1
|
Coexistence of aberrant hematopoietic and stromal elements in myelodysplastic syndromes. Blood Cells Mol Dis 2017; 66:37-46. [PMID: 28822917 DOI: 10.1016/j.bcmd.2017.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 11/23/2022]
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic disorders related to hematopoietic stem and progenitor cell dysfunction. Several studies have shown the role of the bone marrow microenvironment in regulating hematopoietic stem, and progenitor function and their individual abnormalities have been associated with disease pathogenesis. In this study, we simultaneously evaluated hematopoietic stem cells (HSC), hematopoietic stem progenitor cells (HSPCs) and different stromal elements in a cohort of patients with MDS-refractory cytopenia with multilineage dysplasia (RCMD). Karyotyping of these patients revealed variable chromosomal abnormalities in 73.33% of patients. Long-term HSC and lineage-negative CD34+CD38- cells were reduced while among the HPCs, there was an expansion of common myeloid progenitor and loss of granulocyte-monocyte progenitors. Interestingly, loss of HSCs was accompanied by aberrant frequencies of endothelial (ECs) (CD31+CD45-CD71-) and mesenchymal stem cells (MSCs) (CD31-CD45-71-) and its subsets associated with HSC niche. We further demonstrate down-regulation of HSC maintenance genes such as Cxcl12, VEGF in mesenchymal cells and a parallel upregulation in endothelial cells. Altogether we report for the first time quantitative and qualitative de novo changes in hematopoietic stem and its associated niche in a cohort of MDS-RCMD patients. These findings further reinforce the role of different components of the bone marrow microenvironment in MDS pathogenesis and emphasize the need for comprehensive simultaneous evaluation of all niche elements in such studies.
Collapse
|
2
|
Zheng QQ, Zhao YS, Guo J, Zhao SD, Song LX, Fei CM, Zhang Z, Li X, Chang CK. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome. Leuk Res 2017; 58:55-62. [PMID: 28460338 DOI: 10.1016/j.leukres.2017.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 12/15/2022]
Abstract
Erythroid apoptosis increases significantly in myelodysplastic syndrome (MDS) patients with iron overload, but the underlying mechanism is not fully clear. In this study, we aim to explore the effect of HIF-1a/ROS on erythroid apoptosis in MDS patients with iron overload. We found that iron overload injured cellular functions through up-regulating ROS levels in MDS/AML cells, including inhibited cell viability, increased cell apoptosis and blocked cell cycle at G0/G1 phase. Interestingly, overexpression of hypoxia inducible factor-1a (HIF-1a), which was under-expressed in iron overload models, reduced ROS levels and attenuated cell damage caused by iron overload in MDS/AML cells. And gene knockdown of HIF-1a got the similar results as iron overload in MDS/AML cells. Furthermore, iron overload caused high erythroid apoptosis was closely related with ROS in MDS patients. Importantly, the HIF-1a protein levels of erythrocytes elevated obviously after incubation with desferrioxamine (DFO) from MDS patients with iron overload, accompanied by ROS levels inhibited and erythroid apoptosis reduced. Taken together, our findings determine that the HIF-1a/ROS signaling pathway plays a key role in promoting erythroid apoptosis in MDS patients with iron overload.
Collapse
Affiliation(s)
- Qing-Qing Zheng
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - You-Shan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Si-da Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Cheng-Ming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
3
|
del Rey M, Benito R, Fontanillo C, Campos-Laborie FJ, Janusz K, Velasco-Hernández T, Abáigar M, Hernández M, Cuello R, Borrego D, Martín-Zanca D, De Las Rivas J, Mills KI, Hernández-Rivas JM. Deregulation of genes related to iron and mitochondrial metabolism in refractory anemia with ring sideroblasts. PLoS One 2015; 10:e0126555. [PMID: 25955609 PMCID: PMC4425562 DOI: 10.1371/journal.pone.0126555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/03/2015] [Indexed: 12/02/2022] Open
Abstract
The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified.
Collapse
Affiliation(s)
- Mónica del Rey
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Rocío Benito
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Celia Fontanillo
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Francisco J. Campos-Laborie
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Kamila Janusz
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | | | - María Abáigar
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - María Hernández
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Rebeca Cuello
- Servicio de Hematología, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Daniel Borrego
- Servicio de Hematología, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Dionisio Martín-Zanca
- Instituto de Biología Funcional y Genómica, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Javier De Las Rivas
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Ken I. Mills
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Jesús M. Hernández-Rivas
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|