1
|
Liu J, Yang L, Wang X, Wang S, Huang Z, Li C, Liu Y, Cheng Y, Liu C, Wang Z. Embryonic stem cell microenvironment enhances proliferation of human retinal pigment epithelium cells by activating the PI3K signaling pathway. Stem Cell Res Ther 2020; 11:411. [PMID: 32967731 PMCID: PMC7509927 DOI: 10.1186/s13287-020-01923-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Retinal pigment epithelium (RPE) replacement has been proposed as an efficacious treatment for age-related macular degeneration (AMD), which is the primary cause of vision loss in the elderly worldwide. The embryonic stem cell (ESC) microenvironment has been demonstrated to enable mature cells to gain a powerful proliferative ability and even enhance the stem/progenitor phenotype via activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As the PI3K signaling pathway plays a pivotal role in proliferation and homeostasis of RPE, we hypothesize that the stemness and proliferative capability of RPE can be enhanced by the ESC microenvironment via activation of the PI3K signaling pathway. METHODS To investigate whether the ESC microenvironment improves the stem cell phenotype and proliferation properties of human RPE (hRPE) cells by regulating the PI3K signaling pathway, primary hRPE cells were cocultured with either ESCs or human corneal epithelial cells (CECs) for 72 h, after which their proliferation, apoptosis, cell cycle progression, and colony formation were assayed to evaluate changes in their biological characteristics. Gene expression was detected by real-time PCR and protein levels were determined by western blotting or immunofluorescence. LY294002, an antagonist of the PI3K signaling pathway, was used to further confirm the mechanism involved. RESULTS In comparison to hRPE cells cultured alone, hRPE cells cocultured with ESCs had an increased proliferative capacity, reduced apoptotic rate, and higher colony-forming efficiency. The expression of the stem cell-associated marker KLF4 and the differentiation marker CRALBP increased and decreased, respectively, in hRPE cells isolated from the ESC coculture. Furthermore, PI3K pathway-related genes were significantly upregulated in hRPE cells after exposure to ESCs. LY294002 reversed the pro-proliferative effect of ESCs on hRPE cells. In contrast, CECs did not share the ability of ESCs to influence the biological behavior and gene expression of hRPE cells. CONCLUSIONS Our findings indicate that the ESC microenvironment enhances stemness and proliferation of hRPE cells, partially via activation of the PI3K signaling pathway. This study may have a significant impact and clinical implication on cell therapy in regenerative medicine, specifically for age-related macular degeneration.
Collapse
Affiliation(s)
- Jiahui Liu
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shoubi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zheqian Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Chengxiu Liu
- Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Pluripotent Stem Cells and Other Innovative Strategies for the Treatment of Ocular Surface Diseases. Stem Cell Rev Rep 2017; 12:171-8. [PMID: 26779895 DOI: 10.1007/s12015-016-9643-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cornea provides two thirds of the refractive power of the eye and protection against insults such as infection and injury. The outermost tissue of the cornea is renewed by stem cells located in the limbus. Depletion or destruction of these stem cells may lead to blinding limbal stem cell deficiency (LSCD) that concerns millions of patients around the world. Innovative strategies based on adult stem cell therapies have been developed in the recent years but they are still facing numerous unresolved issues, and the long term results can be deceiving. Today there is a clear need to improve these therapies, and/or to develop new approaches for the treatment of LSCD. Here, we review the current cell-based therapies used for the treatment of ocular diseases, and discuss the potential of pluripotent stem cells (embryonic and induced pluripotent stem cells) in corneal repair. As the secretion of paracrine factors is known to have a crucial role in maintaining stem cell homeostasis and in wound repair, we also consider the therapeutic potential of a promising novel pathway, the exosomes. Exosomes are nano-sized vesicles that have the ability to transfer RNAs and proteins to recipient cells, and several studies demonstrated their role in cell protection and wound healing. Exosomes could circumvent the hurdles of stem-cell based approaches, and they could become a strong candidate as an alternative therapy for ocular surface diseases.
Collapse
|
3
|
Liu Z, Zhan W, Zeng M, Chen J, Zou H, Min Z. Enhanced functional properties of human limbal stem cells by inhibition of the miR-31/FIH-1/P21 axis. Acta Ophthalmol 2017. [PMID: 28650568 DOI: 10.1111/aos.13503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE On the basis of the functional roles of the embryonic stem cell niche (ESCN) in the human limbal stem cells (LSCs), we proposed to explore the potential roles of microRNAs in regulating the self-renewal and differentiation of LSCs cultured in the ESCN. METHODS The LSCs were cultured in different media, either in CnT-20 media or in CnT-20 + 20% ES culture supernatant (ESC-CM). The LSCs cultured in ESC-CM were then transfected with microRNA-31 (miR-31) mimic or antago-31. The colony-forming efficiency (CFE) was analysed. Cell cycle, apoptosis, mitochondrial potential and reactive oxygen species were analysed by flow cytometry, and quantitative real-time PCR was used to determine the expression levels of FIH-1, P21, P63, ABCG2, CK3, microRNA-31, microRNA-143, microRNA-145 and microRNA-184. Indirect immunostaining was employed to detect the expression of P63, ABCG2, survivin, connexin-43 and CK3. Western blot was employed to detect the expression of FIH-1, P63, P21, CK3, caspase 3, Tcf4, β-catenin, survivin, GSK3β and pGSK3β. RESULTS Compared with cells grown in CnT-20, the level of miR-31 in cells grown in ESC-CM was lower. We investigated the roles that miR-31 and FIH-1 play in regulating the functional properties of LSCs. We used antagomirs (antago) to reduce the level of miR-31 in LSCs. Antago-31 increased FIH-1 levels and significantly reduced P21 expressional level in LSCs compared to irrelevant-antago (Ir-antago) treatment. The downregulation of miR-31 in LSCs promotes the maintenance of stemness. CONCLUSION ES culture supernatant (ESC-CM) regulates the fate of LSCs in part by inhibiting the miR-31/FIH-1/P21 axis. This study may have a high impact on the expansion of LSCs in regenerative medicine, especially for ocular surface reconstruction.
Collapse
Affiliation(s)
- Zhiping Liu
- The Department of Ophthalmology; The Second Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
| | - Weijiao Zhan
- The Department of Ophthalmology; Linyi People's Hospital; Linyi Shandong China
| | - Minzhi Zeng
- The Department of Ophthalmology; The Second Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
| | - Jinghong Chen
- The Department of Hematology; The Second Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
| | - Huyong Zou
- The Department of Ophthalmology; The Second Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
| | - Zhiqun Min
- Molecular Biology Laboratory; The Second Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
| |
Collapse
|
4
|
Teichroeb JH, Kim J, Betts DH. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biol 2016; 13:707-19. [PMID: 26786236 DOI: 10.1080/15476286.2015.1134413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation.
Collapse
Affiliation(s)
- Jonathan H Teichroeb
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Joohwan Kim
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Dean H Betts
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada.,b Children's Health Research Institute, Lawson Health Research Institute , London , Ontario , Canada
| |
Collapse
|
5
|
Zhou Q, Liu Z, Wu Z, Wang X, Wang B, Li C, Liu Y, Li L, Wan P, Huang Z, Wang Z. Reconstruction of Highly Proliferative Auto-Tissue-Engineered Lamellar Cornea Enhanced by Embryonic Stem Cell. Tissue Eng Part C Methods 2015; 21:639-48. [DOI: 10.1089/ten.tec.2014.0481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Qiang Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liangliang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Pengxia Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zheqian Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Wan PX, Wang BW, Wang ZC. Importance of the stem cell microenvironment for ophthalmological cell-based therapy. World J Stem Cells 2015; 7:448-460. [PMID: 25815128 PMCID: PMC4369500 DOI: 10.4252/wjsc.v7.i2.448] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/17/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Cell therapy is a promising treatment for diseases that are caused by cell degeneration or death. The cells for clinical transplantation are usually obtained by culturing healthy allogeneic or exogenous tissue in vitro. However, for diseases of the eye, obtaining the adequate number of cells for clinical transplantation is difficult due to the small size of tissue donors and the frequent needs of long-term amplification of cells in vitro, which results in low cell viability after transplantation. In addition, the transplanted cells often develop fibrosis or degrade and have very low survival. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS) are also promising candidates for cell therapy. Unfortunately, the differentiation of ESCs can bring immune rejection, tumorigenicity and undesired differentiated cells, limiting its clinical application. Although iPS cells can avoid the risk of immune rejection caused by ES cell differentiation post-transplantation, the low conversion rate, the risk of tumor formation and the potentially unpredictable biological changes that could occur through genetic manipulation hinder its clinical application. Thus, the desired clinical effect of cell therapy is impaired by these factors. Recent research findings recognize that the reason for low survival of the implanted cells not only depends on the seeded cells, but also on the cell microenvironment, which determines the cell survival, proliferation and even reverse differentiation. When used for cell therapy, the transplanted cells need a specific three-dimensional structure to anchor and specific extra cellular matrix components in addition to relevant cytokine signaling to transfer the required information to support their growth. These structures present in the matrix in which the stem cells reside are known as the stem cell microenvironment. The microenvironment interaction with the stem cells provides the necessary homeostasis for cell maintenance and growth. A large number of studies suggest that to explore how to reconstruct the stem cell microenvironment and strengthen its combination with the transplanted cells are key steps to successful cell therapy. In this review, we will describe the interactions of the stem cell microenvironment with the stem cells, discuss the importance of the stem cell microenvironment for cell-based therapy in ocular diseases, and introduce the progress of stem cell-based therapy for ocular diseases.
Collapse
|
7
|
Hsu CC, Peng CH, Hung KH, Lee YY, Lin TC, Jang SF, Liu JH, Chen YT, Woung LC, Wang CY, Tsa CY, Chiou SH, Chen SJ, Chang YL. Stem Cell Therapy for Corneal Regeneration Medicine and Contemporary Nanomedicine for Corneal Disorders. Cell Transplant 2014; 24:1915-30. [PMID: 25506885 DOI: 10.3727/096368914x685744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ocular surface is the outermost part of the visual system that faces many extrinsic or intrinsic threats, such as chemical burn, infectious pathogens, thermal injury, Stevens-Johnson syndrome, ocular pemphegoid, and other autoimmune diseases. The cornea plays an important role in conducting light into the eyes and protecting intraocular structures. Several ocular surface diseases will lead to the neovascularization or conjunctivalization of corneal epithelium, leaving opacified optical media. It is believed that some corneal limbal cells may present stem cell-like properties and are capable of regenerating corneal epithelium. Therefore, cultivation of limbal cells and reconstruction of the ocular surface with these limbal cell grafts have attracted tremendous interest in the past few years. Currently, stem cells are found to potentiate regenerative medicine by their capability of differentiation into multiple lineage cells. Among these, the most common cell sources for clinical use are embryonic, adult, and induced stem cells. Different stem cells have varied specific advantages and limitations for in vivo and in vitro expansion. Other than ocular surface diseases, culture and transplantation of corneal endothelial cells is another major issue for corneal decompensation and awaits further studies to find out comprehensive solutions dealing with nonregenerative corneal endothelium. Recently, studies of in vitro endothelium culture and ρ-associated kinase (ROCK) inhibitor have gained encouraging results. Some clinical trials have already been finished and achieved remarkable vision recovery. Finally, nanotechnology has shown great improvement in ocular drug delivery systems during the past two decades. Strategies to reconstruct the ocular surface could combine with nanoparticles to facilitate wound healing, drug delivery, and even neovascularization inhibition. In this review article, we summarized the major advances of corneal limbal stem cells, limbal stem cell deficiency, corneal endothelial cell culture/transplantation, and application of nanotechnology on ocular surface reconstruction. We also illustrated potential applications of current knowledge for the future treatment of ocular surface diseases.
Collapse
Affiliation(s)
- Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhou C, Huang Z, Li P, Li W, Liu Y, Li C, Liu Z, Wang X, Wan P, Wang Z. Safety and Efficacy of Embryonic Stem Cell Microenvironment in a Leukemia Mouse Model. Stem Cells Dev 2014; 23:1741-54. [DOI: 10.1089/scd.2013.0585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Chenjing Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zheqian Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Panlong Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Pengxia Wan
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Jeon S, Choi SH, Wolosin JM, Chung SH, Joo CK. Regeneration of the corneal epithelium with conjunctival epithelial equivalents generated in serum- and feeder-cell-free media. Mol Vis 2013; 19:2542-50. [PMID: 24357922 PMCID: PMC3867160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/12/2013] [Indexed: 10/31/2022] Open
Abstract
PURPOSE An alternative autologous tissue for ocular surface reconstruction is a potential treatment for the patients with bilateral limbal stem cell deficiency. For the purpose of regenerative procedures in patients, it is desirable to eliminate the involvement of xenogeneic components, such as nonhuman sera and feeder cells. In the present study, we examined the behavior and phenotypic features of cultured conjunctival epithelial sheets generated in serum- and 3T3-free culture conditions when transplanted into the de-epithelialized limbal corneal surface. METHODS Epithelial cells from normal conjunctiva obtained by neutral protease digestion were expanded by culture in a serum-free low-calcium medium and set in an air-liquid interface culture for 14 days. The resulting multilayered epithelial sheets were grafted onto rabbit ocular surfaces made epithelial-free by alkali treatment. Pre-grafted and post-grafted epithelia were analyzed by electron microscopy and immunohistochemistry. RESULTS At graft time the cultured epithelial sheet consisted of 6-8 layers of properly stratified epithelium that displayed a CK19(+)/MUC5AC(+)/ CK3 (-)/CK12(-) phenotype, consistent with the conjunctival epithelial lineage. Two weeks after xeno-grafting the in vivo epithelium consisted of 5-6 well compacted layers expressing the precursor cell-related protein p63, the proliferation marker Ki67, desmosomes, hemidesmosomes and its integrin (β4), and the corneal specific cytokeratins CK3, and CK12. Conjunctival goblet cell mucin (MUC5AC) was not visible. The engrafted epithelium stained positively for the anti-human nuclei antibody, confirming that the epithelial cells on the rabbit corneas were of human origin. CONCLUSIONS Our results suggest that conjunctival epithelial sheets generated in serum- and 3T3-free culture conditions can acquire the corneal epithelial phenotype when transferred to the in vivo corneal stromal environment.
Collapse
Affiliation(s)
- Sohee Jeon
- Catholic High Performance Cell Therapy Center, The Catholic University of Korea, Seoul, Korea,Department of Medical Life Science, The Catholic University of Korea, Seoul, Korea
| | - Seong Hyun Choi
- Catholic Institute of Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - J. Mario Wolosin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - So-Hyang Chung
- Catholic Institute of Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea,Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Choun-Ki Joo
- Catholic Institute of Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea,Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
10
|
Sha X, Liu Z, Song L, Wang Z, Liang X. Human amniotic epithelial cell niche enhances the functional properties of human corneal endothelial cells via inhibiting P53-survivin-mitochondria axis. Exp Eye Res 2013; 116:36-46. [DOI: 10.1016/j.exer.2013.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/11/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
|