1
|
Han Z, Wang R, Chi P, Zhang Z, Min L, Jiao H, Ou G, Zhou D, Qin D, Xu C, Gao Z, Qi Q, Li J, Lu Y, Wang X, Chen J, Yu X, Hu H, Li L, Deng D. The subcortical maternal complex modulates the cell cycle during early mammalian embryogenesis via 14-3-3. Nat Commun 2024; 15:8887. [PMID: 39406751 PMCID: PMC11480350 DOI: 10.1038/s41467-024-53277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The subcortical maternal complex (SCMC) is essential for safeguarding female fertility in mammals. Assembled in oocytes, the SCMC maintains the cleavage of early embryos, but the underlying mechanism remains unclear. Here, we report that 14-3-3, a multifunctional protein, is a component of the SCMC. By resolving the structure of the 14-3-3-containing SCMC, we discover that phosphorylation of TLE6 contributes to the recruitment of 14-3-3. Mechanistically, during maternal-to-embryo transition, the SCMC stabilizes 14-3-3 protein and contributes to the proper control of CDC25B, thus ensuring the activation of the maturation-promoting factor and mitotic entry in mouse zygotes. Notably, the SCMC establishes a conserved molecular link with 14-3-3 and CDC25B in human oocytes/embryos. This study discloses the molecular mechanism through which the SCMC regulates the cell cycle in early embryos and elucidates the function of the SCMC in mammalian early embryogenesis.
Collapse
Affiliation(s)
- Zhuo Han
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Pengliang Chi
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zihan Zhang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ling Min
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Guojin Ou
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- Clinical laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dan Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianqian Qi
- Clinical laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jialu Li
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuechao Lu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jing Chen
- Laboratory of Pediatric Surgery, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xingjiang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China.
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China.
| | - Dong Deng
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
- NHC key Laboratory of Chronobiology, Sichuan University, Chengdu, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Anbalagan GK, Agarwal P, Ghosh SK. Evidence of 14-3-3 proteins contributing to kinetochore integrity and chromosome congression during mitosis. J Cell Sci 2024; 137:jcs261928. [PMID: 38988319 PMCID: PMC11698032 DOI: 10.1242/jcs.261928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
The 14-3-3 family of proteins are conserved across eukaryotes and serve myriad important regulatory functions in the cell. Homo- and hetero-dimers of these proteins mainly recognize their ligands via conserved motifs to modulate the localization and functions of those effector ligands. In most of the genetic backgrounds of Saccharomyces cerevisiae, disruption of both 14-3-3 homologs (Bmh1 and Bmh2) are either lethal or cells survive with severe growth defects, including gross chromosomal missegregation and prolonged cell cycle arrest. To elucidate their contributions to chromosome segregation, in this work, we investigated their centromere- and kinetochore-related functions of Bmh1 and Bmh2. Analysis of appropriate deletion mutants shows that Bmh isoforms have cumulative and non-shared isoform-specific contributions in maintaining the proper integrity of the kinetochore ensemble. Consequently, Bmh mutant cells exhibited perturbations in kinetochore-microtubule (KT-MT) dynamics, characterized by kinetochore declustering, mis-localization of kinetochore proteins and Mad2-mediated transient G2/M arrest. These defects also caused an asynchronous chromosome congression in bmh mutants during metaphase. In summary, this report advances the knowledge on contributions of budding yeast 14-3-3 proteins in chromosome segregation by demonstrating their roles in kinetochore integrity and chromosome congression.
Collapse
Affiliation(s)
| | - Prakhar Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, 400 076, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, 400 076, India
| |
Collapse
|
3
|
Zhang Y, Yan M, Yu Y, Wang J, Jiao Y, Zheng M, Zhang S. 14-3-3ε: a protein with complex physiology function but promising therapeutic potential in cancer. Cell Commun Signal 2024; 22:72. [PMID: 38279176 PMCID: PMC10811864 DOI: 10.1186/s12964-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 01/28/2024] Open
Abstract
Over the past decade, the role of the 14-3-3 protein has received increasing interest. Seven subtypes of 14-3-3 proteins exhibit high homology; however, each subtype maintains its specificity. The 14-3-3ε protein is involved in various physiological processes, including signal transduction, cell proliferation, apoptosis, autophagy, cell cycle regulation, repolarization of cardiac action, cardiac development, intracellular electrolyte homeostasis, neurodevelopment, and innate immunity. It also plays a significant role in the development and progression of various diseases, such as cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancer. These immense and various involvements of 14-3-3ε in diverse processes makes it a promising target for drug development. Although extensive research has been conducted on 14-3-3 dimers, studies on 14-3-3 monomers are limited. This review aimed to provide an overview of recent reports on the molecular mechanisms involved in the regulation of binding partners by 14-3-3ε, focusing on issues that could help advance the frontiers of this field. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Man Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jiangping Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuqi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
4
|
Wang C, Qin H, Zhao C, Yang L, Yu T, Zhang Y, Luo X, Qin Q, Liu S. Whole-Genome Re-sequencing and Transcriptome Reveal Oogenesis-Related Genes in Autotetraploid Carassius auratus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:233-241. [PMID: 33675430 DOI: 10.1007/s10126-021-10018-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Oogenesis involves a series of biochemical and physiological transformations and numerous regulated genes. The autotetraploid Carassius auratus (4nRR) originated from whole-genome duplication of Carassius auratus red var. (RCC), which produces diploid eggs through pairing of diploid-like chromosome during female meiosis. To explore the molecular mechanisms underlying oogenesis in 4nRR, we used the Illumina sequencing platform to characterize the ovaries of 4nRR and RCC. Transcriptome and whole-genome re-sequencing were performed to uncover the key genes and potential genetic mutations related to oogenesis. Each sample produced paired-end reads in the range of 66.97 to 98.36 million via Illumina HiSeq™ 2500. After comparing of the transcriptome profiles between the 4nRR and RCC, we uncovered 8562 differentially expressed genes (DEGs). The DEGs were enriched in oogenesis-related processes, including oogenesis, oocyte development, ubiquitin-mediated proteolysis, the signaling pathways of MAPK and calcium, and oocyte meiosis as investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Additionally, whole-genome re-sequencing revealed 34,058,834 SNPs and 6,153,711 InDels, including 6,677,638 non-synonymous variations (SNPs) and 706,210 frame-shift InDels in the 8510 DEGs of 4nRR fish. Subsequently, whole-genome re-sequencing and transcriptomatic analyses revealed the genes that participate in oogenesis associated processes. Specifically, genes involved in ubiquitin-mediated proteolysis (SMURF1, UBE2I), calcium transport (CALM3, CAMK4), and meiosis (MAPK3, GRB2, CPEB1, CCNB2, YWHAE) were related to oogenesis in 4nRR. These findings enrich our understanding of oogenesis in the autopolyploid fish.
Collapse
Affiliation(s)
- Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Tingting Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yuxin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Xiang Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Yu H, Yong W, Gao T, Na M, Zhang Y, Kuguminkiriza IH, Kenechukwu AA, Guo Q, Zhang G, Deng X. Hormesis of low-dose inhibition of pAkt1 (Ser473) followed by a great increase of proline-rich inositol polyphosphate 5-phosphatase (PIPP) level in oocytes. In Vitro Cell Dev Biol Anim 2021; 57:342-349. [PMID: 33537929 DOI: 10.1007/s11626-021-00546-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Hormesis describes a biphasic dose-response relationship generally characterized by a low-dose excitement and a high-dose inhibition. This phenomenon has been observed in the regulation of cell, organ, and organismic level. However, hormesis has not reported in oocytes. In this study, we observed, for the first time, hormetic responses of PIPP levels in oocytes by inhibitor of Akt1 or PKCδ. The expression of PIPP was detected by qPCR, immunofluorescent (IF), and Western Blot (WB). To observe the changes of PIPP levels, we used the inhibitors against pAkt1 (Ser473) or PKCδ, SH-6 or sotrastaurin with low and/or high-dose, treated GV oocytes and cultured for 4 h, respectively. The results showed that PIPP expression was significantly enhanced when oocytes were treated with SH-6 or sotrastaurin 10 μM, but decreased with SH-6 or sotrastaurin 100 μM. We also examined the changes of PIPP levels when GV oocytes were treated with exogenous PtdIns(3,4,5)P3 or LY294002 for 4 h. Our results showed that PIPP level was enhanced much higher under the treatment of 0.1 μM PtdIns(3,4,5)P3 than that of 1 μM PtdIns(3,4,5)P3, which is consistent with the changes of PIPP when oocytes were treated with inhibitors of pAkt1 (Ser473) or PKCδ. In addition, with PIPP siRNA, we detected that down-regulated PIPP may affect distributions of Akt, Cdc25, and pCdc2 (Tyr15). Taken together, these results show that the relationships between PIPP and Akt may follow the principle of hormesis and play a key role during release of diplotene arrest in mouse oocytes.
Collapse
Affiliation(s)
- Hang Yu
- Department of Physics and Biophysics, School of Fundamental Sciences, China Medical University (CMU), Shenyang, 110122, People's Republic of China
| | - Wei Yong
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | - Teng Gao
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | - Man Na
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | - Ye Zhang
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | | | | | - Qingguo Guo
- Department of Biochemistry and Molecular Biology, CMU, Shenyang, China
| | - Guoli Zhang
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, 130122, Jilin, People's Republic of China
| | - Xin Deng
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China.
| |
Collapse
|
6
|
Shen X, Bai X, Luo C, Jiang D, Li X, Zhang X, Tian Y, Huang Y. Quantitative proteomic analysis of chicken serum reveals key proteins affecting follicle development during reproductive phase transitions. Poult Sci 2020; 100:325-333. [PMID: 33357697 PMCID: PMC7772657 DOI: 10.1016/j.psj.2020.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Avian reproductive behavior is regulated through the neuroendocrine system. The transition from laying to brooding is strictly controlled by the hypothalamus-pituitary-gonadal (HPG) axis. Cross talk on the HPG axis relies on the circulatory system, where the dynamics of serum proteins can be observed during different reproductive phases. Some canonical hormones, such as prolactin and luteinizing hormone, play important roles in the transition through reproductive phases. However, little is known at the whole-proteome level. To discover novel serum proteins, we employed isobaric tags for relative and absolute quantification to assay the serum proteome during different reproductive phases in chicken. We identified a total of 1,235 proteins from chicken serum; 239 of these proteins showed differential expression between the laying and brooding stages, including a low concentration of steroid metabolism-related proteins and a high concentration of calcium signaling-related proteins (fold change ≥1.5 or ≤0.66; P < 0.05). Pathway analysis and protein–protein interaction networks predicated the difference in follicle development between the brooding stage and laying stages and were related to the 14-3-3 protein family, which is associated with oocyte meiosis and maturation. Together, these results provided a proteomics foundation for investigating the dynamic changes taking place in the circulatory system during reproductive phase transition, and also uncovered new insights regarding follicle development that underlie the avian reproductive cycle.
Collapse
Affiliation(s)
- Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xue Bai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenlong Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiujin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xumeng Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
7
|
Severance AL, Midic U, Latham KE. Genotypic divergence in mouse oocyte transcriptomes: possible pathways to hybrid vigor impacting fertility and embryogenesis. Physiol Genomics 2019; 52:96-109. [PMID: 31869285 DOI: 10.1152/physiolgenomics.00078.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
What causes hybrid vigor phenotypes in mammalian oocytes and preimplantation embryos? Answering this question should provide new insight into determinants of oocyte and embryo quality and infertility. Hybrid vigor could arise through a variety of mechanisms, many of which must operate through posttranscriptional mechanisms affecting oocyte mRNA accumulation, stability, translation, and degradation. The differential regulation of such mRNAs may impact essential pathways and functions within the oocyte. We conducted in-depth transcriptome comparisons of immature and mature oocytes of C57BL/6J and DBA/2J inbred strains and C57BL/6J × DBA/2J F1 (BDF1) hybrid oocytes with RNA sequencing, combined with novel computational methods of analysis. We observed extensive differences in mRNA expression and regulation between parental inbred strains and between inbred and hybrid genotypes, including mRNAs encoding proposed markers of oocyte quality. Unique BDF1 oocyte characteristics arise through a combination of additive dominance and incomplete dominance features in the transcriptome, with a lesser degree of transgressive mRNA expression. Special features of the BDF1 transcriptome most prominently relate to histone expression, mitochondrial function, and oxidative phosphorylation. The study reveals the major underlying mechanisms that contribute to superior properties of hybrid oocytes in a mouse model.
Collapse
Affiliation(s)
- Ashley L Severance
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Uros Midic
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
8
|
Davis LK. Intelligent Design of 14-3-3 Docking Proteins Utilizing Synthetic Evolution Artificial Intelligence (SYN-AI). ACS OMEGA 2019; 4:18948-18960. [PMID: 31763516 PMCID: PMC6868599 DOI: 10.1021/acsomega.8b03100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/10/2019] [Indexed: 05/13/2023]
Abstract
The ability to write DNA code from scratch will allow for the discovery of new and interesting chemistries as well as allowing the rewiring of cell signal pathways. Herein, we have utilized synthetic evolution artificial intelligence (SYN-AI) to intelligently design a set of 14-3-3 docking genes. SYN-AI engineers synthetic genes utilizing a parental gene as an evolution template. Wherein, evolution is fast-forwarded by transforming template gene sequences to DNA secondary and tertiary codes based upon gene hierarchical structural levels. The DNA secondary code allows identification of genomic building blocks across an orthologous sequence space comprising multiple genomes. Where, the DNA tertiary code allows engineering of supersecondary structures. SYN-AI constructed a library of 10 million genes that was reduced to three structurally functional 14-3-3 docking genes by applying natural selection protocols. Synthetic protein identity was verified utilizing Clustal Omega sequence alignments and Phylogeny.fr phylogenetic analysis. Wherein, we were able to confirm the three-dimensional structure utilizing I-TASSER and protein-ligand interactions utilizing COACH and Cofactor. The conservation of allosteric communications was confirmed utilizing elastic and anisotropic network models. Whereby, we utilized elNemo and ANM2.1 to confirm conservation of the 14-3-3 ζ amphipathic groove. Notably, to the best of our knowledge, we report the first 14-3-3 docking genes to be written from scratch.
Collapse
Affiliation(s)
- Leroy K. Davis
- Prairie
View A&M University, Cooperative Agricultural Research Center (CARC), 700 University Drive, Prairie
View, Texas 77446-0518, United States
- Gene
Evolution Project, LLC, Baton Rouge, Louisiana 70835, United States
| |
Collapse
|
9
|
Liu L, Li H, Labbe B, Wang Y, Mao S, Cao Y, Zhao M, Liu S, Yu H, Deng X. Involvement of CaMKII in regulating the release of diplotene-arrested mouse oocytes by pAkt1 (Ser473). Cell Cycle 2019; 18:2986-2997. [PMID: 31530151 PMCID: PMC6791694 DOI: 10.1080/15384101.2019.1666596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022] Open
Abstract
Calcium (Ca2+)/calmodulin-dependent protein kinase II (CaMKII) had been reported to play a role in the process of fertilization. However, the role of CaMKII in the release of diplotene-arrested oocytes is poorly understood. In this study, we explored the potential effect of CaMKII on Akt1 and the relationship among CaMKII, Akt1 and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) during the meiotic resumption of mouse oocytes. We found that inhibition of CaMKII aggravated diplotene arrest. We detected the expression and distribution of pCaMKII (Thr286), pAkt1 (Ser473), Cdc25B and pCdc2 (Tyr15) when oocytes were treated with KN-93, SH-6, LY294002 or PIP3, respectively. Our data showed that down-regulated CaMKII by KN-93 decreased the levels of pAkt1 (Ser473) and rearranged the distribution of pAkt1 (Ser473). Meanwhile, down-regulated pAkt1 (Ser473) by SH-6 also decreased the levels of pCaMKII (Thr286), Cdc25B and pCdc2 (Tyr15) significantly and rearranged the distributions of pCaMKII (Thr286). Furthermore, our data showed that exogenous PIP3 up-regulated GVBD rates significantly and increased the levels of pCaMKII (Thr286) and pAkt1 (Ser473). On the contrary, down-regulation of PIP3 by LY294002 decreased GVBD rates and the levels of pCaMKII (Thr286) and pAkt1 (Ser473), respectively. Our results showed that Akt1 and CaMKII regulated each other, and PIP3 may be involved in these regulations during the release of mouse oocytes from diplotene arrest.
Collapse
Affiliation(s)
- Lingling Liu
- Central Laboratory of the Fourth Affiliated Hospital, CMU, Shenyang, PR China
- Department of Physiology, China Medical University (CMU), Shenyang, PR China
- Mouse Genome Editing Core, Dept of Laboratory Animal Science, Shanghai Public Health Clincial Center, Fudan University, Shanghai, PR China
| | - Hanwen Li
- Department of Anorectum, the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, PR China
| | - Ben Labbe
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Wang
- Department of Physiology, China Medical University (CMU), Shenyang, PR China
| | - Shitao Mao
- Department of Pneumology, the Fourth Affiliated Hospital, CMU, Shenyang, PR China
| | - Yu Cao
- Department of Physiology, China Medical University (CMU), Shenyang, PR China
| | - Mingjing Zhao
- Department of Pneumology, the Fourth Affiliated Hospital, CMU, Shenyang, PR China
| | - Shuo Liu
- Department of Pneumology, the Fourth Affiliated Hospital, CMU, Shenyang, PR China
| | - Hang Yu
- Department of Biophysics, China Medical University (CMU), Shenyang, China
| | - Xin Deng
- Central Laboratory of the Fourth Affiliated Hospital, CMU, Shenyang, PR China
- Department of Physiology, China Medical University (CMU), Shenyang, PR China
- Department of Pneumology, the Fourth Affiliated Hospital, CMU, Shenyang, PR China
| |
Collapse
|
10
|
Eisa AA, De S, Detwiler A, Gilker E, Ignatious AC, Vijayaraghavan S, Kline D. YWHA (14-3-3) protein isoforms and their interactions with CDC25B phosphatase in mouse oogenesis and oocyte maturation. BMC DEVELOPMENTAL BIOLOGY 2019; 19:20. [PMID: 31640562 PMCID: PMC6805688 DOI: 10.1186/s12861-019-0200-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Background Immature mammalian oocytes are held arrested at prophase I of meiosis by an inhibitory phosphorylation of cyclin-dependent kinase 1 (CDK1). Release from this meiotic arrest and germinal vesicle breakdown is dependent on dephosphorylation of CDK1 by the protein, cell cycle division 25B (CDC25B). Evidence suggests that phosphorylated CDC25B is bound to YWHA (14-3-3) proteins in the cytoplasm of immature oocytes and is thus maintained in an inactive form. The importance of YWHA in meiosis demands additional studies. Results Messenger RNA for multiple isoforms of the YWHA protein family was detected in mouse oocytes and eggs. All seven mammalian YWHA isoforms previously reported to be expressed in mouse oocytes, were found to interact with CDC25B as evidenced by in situ proximity ligation assays. Interaction of YWHAH with CDC25B was indicated by Förster Resonance Energy Transfer (FRET) microscopy. Intracytoplasmic microinjection of oocytes with R18, a known, synthetic, non-isoform-specific, YWHA-blocking peptide promoted germinal vesicle breakdown. This suggests that inhibiting the interactions between YWHA proteins and their binding partners releases the oocyte from meiotic arrest. Microinjection of isoform-specific, translation-blocking morpholino oligonucleotides to knockdown or downregulate YWHA protein synthesis in oocytes suggested a role for a specific YWHA isoform in maintaining the meiotic arrest. More definitively however, and in contrast to the knockdown experiments, oocyte-specific and global deletion of two isoforms of YWHA, YWHAH (14-3-3 eta) or YWHAE (14-3-3 epsilon) indicated that the complete absence of either or both isoforms does not alter oocyte development and release from the meiotic prophase I arrest. Conclusions Multiple isoforms of the YWHA protein are expressed in mouse oocytes and eggs and interact with the cell cycle protein CDC25B, but YWHAH and YWHAE isoforms are not essential for normal mouse oocyte maturation, fertilization and early embryonic development.
Collapse
Affiliation(s)
- Alaa A Eisa
- School of Biomedical Sciences, Kent State University, Kent, OH, 22422, USA
| | - Santanu De
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Ariana Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Eva Gilker
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | | | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
11
|
14-3-3 Proteins: a window for a deeper understanding of fungal metabolism and development. World J Microbiol Biotechnol 2019; 35:24. [PMID: 30666471 DOI: 10.1007/s11274-019-2597-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/14/2019] [Indexed: 01/21/2023]
Abstract
Isoforms of 14-3-3 proteins, similar to their highly conserved homologs in mammals and plants, are both transcriptionally and functionally affected by their extracellular and intracellular environments. These proteins bind to phosphorylated client proteins to modulate their functions in fungi. Since phosphorylation regulates a plethora of different physiological responses in organisms, 14-3-3 proteins play roles in multiple physiological functions, including those controlling metabolisms, cell division, and responses to environmental stimulation. These proteins could also modulate signaling pathways that transduce inputs from the environment and downstream proteins that elicit physiological responses. Increasing evidence supports a prominent role for 14-3-3 proteins in regulating development and metabolism at various levels. In this review, we first provide a brief summary of the molecular structure of 14-3-3 proteins. Second, we discuss the potential roles of 14-3-3 proteins in the regulation of development and metabolism. Third, we review the roles of 14-3-3 proteins in the regulation of their binding partners, including receptors, protein kinases, and some protein kinase substrates. Finally, this review examines recent advances that further elucidate the role of 14-3-3 proteins in signaling transduction in response to environmental stress.
Collapse
|
12
|
Transcriptome profiling of human oocytes experiencing recurrent total fertilization failure. Sci Rep 2018; 8:17890. [PMID: 30559372 PMCID: PMC6297154 DOI: 10.1038/s41598-018-36275-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/16/2018] [Indexed: 11/24/2022] Open
Abstract
There exist some patients who face recurrent total fertilization failure during assisted reproduction treatment, but the pathological mechanism underlying is elusive. Here, by using sc-RNA-seq method, the transcriptome profiles of ten abnormally fertilized zygotes were assessed, including five zygotes from one patient with recurrent Poly-PN zygotes, and five zygotes from a patient with pronuclear fusion failure. Four zygotes with three pronuclear (Tri-PN) were collected from four different patients as controls. After that, we identified 951 and 1697 significantly differentially expressed genes (SDEGs) in Poly-PN and PN arrest zygotes, respectively as compared with the control group. KEGG analyses indicated down regulated genes in the Poly-PN group included oocyte meiosis related genes, such as PPP2R1B, YWHAZ, MAD2L1, SPDYC, SKP1 and CDC27, together with genes associated with RNA processing, such as SF3B1, LOC645691, MAGOHB, PHF5A, PRPF18, DDX5, THOC1 and BAT1. In contrast, down regulated genes in the PN arrest group, included cell cycle genes, such as E2F4, DBF4, YWHAB, SKP2, CDC23, SMC3, CDC25A, CCND3, BUB1B, MDM2, CCNA2 and CDC7, together with homologous recombination related genes, such as NBN, XRCC3, SHFM1, RAD54B and RAD51. Thus, our work provides a better understanding of transcriptome profiles underlying RTFF, although it based on a limited number of patients.
Collapse
|
13
|
Liu L, Li S, Li H, Yu D, Li C, Li G, Cao Y, Feng C, Deng X. Protein kinase Cδ (PKCδ) involved in the regulation of pAkt1 (Ser473) on the release of mouse oocytes from diplotene arrest. Cell Biochem Funct 2018; 36:221-227. [PMID: 29774951 DOI: 10.1002/cbf.3334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/21/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Lingling Liu
- Department of Physiology; Basic Medical Scientific Research College, CMU; Shenyang PR China
- Central Laboratory of the Fourth Affiliated Hospital; China Medical University (CMU); Shenyang PR China
| | - Sen Li
- Department of Neurology; the Fourth Affiliated Hospital, CMU; Shenyang PR China
| | - Hanwen Li
- Department of Anorectum; the Fourth Affiliated Hospital, CMU; Shenyang PR China
| | - Dahai Yu
- IVF Center; Affiliated Shengjing Hospital, CMU; Shenyang PR China
| | - Chunyu Li
- Department of Anorectum; the Fourth Affiliated Hospital, CMU; Shenyang PR China
| | - Gensong Li
- Department of Physiology; Basic Medical Scientific Research College, CMU; Shenyang PR China
| | - Yu Cao
- Department of Physiology; Basic Medical Scientific Research College, CMU; Shenyang PR China
| | - Chen Feng
- Department of Biochemistry and Molecular Biology; CMU; Shenyang PR China
| | - Xin Deng
- Department of Physiology; Basic Medical Scientific Research College, CMU; Shenyang PR China
- Central Laboratory of the Fourth Affiliated Hospital; China Medical University (CMU); Shenyang PR China
| |
Collapse
|
14
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
15
|
Differential abundance and transcription of 14-3-3 proteins during vegetative growth and sexual reproduction in budding yeast. Sci Rep 2018; 8:2145. [PMID: 29391437 PMCID: PMC5794856 DOI: 10.1038/s41598-018-20284-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/16/2018] [Indexed: 12/02/2022] Open
Abstract
14-3-3 is a family of relatively low molecular weight, acidic, dimeric proteins, conserved from yeast to metazoans including humans. Apart from their role in diverse cellular processes, these proteins are also known for their role in several clinical implications. Present proteomic and biochemical comparison showed increased abundance and differential phosphorylation of these proteins in meiotic cells. Double deletion of bmh1−/−bmh2−/− leads to complete absence of sporulation with cells arrested at G1/S phase while further incubation of cells in sporulating media leads to cell death. In silico analysis showed the presence of 14-3-3 interacting motifs in bonafide members of kinetochore complex (KC) and spindle pole body (SPB), while present cell biological data pointed towards the possible role of yeast Bmh1/2 in regulating the behaviour of KC and SPB. We further showed the involvement of 14-3-3 in segregation of genetic material and expression of human 14-3-3β/α was able to complement the function of endogenous 14-3-3 protein even in the complex cellular process like meiosis. Our present data also established haplosufficient nature of BMH1/2. We further showed that proteins synthesized during mitotic growth enter meiotic cells without de novo synthesis except for meiotic-specific proteins required for induction and meiotic progression in Saccharomyces cerevisiae.
Collapse
|
16
|
Quantitative proteomic reveals the dynamic of protein profile during final oocyte maturation in zebrafish. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Kumar R. An account of fungal 14-3-3 proteins. Eur J Cell Biol 2017; 96:206-217. [PMID: 28258766 DOI: 10.1016/j.ejcb.2017.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 01/09/2023] Open
Abstract
14-3-3s are a group of relatively low molecular weight, acidic, dimeric, protein(s) conserved from single-celled yeast to multicellular vertebrates including humans. Despite lacking catalytic activity, these proteins have been shown to be involved in multiple cellular processes. Apart from their role in normal cellular physiology, recently these proteins have been implicated in various medical consequences. In this present review, fungal 14-3-3 protein localization, interactions, transcription, regulation, their role in the diverse cellular process including DNA duplication, cell cycle, protein trafficking or secretion, apoptosis, autophagy, cell viability under stress, gene expression, spindle positioning, role in carbon metabolism have been discussed. In the end, I also highlighted various roles of yeasts 14-3-3 proteins in tabular form. Thus this review with primary emphasis on yeast will help in appreciating the significance of 14-3-3 proteins in cell physiology.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| |
Collapse
|
18
|
Zhang Y, Qian D, Li Z, Huang Y, Wu Q, Ru G, Chen M, Wang B. Oxidative stress-induced DNA damage of mouse zygotes triggers G2/M checkpoint and phosphorylates Cdc25 and Cdc2. Cell Stress Chaperones 2016; 21:687-96. [PMID: 27117522 PMCID: PMC4907999 DOI: 10.1007/s12192-016-0693-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/06/2016] [Accepted: 04/16/2016] [Indexed: 02/05/2023] Open
Abstract
In vitro fertilized (IVF) embryos show both cell cycle and developmental arrest. We previously showed oxidative damage activates the ATM → Chk1 → Cdc25B/Cdc25C cascade to mediate G2/M cell cycle arrest for repair of hydrogen peroxide (H2O2)-induced oxidative damage in sperm. However, the mechanisms underlying the developmental delay of zygotes are unknown. To develop a model of oxidative-damaged zygotes, we treated mouse zygotes with different concentrations of H2O2 (0, 0.01, 0.02, 0.03, 0.04, 0.05 mM), and evaluated in vitro zygote development, BrdU incorporation to detect the duration of S phase. We also examined reactive oxygen species level and used immunofluorescence to detect activation of γH2AX, Cdc2, and Cdc25. Oxidatively damaged zygotes showed a delay in G2/M phase and produced a higher level of ROS. At the same time, γH2AX was detected in oxidatively damaged zygotes as well as phospho-Cdc25B (Ser323), phospho-Cdc25C (Ser216), and phospho-Cdc2 (Tyr15). Our study indicates that oxidative stress-induced DNA damage of mouse zygotes triggers the cell cycle checkpoint, which results in G2/M cell cycle arrest, and that phospho-Cdc25B (Ser323), phospho-Cdc25C (Ser216), and phospho-Cdc2 (Tyr15) participate in activating the G2/M checkpoint.
Collapse
Affiliation(s)
- Yuting Zhang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Diting Qian
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Zhiling Li
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China.
| | - Yue Huang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Que Wu
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Gaizhen Ru
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Man Chen
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Bin Wang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
19
|
LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice. Nat Commun 2015; 6:10116. [PMID: 26626423 PMCID: PMC4686821 DOI: 10.1038/ncomms10116] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022] Open
Abstract
Mammalian oocytes are arrested at prophase I until puberty when hormonal signals induce the resumption of meiosis I and progression to meiosis II. Meiotic progression is controlled by CDK1 activity and is accompanied by dynamic epigenetic changes. Although the signalling pathways regulating CDK1 activity are well defined, the functional significance of epigenetic changes remains largely unknown. Here we show that LSD1, a lysine demethylase, regulates histone H3 lysine 4 di-methylation (H3K4me2) in mouse oocytes and is essential for meiotic progression. Conditional deletion of Lsd1 in growing oocytes results in precocious resumption of meiosis and spindle and chromosomal abnormalities. Consequently, most Lsd1-null oocytes fail to complete meiosis I and undergo apoptosis. Mechanistically, upregulation of CDC25B, a phosphatase that activates CDK1, is responsible for precocious meiotic resumption and also contributes to subsequent spindle and chromosomal defects. Our findings uncover a functional link between LSD1 and the major signalling pathway governing meiotic progression.
Collapse
|
20
|
Nunes C, Silva JV, Silva V, Torgal I, Fardilha M. Signalling pathways involved in oocyte growth, acquisition of competence and activation. HUM FERTIL 2015; 18:149-55. [DOI: 10.3109/14647273.2015.1006692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Zhao X, Feng C, Yu D, Deng X, Wu D, Jin M, Wang E, Wang X, Yu B. Successive recruitment of p-CDC25B-Ser351 and p-cyclin B1-Ser123 to centrosomes contributes to the release of mouse oocytes from prophase I arrest. Dev Dyn 2014; 244:110-21. [PMID: 25349079 DOI: 10.1002/dvdy.24220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The molecular mechanism that controls the activation of Cyclin B1-CDK1 complex has been widely investigated. It is generally believed that CDC25B acts as a "starter phosphatase" of mitosis. In this study, we investigate the sequential regulation of meiotic resumption by CDC25B and Cyclin B1 in mouse oocytes. RESULTS Injection of mRNAs coding for CDC25B-Ser351A and/or Cyclin B1-Ser123A shows a more potent maturation-inhibiting ability than their respective wild type. Co-injection of mRNAs coding for phosphor-mimic CDC25B-Ser351D and Cyclin B1-Ser123D can rescue this prophase I arrest induced by CDC25B-Ser351A or Cyclin B1-Ser123A. In addition, p-CDC25B-Ser351 is co-localized at the microtubule-organizing centers (MTOCs) with Aurora kinase A (AURKA) during maturation and p-Cyclin B1-Ser123 is only captured on MTOCs shortly before germinal vesicle breakdown (GVBD). Depletion of AURKA not only resulted in metaphase I (MI) spindle defects and anaphase I (AI) abnormal chromosomes separation but also prevented the phosphorylation of CDC25B-Ser351 at centrosomes. AURKA depletion induced deficiencies of spindle assembly and progression to MII can be rescued by CDC25B-Ser351D mRNA injection. CONCLUSIONS AURKA induced phosphorylation and recruitment of CDC25B to MTOCs prior to p-Cyclin B1-Ser123, and this sequential regulation is essential for the commitment of the oocytes to resume meiosis.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cui C, Ren X, Liu D, Deng X, Qin X, Zhao X, Wang E, Yu B. 14-3-3 epsilon prevents G2/M transition of fertilized mouse eggs by binding with CDC25B. BMC DEVELOPMENTAL BIOLOGY 2014; 14:33. [PMID: 25059436 PMCID: PMC4222595 DOI: 10.1186/s12861-014-0033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
Abstract
Background The 14-3-3 (YWHA) proteins are highly conserved in higher eukaryotes, participate in various cellular signaling pathways including cell cycle regulation, development and growth. Our previous studies demonstrated that 14-3-3ε (YWHAE) is responsible for maintaining prophase | arrest in mouse oocyte. However, roles of 14-3-3ε in the mitosis of fertilized mouse eggs have remained unclear. Here, we showed that 14-3-3ε interacts and cooperates with CDC25B phosphorylated at Ser321 regulating G2/M transition of mitotic progress of fertilized mouse eggs. Results Disruption of 14-3-3ε expression by RNAi prevented normal G2/M transition by inhibition of MPF activity and leaded to the translocation of CDC25B into the nucleus from the cytoplasm. Overexpression of 14-3-3ε-WT and unphosphorylatable CDC25B mutant (CDC25B-S321A) induced mitotic resumption in dbcAMP-arrested eggs. In addition, we examined endogenous and exogenous distribution of 14-3-3ε and CDC25B. Endogenous 14-3-3ε and CDC25B were co-localized primarily in the cytoplasm at the G1, S, early G2 and M phases whereas CDC25B was found to accumulate in the nucleus at the late G2 phase. Upon coexpression with RFP–14-3-3ε, GFP–CDC25B–WT and GFP–CDC25B–S321A were predominantly cytoplasmic at early G2 phase and then GFP–CDC25B–S321A moved to the nucleus whereas CDC25B-WT signals were observed in the cytoplasm without nucleus accumulation at late G2 phase at presence of dbcAMP. Conclusions Our data indicate that 14-3-3ε is required for the mitotic entry in the fertilized mouse eggs. 14-3-3ε is primarily responsible for sequestering the CDC25B in cytoplasm and 14-3-3ε binding to CDC25B-S321 phosphorylated by PKA induces mitotic arrest at one-cell stage by inactivation of MPF in fertilized mouse eggs.
Collapse
|
23
|
Ju L, Zhang G, Zhang X, Jia Z, Gao X, Jiang Y, Yan C, Duerksen-Hughes PJ, Chen FF, Li H, Zhu X, Yang J. Proteomic analysis of cellular response induced by multi-walled carbon nanotubes exposure in A549 cells. PLoS One 2014; 9:e84974. [PMID: 24454774 PMCID: PMC3891800 DOI: 10.1371/journal.pone.0084974] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/27/2013] [Indexed: 01/09/2023] Open
Abstract
The wide application of multi-walled carbon nanotubes (MWCNT) has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS) of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml) and short time period (24 h), MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Li Ju
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
- Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Guanglin Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
| | - Xing Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Zhenyu Jia
- Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Xiangjing Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
| | - Ying Jiang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
| | - Chunlan Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
| | - Penelope J. Duerksen-Hughes
- Department of Basic Science, Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Fanqing Frank Chen
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Hongjuan Li
- Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Xinqiang Zhu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
- * E-mail: (JY); (XZ)
| | - Jun Yang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
- * E-mail: (JY); (XZ)
| |
Collapse
|