials to Life Consortium, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
2
|
Chavan A, Isenhart R, Nguyen SC, Kotb N, Harke J, Sintsova A, Ulukaya G, Uliana F, Ashiono C, Kutay U, Pegoraro G, Rangan P, Joyce EF, Jagannathan M. A nuclear architecture screen in Drosophila identifies Stonewall as a link between chromatin position at the nuclear periphery and germline stem cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567611. [PMID: 38014085 PMCID: PMC10680830 DOI: 10.1101/2023.11.17.567611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The association of genomic loci to the nuclear periphery is proposed to facilitate cell-type specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ~1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein, Stonewall (Stwl), as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.
Collapse
Affiliation(s)
- Ankita Chavan
- Institute of Biochemistry, Department of Biology, ETH Zürich, Switzerland
- Bringing Materials to Life Consortium, ETH Zürich, Switzerland
- Life Science Zurich Graduate School, Zürich, Switzerland
- These authors contributed equally
| | - Randi Isenhart
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- These authors contributed equally
| | - Son C. Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noor Kotb
- Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jailynn Harke
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zürich, Switzerland
| | - Gulay Ulukaya
- Bioinformatics for Next Generation Sequencing (BiNGS) core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, ETH Zürich, Switzerland
| | - Caroline Ashiono
- Institute of Biochemistry, Department of Biology, ETH Zürich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zürich, Switzerland
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Prashanth Rangan
- Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric F. Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Madhav Jagannathan
- Institute of Biochemistry, Department of Biology, ETH Zürich, Switzerland
- Bringing Materials to Life Consortium, ETH Zürich, Switzerland
| |
Collapse
|
3
|
Melnikova L, Molodina V, Babosha V, Kostyuchenko M, Georgiev P, Golovnin A. The MADF-BESS Protein CP60 Is Recruited to Insulators via CP190 and Has Redundant Functions in Drosophila. Int J Mol Sci 2023; 24:15029. [PMID: 37834476 PMCID: PMC10573801 DOI: 10.3390/ijms241915029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila CP190 and CP60 are transcription factors that are associated with centrosomes during mitosis. CP190 is an essential transcription factor and preferentially binds to housekeeping gene promoters and insulators through interactions with architectural proteins, including Su(Hw) and dCTCF. CP60 belongs to a family of transcription factors that contain the N-terminal MADF domain and the C-terminal BESS domain, which is characterized by the ability to homodimerize. In this study, we show that the conserved CP60 region adjacent to MADF is responsible for interacting with CP190. In contrast to the well-characterized MADF-BESS transcriptional activator Adf-1, CP60 is recruited to most chromatin sites through its interaction with CP190, and the MADF domain is likely involved in protein-protein interactions but not in DNA binding. The deletion of the Map60 gene showed that CP60 is not an essential protein, despite the strong and ubiquitous expression of CP60 at all stages of Drosophila development. Although CP60 is a stable component of the Su(Hw) insulator complex, the inactivation of CP60 does not affect the enhancer-blocking activity of the Su(Hw)-dependent gypsy insulator. Overall, our results indicate that CP60 has an important but redundant function in transcriptional regulation as a partner of the CP190 protein.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Varvara Molodina
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia (P.G.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Margarita Kostyuchenko
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia (P.G.)
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| |
Collapse
|
4
|
Duan T, Rodriguez-Tirado F, Geyer PK. Immunohistochemical Analysis of Nuclear Lamina Structures in the Drosophila Ovary Using CRISPR-Tagged Genes. Methods Mol Biol 2023; 2626:109-134. [PMID: 36715902 DOI: 10.1007/978-1-0716-2970-3_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Drosophila ovary represents an outstanding model for investigating tissue homeostasis. Females continuously produce oocytes throughout their lifetime. However, as females age, fecundity declines, in part, due to changes in ovarian niche function and germline stem cell (GSC) homeostasis. Understanding the dynamics of GSC maintenance will provide needed insights into how coordinated tissue homeostasis is lost during aging. Critical regulators of GSC maintenance are proteins that reside in the nuclear lamina (NL), including the NL proteins emerin and Barrier-to-Autointegration Factor (BAF). Continued investigation of how emerin, BAF, and other NL proteins contribute to GSC function depends upon the availability of antibodies for NL proteins, a limiting resource. In this chapter, we discuss strategies for using clustered regularly interspaced short palindromic repeats (CRISPR) genomic editing to produce endogenously tagged NL genes to circumvent this obstacle, using the generation of the gfp-baf allele as an example. We describe strategies for validation of tagged alleles. Finally, we outline methods for immunohistochemical analysis of resulting tagged-NL proteins.
Collapse
Affiliation(s)
- Tingting Duan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Felipe Rodriguez-Tirado
- Department of Biochemistry and Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Pamela K Geyer
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Zinshteyn D, Barbash DA. Stonewall prevents expression of ectopic genes in the ovary and accumulates at insulator elements in D. melanogaster. PLoS Genet 2022; 18:e1010110. [PMID: 35324887 PMCID: PMC8982855 DOI: 10.1371/journal.pgen.1010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 04/05/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022] Open
Abstract
Germline stem cells (GSCs) are the progenitor cells of the germline for the lifetime of an animal. In Drosophila, these cells reside in a cellular niche that is required for both their maintenance (self-renewal) and differentiation (asymmetric division resulting in a daughter cell that differs from the GSC). The stem cell—daughter cell transition is tightly regulated by a number of processes, including an array of proteins required for genome stability. The germline stem-cell maintenance factor Stonewall (Stwl) associates with heterochromatin, but its molecular function is poorly understood. We performed RNA-Seq on stwl mutant ovaries and found significant derepression of many transposon families but not heterochromatic genes. We also discovered inappropriate expression of multiple classes of genes. Most prominent are testis-enriched genes, including the male germline sex-determination switch Phf7, the differentiation factor bgcn, and a large testis-specific gene cluster on chromosome 2, all of which are upregulated or ectopically expressed in stwl mutant ovaries. Surprisingly, we also found that RNAi knockdown of stwl in somatic S2 cells results in ectopic expression of these testis genes. Using parallel ChIP-Seq and RNA-Seq experiments in S2 cells, we discovered that Stwl localizes upstream of transcription start sites and at heterochromatic sequences including repetitive sequences associated with telomeres. Stwl is also enriched at bgcn, suggesting that it directly regulates this essential differentiation factor. Finally, we identify Stwl binding motifs that are shared with known insulator binding proteins. We propose that Stwl affects gene regulation, including repression of male transcripts in the female germline, by binding insulators and establishing chromatin boundaries. Stem cells are defined by their ability to divide asymmetrically, resulting in a differentiated cell and a stem cell daughter. In fruit flies, sperm and egg production begins with germline stem cells (GSCs). The ability of a GSC to differentiate or self-renew is tightly regulated by a myriad of factors. Some of these are transcription factors, which are responsible for activating or suppressing other genes to promote one state in favor of another. Stonewall is an ovarian nuclear protein required for GSC self-renewal, whose molecular function is poorly understood. Here we show that Stonewall is responsible for preventing the activation of “male” molecular programming in the fruit fly ovary. When Stonewall is absent from the ovary, egg production is terminated and testis-specific genes become highly expressed, including the male transcript of Phf7, which induces male sexual identity in female germ cells. We also show that Stonewall is likely localizing to genomic insulators, which are regions of the genome that shield genes from nearby regulators. Our findings suggest that Stonewall helps to organize the genome in ovarian germ cells and prevent expression of male genes.
Collapse
Affiliation(s)
- Daniel Zinshteyn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Lauria Sneideman MP, Meller VH. Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:1-26. [PMID: 34386870 DOI: 10.1007/978-3-030-74889-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.
Collapse
Affiliation(s)
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
7
|
Vissers JHA, Dent LG, House CM, Kondo S, Harvey KF. Pits and CtBP Control Tissue Growth in Drosophila melanogaster with the Hippo Pathway Transcription Repressor Tgi. Genetics 2020; 215:117-128. [PMID: 32122936 PMCID: PMC7198276 DOI: 10.1534/genetics.120.303147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved signaling network that regulates organ size, cell fate, and tumorigenesis. In the context of organ size control, the pathway incorporates a large variety of cellular cues, such as cell polarity and adhesion, into an integrated transcriptional response. The central Hippo signaling effector is the transcriptional coactivator Yorkie, which controls gene expression in partnership with different transcription factors, most notably Scalloped. When it is not activated by Yorkie, Scalloped can act as a repressor of transcription, at least in part due to its interaction with the corepressor protein Tgi. The mechanism by which Tgi represses transcription is incompletely understood, and therefore we sought to identify proteins that potentially operate together with Tgi. Using an affinity purification and mass-spectrometry approach we identified Pits and CtBP as Tgi-interacting proteins, both of which have been linked to transcriptional repression. Both Pits and CtBP were required for Tgi to suppress the growth of the Drosophila melanogaster eye and CtBP loss suppressed the undergrowth of yorkie mutant eye tissue. Furthermore, as reported previously for Tgi, overexpression of Pits repressed transcription of Hippo pathway target genes. These findings suggest that Tgi might operate together with Pits and CtBP to repress transcription of genes that normally promote tissue growth. The human orthologs of Tgi, CtBP, and Pits (VGLL4, CTBP2, and IRF2BP2) have previously been shown to physically and functionally interact to control transcription, implying that the mechanism by which these proteins control transcriptional repression is conserved throughout evolution.
Collapse
Affiliation(s)
- Joseph H A Vissers
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
| | - Lucas G Dent
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
| | - Colin M House
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| |
Collapse
|
8
|
Protein trap: a new Swiss army knife for geneticists? Mol Biol Rep 2019; 47:1445-1458. [PMID: 31728729 DOI: 10.1007/s11033-019-05181-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
The protein trap is a powerful tool for genetic and biochemical studies of gene function in the animal kingdom. Although the original protein trap was developed for flies, it can be easily adapted to other multicellular organisms, both known models and ones with an unsequenced genome. The protein trap has been successfully applied to the fruit fly, crustaceans Parhyale hawaiensis, zebrafish, and insect and animal cell cultures. This approach is based on the integration into genes of an artificial exon that carries DNA encoding a fluorescent marker, standardized immunoepitopes, an integrase docking site, and splice acceptor and donor sites. The protein trap for cell cultures additionally contains an antibiotic resistance gene, which facilitates the selection of trapped clones. Resulting chimeric tagged mRNAs can be interfered by dsRNA against GFP (iGFPi-in vivo GFP interference), or the chimeric proteins can be efficiently knocked down by deGradFP technology. Both RNA and protein knockdowns produce a strong loss of function phenotype in tagged cells. The fluorescent and protein affinity tags can be used for tagged protein localisation within the cell and for identifying their binding partners in their native complexes. Insertion into protein trap integrase docking sites allows the replacement of trap contents by any new constructs, including other markers, cell toxins, stop-codons, and binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS, that reliably reflect endogenous gene expression. A distinctive feature of the protein trap approach is that all manipulations with a gene or its product occur only in the endogenous locus, which cannot be achieved by any other method.
Collapse
|
9
|
Marcogliese PC, Shashi V, Spillmann RC, Stong N, Rosenfeld JA, Koenig MK, Martínez-Agosto JA, Herzog M, Chen AH, Dickson PI, Lin HJ, Vera MU, Salamon N, Graham JM, Ortiz D, Infante E, Steyaert W, Dermaut B, Poppe B, Chung HL, Zuo Z, Lee PT, Kanca O, Xia F, Yang Y, Smith EC, Jasien J, Kansagra S, Spiridigliozzi G, El-Dairi M, Lark R, Riley K, Koeberl DD, Golden-Grant K, Yamamoto S, Wangler MF, Mirzaa G, Hemelsoet D, Lee B, Nelson SF, Goldstein DB, Bellen HJ, Pena LDM. IRF2BPL Is Associated with Neurological Phenotypes. Am J Hum Genet 2018; 103:245-260. [PMID: 30057031 PMCID: PMC6081494 DOI: 10.1016/j.ajhg.2018.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are affected with neurological symptoms. Five individuals who carry IRF2BPL nonsense variants resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The IRF2BPL bioinformatics signature based on population genomics is consistent with a gene that is intolerant to variation. We show that the fruit-fly IRF2BPL ortholog, called pits (protein interacting with Ttk69 and Sin3A), is broadly detected, including in the nervous system. Complete loss of pits is lethal early in development, whereas partial knockdown with RNA interference in neurons leads to neurodegeneration, revealing a requirement for this gene in proper neuronal function and maintenance. The identified IRF2BPL nonsense variants behave as severe loss-of-function alleles in this model organism, and ectopic expression of the missense variants leads to a range of phenotypes. Taken together, our results show that IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.
Collapse
Affiliation(s)
- Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca C Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary Kay Koenig
- Division of Child & Adolescent Neurology, Department of Pediatrics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Julián A Martínez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Child and Adolescent Psychiatry, Resnick Neuropsychiatric Hospital, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Herzog
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Agnes H Chen
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Patricia I Dickson
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Henry J Lin
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Moin U Vera
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John M Graham
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Damara Ortiz
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Elena Infante
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Wouter Steyaert
- Department of Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Bart Dermaut
- Department of Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Bruce Poppe
- Department of Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Edward C Smith
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joan Jasien
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sujay Kansagra
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gail Spiridigliozzi
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mays El-Dairi
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Lark
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kacie Riley
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katie Golden-Grant
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Dimitri Hemelsoet
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Loren D M Pena
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Stonewall and Brickwall: Two Partially Redundant Determinants Required for the Maintenance of Female Germline in Drosophila. G3-GENES GENOMES GENETICS 2018; 8:2027-2041. [PMID: 29669801 PMCID: PMC5982830 DOI: 10.1534/g3.118.200192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proper specification of germline stem cells (GSCs) in Drosophila ovaries depends on niche derived non-autonomous signaling and cell autonomous components of transcriptional machinery. Stonewall (Stwl), a MADF-BESS family protein, is one of the cell intrinsic transcriptional regulators involved in the establishment and/or maintenance of GSC fate in Drosophila ovaries. Here we report identification and functional characterization of another member of the same protein family, CG3838/ Brickwall (Brwl) with analogous functions. Loss of function alleles of brwl exhibit age dependent progressive degeneration of the developing ovarioles and loss of GSCs. Supporting the conclusion that the structural deterioration of mutant egg chambers is a result of apoptotic cell death, activated caspase levels are considerably elevated in brwl- ovaries. Moreover, as in the case of stwl mutants, on several instances, loss of brwl activity results in fusion of egg chambers and misspecification of the oocyte. Importantly, brwl phenotypes can be partially rescued by germline specific over-expression of stwl arguing for overlapping yet distinct functional capabilities of the two proteins. Taken together with our phylogenetic analysis, these data suggest that brwl and stwl likely share a common MADF-BESS ancestor and they are expressed in overlapping spatiotemporal domains to ensure robust development of the female germline.
Collapse
|
11
|
Matzat LH, Lei EP. Surviving an identity crisis: a revised view of chromatin insulators in the genomics era. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:203-14. [PMID: 24189492 DOI: 10.1016/j.bbagrm.2013.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
The control of complex, developmentally regulated loci and partitioning of the genome into active and silent domains is in part accomplished through the activity of DNA-protein complexes termed chromatin insulators. Together, the multiple, well-studied classes of insulators in Drosophila melanogaster appear to be generally functionally conserved. In this review, we discuss recent genomic-scale experiments and attempt to reconcile these newer findings in the context of previously defined insulator characteristics based on classical genetic analyses and transgenic approaches. Finally, we discuss the emerging understanding of mechanisms of chromatin insulator regulation. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Leah H Matzat
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|