1
|
Xie P. Modeling processive motion of kinesin-13 MCAK and kinesin-14 Cik1-Kar3 molecular motors. Protein Sci 2021; 30:2092-2105. [PMID: 34382258 DOI: 10.1002/pro.4165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022]
Abstract
Kinesin-13 MCAK, which is composed of two identical motor domains, can undergo unbiased one-dimensional diffusion on microtubules. Kinesin-14 Cik1-Kar3, which is composed of a Kar3 motor domain and a Cik1 motor homology domain with no ATPase activity, can move processively toward the minus end of microtubules. Here, we present a model for the diffusion of MCAK homodimer and a model for the processive motion of Cik1-Kar3 heterodimer. Although the two dimeric motors show different domain composition, in the models it is proposed that the two motors use the similar physical mechanism to move processively. With the models, the dynamics of the two dimers is studied analytically. The theoretical results for MCAK reproduce quantitatively the available experimental data about diffusion constant and lifetime of the motor bound to microtubule in different nucleotide states. The theoretical results for Cik1-Kar3 reproduce quantitatively the available experimental data about load dependence of velocity and explain consistently the available experimental data about effects of the exchange and mutation of the motor homology domain on the velocity of the heterodimer. Moreover, predicted results for other aspects of the dynamics of the two dimers are provided.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Molodtsov MI, Mieck C, Dobbelaere J, Dammermann A, Westermann S, Vaziri A. A Force-Induced Directional Switch of a Molecular Motor Enables Parallel Microtubule Bundle Formation. Cell 2016; 167:539-552.e14. [PMID: 27716509 DOI: 10.1016/j.cell.2016.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/25/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022]
Abstract
Microtubule-organizing centers (MTOCs) nucleate microtubules that can grow autonomously in any direction. To generate bundles of parallel microtubules originating from a single MTOC, the growth of multiple microtubules needs to coordinated, but the underlying mechanism is unknown. Here, we show that a conserved two-component system consisting of the plus-end tracker EB1 and the minus-end-directed molecular motor Kinesin-14 is sufficient to promote parallel microtubule growth. The underlying mechanism relies on the ability of Kinesin-14 to guide growing plus ends along existing microtubules. The generality of this finding is supported by yeast, Drosophila, and human EB1/Kinesin-14 pairs. We demonstrate that plus-end guiding involves a directional switch of the motor due to a force applied via a growing microtubule end. The described mechanism can account for the generation of parallel microtubule networks required for a broad range of cellular functions such as spindle assembly or cell polarization.
Collapse
Affiliation(s)
- Maxim I Molodtsov
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Christine Mieck
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Jeroen Dobbelaere
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stefan Westermann
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Department of Molecular Genetics, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Alipasha Vaziri
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; The Rockefeller University, 1230 York Avenue New York, NY 10065, USA.
| |
Collapse
|
3
|
Candida albicans Kinesin Kar3 Depends on a Cik1-Like Regulatory Partner Protein for Its Roles in Mating, Cell Morphogenesis, and Bipolar Spindle Formation. EUKARYOTIC CELL 2015; 14:755-74. [PMID: 26024903 DOI: 10.1128/ec.00015-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 02/05/2023]
Abstract
Candida albicans is a major fungal pathogen whose virulence is associated with its ability to transition from a budding yeast form to invasive hyphal filaments. The kinesin-14 family member CaKar3 is required for transition between these morphological states, as well as for mitotic progression and karyogamy. While kinesin-14 proteins are ubiquitous, CaKar3 homologs in hemiascomycete fungi are unique because they form heterodimers with noncatalytic kinesin-like proteins. Thus, CaKar3-based motors may represent a novel antifungal drug target. We have identified and examined the roles of a kinesin-like regulator of CaKar3. We show that orf19.306 (dubbed CaCIK1) encodes a protein that forms a heterodimer with CaKar3, localizes CaKar3 to spindle pole bodies, and can bind microtubules and influence CaKar3 mechanochemistry despite lacking an ATPase activity of its own. Similar to CaKar3 depletion, loss of CaCik1 results in cell cycle arrest, filamentation defects, and an inability to undergo karyogamy. Furthermore, an examination of the spindle structure in cells lacking either of these proteins shows that a large proportion have a monopolar spindle or two dissociated half-spindles, a phenotype unique to the C. albicans kinesin-14 homolog. These findings provide new insights into mitotic spindle structure and kinesin motor function in C. albicans and identify a potentially vulnerable target for antifungal drug development.
Collapse
|
4
|
Hoenger A. High-resolution cryo-electron microscopy on macromolecular complexes and cell organelles. PROTOPLASMA 2014; 251:417-427. [PMID: 24390311 PMCID: PMC3927062 DOI: 10.1007/s00709-013-0600-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Cryo-electron microscopy techniques and computational 3-D reconstruction of macromolecular assemblies are tightly linked tools in modern structural biology. This symbiosis has produced vast amounts of detailed information on the structure and function of biological macromolecules. Typically, one of two fundamentally different strategies is used depending on the specimens and their environment. A: 3-D reconstruction based on repetitive and structurally identical unit cells that allow for averaging, and B: tomographic 3-D reconstructions where tilt-series between approximately ± 60 and ± 70° at small angular increments are collected from highly complex and flexible structures that are beyond averaging procedures, at least during the first round of 3-D reconstruction. Strategies of group A are averaging-based procedures and collect large number of 2-D projections at different angles that are computationally aligned, averaged together, and back-projected in 3-D space to reach a most complete 3-D dataset with high resolution, today often down to atomic detail. Evidently, success relies on structurally repetitive particles and an aligning procedure that unambiguously determines the angular relationship of all 2-D projections with respect to each other. The alignment procedure of small particles may rely on their packing into a regular array such as a 2-D crystal, an icosahedral (viral) particle, or a helical assembly. Critically important for cryo-methods, each particle will only be exposed once to the electron beam, making these procedures optimal for highest-resolution studies where beam-induced damage is a significant concern. In contrast, tomographic 3-D reconstruction procedures (group B) do not rely on averaging, but collect an entire dataset from the very same structure of interest. Data acquisition requires collecting a large series of tilted projections at angular increments of 1-2° or less and a tilt range of ± 60° or more. Accordingly, tomographic data collection exposes its specimens to a large electron dose, which is particularly problematic for frozen-hydrated samples. Currently, cryo-electron tomography is a rapidly emerging technology, on one end driven by the newest developments of hardware such as super-stabile microscopy stages as well as the latest generation of direct electron detectors and cameras. On the other end, success also strongly depends on new software developments on all kinds of fronts such as tilt-series alignment and back-projection procedures that are all adapted to the very low-dose and therefore very noisy primary data. Here, we will review the status quo of cryo-electron microscopy and discuss the future of cellular cryo-electron tomography from data collection to data analysis, CTF-correction of tilt-series, post-tomographic sub-volume averaging, and 3-D particle classification. We will also discuss the pros and cons of plunge freezing of cellular specimens to vitrified sectioning procedures and their suitability for post-tomographic volume averaging despite multiple artifacts that may distort specimens to some degree.
Collapse
Affiliation(s)
- Andreas Hoenger
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA,
| |
Collapse
|
5
|
Joshi M, Duan D, Drew D, Jia Z, Davis D, Campbell RL, Allingham JS. Kar3Vik1 mechanochemistry is inhibited by mutation or deletion of the C terminus of the Vik1 subunit. J Biol Chem 2013; 288:36957-70. [PMID: 24240171 DOI: 10.1074/jbc.m113.492264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Force production by kinesins has been linked to structural rearrangements of the N and C termini of their motor domain upon nucleotide binding. In recent crystal structures, the Kar3-associated protein Vik1 shows unexpected homology to these conformational states even though it lacks a nucleotide-binding site. This conservation infers a degree of commonality in the function of the N- and C-terminal regions during the mechanochemical cycle of all kinesins and kinesin-related proteins. We tested this inference by examining the functional effects on Kar3Vik1 of mutating or deleting residues in Vik1 that are involved in stabilizing the C terminus against the core and N terminus of the Vik1 motor homology domain (MHD). Point mutations at two moderately conserved residues near the Vik1 C terminus impaired microtubule gliding and microtubule-stimulated ATP turnover by Kar3Vik1. Deletion of the seven C-terminal residues inhibited Kar3Vik1 motility much more drastically. Interestingly, none of the point mutants seemed to perturb the ability of Kar3Vik1 to bind microtubules, whereas the C-terminal truncation mutant did. Molecular dynamics simulations of these C-terminal mutants showed distinct root mean square fluctuations in the N-terminal region of the Vik1 MHD that connects it to Kar3. Here, the degree of motion in the N-terminal portion of Vik1 highly correlated with that in the C terminus. These observations suggest that the N and C termini of the Vik1 MHD form a discrete folding motif that is part of a communication pathway to the nucleotide-binding site of Kar3.
Collapse
Affiliation(s)
- Monika Joshi
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Gonzalez MA, Cope J, Rank KC, Chen CJ, Tittmann P, Rayment I, Gilbert SP, Hoenger A. Common mechanistic themes for the powerstroke of kinesin-14 motors. J Struct Biol 2013; 184:335-44. [PMID: 24099757 PMCID: PMC3851574 DOI: 10.1016/j.jsb.2013.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023]
Abstract
Kar3Cik1 is a heterodimeric kinesin-14 from Saccharomyces cerevisiae involved in spindle formation during mitosis and karyogamy in mating cells. Kar3 represents a canonical kinesin motor domain that interacts with microtubules under the control of ATP-hydrolysis. In vivo, the localization and function of Kar3 is differentially regulated by its interacting stoichiometrically with either Cik1 or Vik1, two closely related motor homology domains that lack the nucleotide-binding site. Indeed, Vik1 structurally resembles the core of a kinesin head. Despite being closely related, Kar3Cik1 and Kar3Vik1 are each responsible for a distinct set of functions in vivo and also display different biochemical behavior in vitro. To determine a structural basis for their distinct functional abilities, we used cryo-electron microscopy and helical reconstruction to investigate the 3-D structure of Kar3Cik1 complexed to microtubules in various nucleotide states and compared our 3-D data of Kar3Cik1 with that of Kar3Vik1 and the homodimeric kinesin-14 Ncd from Drosophila melanogaster. Due to the lack of an X-ray crystal structure of the Cik1 motor homology domain, we predicted the structure of this Cik1 domain based on sequence similarity to its relatives Vik1, Kar3 and Ncd. By molecular docking into our 3-D maps, we produced a detailed near-atomic model of Kar3Cik1 complexed to microtubules in two distinct nucleotide states, a nucleotide-free state and an ATP-bound state. Our data show that despite their functional differences, heterodimeric Kar3Cik1 and Kar3Vik1 and homodimeric Ncd, all share striking structural similarities at distinct nucleotide states indicating a common mechanistic theme within the kinesin-14 family.
Collapse
Affiliation(s)
- Miguel A. Gonzalez
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Julia Cope
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Katherine C. Rank
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Chun Ju Chen
- Department of Biology and the Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter Tittmann
- EMEZ, Swiss Federal Institute of Technology, Hoenggerberg, 8093 Zuerich, Switzerland
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Susan P. Gilbert
- Department of Biology and the Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Andreas Hoenger
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| |
Collapse
|