1
|
Moazzeni H, Khani M, Elahi E. Insights into the regulatory molecules involved in glaucoma pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:782-827. [PMID: 32935930 DOI: 10.1002/ajmg.c.31833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Glaucoma is an important cause of irreversible blindness, characterized by optic nerve anomalies. Increased intraocular pressure (IOP) and aging are major risk factors. Retinal ganglion cells and trabecular meshwork cells are certainly involved in the etiology of glaucoma. Glaucoma is usually a complex disease, and various genes and functions may contribute to its etiology. Among these may be genes that encode regulatory molecules. In this review, regulatory molecules including 18 transcription factors (TFs), 195 microRNAs (miRNAs), 106 long noncoding RNAs (lncRNAs), and two circular RNAs (circRNAs) that are reasonable candidates for having roles in glaucoma pathogenesis are described. The targets of the regulators are reported. Glaucoma-related features including apoptosis, stress responses, immune functions, ECM properties, IOP, and eye development are affected by the targeted genes. The targeted genes that are frequently targeted by multiple regulators most often affect apoptosis and the related features of cell death and cell survival. BCL2, CDKN1A, and TP53 are among the frequent targets of three types of glaucoma-relevant regulators, TFs, miRNAs, and lncRNAs. TP53 was itself identified as a glaucoma-relevant TF. Several of the glaucoma-relevant TFs are themselves among frequent targets of regulatory molecules, which is consistent with existence of a complex network involved in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Zhang L, Sun PY, Xie HK, Zhang YH, Zhang YY, Peng XM, Yang Z. Characterization of γ-Radiation-Induced DNA Polymorphisms in the M1 Population of the Japonica Rice Variety Gaogengnuo by Whole-Genome Resequencing. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Moazzeni H, Mirrahimi M, Moghadam A, Banaei-Esfahani A, Yazdani S, Elahi E. Identification of genes involved in glaucoma pathogenesis using combined network analysis and empirical studies. Hum Mol Genet 2019; 28:3637-3663. [PMID: 31518395 DOI: 10.1093/hmg/ddz222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a leading cause of blindness. We aimed in this study to identify genes that may make subtle and cumulative contributions to glaucoma pathogenesis. To this end, we identified molecular interactions and pathways that include transcription factors (TFs) FOXC1, PITX2, PAX6 and NFKB1 and various microRNAs including miR-204 known to have relevance to trabecular meshwork (TM) functions and/or glaucoma. TM tissue is involved in glaucoma pathogenesis. In-house microarray transcriptome results and data sources were used to identify target genes of the regulatory molecules. Bioinformatics analyses were done to filter TM and glaucoma relevant genes. These were submitted to network-creating softwares to define interactions, pathways and a network that would include the genes. The network was stringently scrutinized and minimized, then expanded by addition of microarray data and data on TF and microRNA-binding sites. Selected features of the network were confirmed by empirical studies such as dual luciferase assays, real-time PCR and western blot experiments and apoptosis assays. MYOC, WDR36, LTPBP2, RHOA, CYP1B1, OPA1, SPARC, MEIS2, PLEKHG5, RGS5, BBS5, ALDH1A1, NOMO2, CXCL6, FMNL2, ADAMTS5, CLOCK and DKK1 were among the genes included in the final network. Pathways identified included those that affect ECM properties, IOP, ciliary body functions, retinal ganglion cell viability, apoptosis, focal adhesion and oxidative stress response. The identification of many genes potentially involved in glaucoma pathology is consistent with its being a complex disease. The inclusion of several known glaucoma-related genes validates the approach used.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehraban Mirrahimi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abolfazl Moghadam
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Zhao X, Liu X, Zhang A, Chen H, Huo Q, Li W, Ye R, Chen Z, Liang L, Liu QA, Shen J, Jin X, Li W, Nygaard M, Liu X, Hou Y, Ni T, Bolund L, Gottschalk W, Tao W, Gu J, Tian XL, Yang H, Wang J, Xu X, Lutz MW, Min J, Zeng Y, Nie C. The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. Aging (Albany NY) 2019; 10:1206-1222. [PMID: 29883365 PMCID: PMC6046244 DOI: 10.18632/aging.101461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022]
Abstract
Copy number variations (CNVs) have been shown to cause numerous diseases, however, their roles in human lifespan remain elusive. In this study, we investigate the association of CNVs with longevity by comparing the Han Chinese genomes of long-lived individuals from 90 to 117 years of age and the middle-aged from 30 to 65. Our data demonstrate that the numbers of CNVs, especially deletions, increase significantly in a direct correlation with longevity. We identify eleven CNVs that strongly associate with longevity; four of them locate in the chromosome bands, 7p11.2, 20q13.33, 19p12 and 8p23.3 and overlap partially with the CNVs identified in long-lived Danish or U.S. populations, while the other seven have not been reported previously. These CNV regions encode nineteen known genes, and some of which have been shown to affect aging-related phenotypes such as the shortening of telomere length (ZNF208), the risk of cancer (FOXA1, LAMA5, ZNF716), and vascular and immune-related diseases (ARHGEF10, TOR2A, SH2D3C). In addition, we found several pathways enriched in long-lived genomes, including FOXA1 and FOXA transcription factor networks involved in regulating aging or age-dependent diseases such as cancer. Thus, our study has identified longevity-associated CNV regions and their affected genes and pathways. Our results suggest that the human genome structures such as CNVs might play an important role in determining a long life in human.
Collapse
Affiliation(s)
- Xin Zhao
- BGI Shenzhen, Shenzhen 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.,College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaomin Liu
- BGI Shenzhen, Shenzhen 518083, China.,School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | | | - Huashuai Chen
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham NC 27710, USA.,Center for Healthy Aging and Development Studies, Raissun Institute for Advanced Studies, National School of Development, Peking University, Beijing 10080, China.,Business School of Xiangtan University, Xiangtan 411105, China
| | - Qing Huo
- BGI Shenzhen, Shenzhen 518083, China
| | | | - Rui Ye
- BGI Shenzhen, Shenzhen 518083, China
| | | | | | | | - Juan Shen
- BGI Shenzhen, Shenzhen 518083, China
| | - Xin Jin
- BGI Shenzhen, Shenzhen 518083, China
| | - Wenwen Li
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Marianne Nygaard
- The Danish Aging Research Center, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C 5000, Denmark
| | - Xiao Liu
- BGI Shenzhen, Shenzhen 518083, China
| | - Yong Hou
- BGI Shenzhen, Shenzhen 518083, China
| | - Ting Ni
- State Key Laboratory of Genetics Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lars Bolund
- BGI Shenzhen, Shenzhen 518083, China.,Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - William Gottschalk
- Department of Neurology, Medical Center, Duke University, Durham, NC 27704, USA
| | - Wei Tao
- School of Life Sciences, Peking University, Beijing 100080, China
| | - Jun Gu
- School of Life Sciences, Peking University, Beijing 100080, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Human Aging Research Institute and School of Life Science Nanchang University, Nanchang 330000, China
| | | | - Jian Wang
- BGI Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI Shenzhen, Shenzhen 518083, China
| | - Michael W Lutz
- Department of Neurology, Medical Center, Duke University, Durham, NC 27704, USA
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Zeng
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham NC 27710, USA.,Center for Healthy Aging and Development Studies, Raissun Institute for Advanced Studies, National School of Development, Peking University, Beijing 10080, China
| | - Chao Nie
- BGI Shenzhen, Shenzhen 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| |
Collapse
|
5
|
Aouiche C, Shang X, Chen B. Copy number variation related disease genes. QUANTITATIVE BIOLOGY 2018; 6:99-112. [DOI: 10.1007/s40484-018-0137-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/13/2017] [Accepted: 01/23/2018] [Indexed: 11/25/2022]
Abstract
BackgroundOne of the most important and challenging issues in biomedicine and genomics is how to identify disease related genes. Datasets from high‐throughput biotechnologies have been widely used to overcome this issue from various perspectives, e.g., epigenomics, genomics, transcriptomics, proteomics, metabolomics. At the genomic level, copy number variations (CNVs) have been recognized as critical genetic variations, which contribute significantly to genomic diversity. They have been associated with both common and complex diseases, and thus have a large influence on a variety of Mendelian and somatic genetic disorders.ResultsIn this review, based on a variety of complex diseases, we give an overview about the critical role of using CNVs for identifying disease related genes, and discuss on details the different high‐throughput and sequencing methods applied for CNV detection. Some limitations and challenges concerning CNV are also highlighted.ConclusionsReliable detection of CNVs will not only allow discriminating driver mutations for various diseases, but also helps to develop personalized medicine when integrating it with other genomic features.
Collapse
Affiliation(s)
- Chaima Aouiche
- School of Computer Science Northwestern Polytechnical University Xi'an 710072 China
| | - Xuequn Shang
- School of Computer Science Northwestern Polytechnical University Xi'an 710072 China
| | - Bolin Chen
- School of Computer Science Northwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
6
|
Martín-Aragón S, Jiménez-Aliaga KL, Benedí J, Bermejo-Bescós P. Neurohormetic responses of quercetin and rutin in a cell line over-expressing the amyloid precursor protein (APPswe cells). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1285-1294. [PMID: 27765347 DOI: 10.1016/j.phymed.2016.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Plant secondary metabolites may induce adaptive cellular stress-responses in a variety of cells including neurons at the sub-toxic doses ingested by humans. Such 'neurohormesis' phenomenon, activated by flavonoids such as quercetin or rutin, may involve cell responses driven by modulation of signaling pathways which are responsible for its neuroprotective effects. PURPOSE We attempt to explore the molecular mechanisms involved in the neurohormetic responses to quercetin and rutin exposure, in a SH-SY5Y cell line which stably overexpresses the amyloid precursor protein (APP) Swedish mutation, based on a biphasic concentration-response relationship for cell viability. METHODS We examined the impact of both natural compounds, at concentrations in its hormetic range on the following cell parameters: chymotrypsin-like activity of the proteasome system; PARP-1 protein levels and expression and caspase activation; APP processing; and the main endogenous antioxidant enzymes. RESULTS Proteasome activities following quercetin or rutin treatment were significantly augmented in comparison with non-treated cells. Activity of caspase-3 was significantly attenuated by treatment with quercetin or rutin. Modest increased levels of PARP-1 protein and mRNA transcripts were observed in relation to the mild increase of proteasome activity. Significant reductions of the full-length APP and sAPP protein and APP mRNA levels were related to significant enhancements of α-secretase ADAM-10 protein and mRNA transcripts and significant increases of BACE processing in cells exposed to rutin. Furthermore, quercetin or rutin treatment displayed an overall increase of the four antioxidant enzymes. CONCLUSIONS The upregulation of the proteasome activity observed upon quercetin or rutin treatment could be afforded by a mild increased of PARP-1. Consequently, targeting the proteasome by quercetin or rutin to enhance its activity in a mild manner could avoid caspase activation. Moreover, it is likely that APP processing of cells upon rutin treatment is mostly driven by the non-amyloidogenic pathway leading to a putative reduction of βA production. Overall induction of endogenous antioxidant enzymes under quercetin or rutin treatments of APPswe cells might modulate its proteasome activity. We might conclude that quercetin and rutin might exert a neurohormetic cell response affecting various signaling pathways and molecular networks associated with modulation of proteasome function.
Collapse
Affiliation(s)
- Sagrario Martín-Aragón
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Karim Lizeth Jiménez-Aliaga
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Paloma Bermejo-Bescós
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Fu CY, Liu WG, Liu DL, Li JH, Zhu MS, Liao YL, Liu ZR, Zeng XQ, Wang F. Genome-wide DNA polymorphism in the indica rice varieties RGD-7S and Taifeng B as revealed by whole genome re-sequencing. Genome 2016; 59:197-207. [PMID: 26926666 DOI: 10.1139/gen-2015-0101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Next-generation sequencing technologies provide opportunities to further understand genetic variation, even within closely related cultivars. We performed whole genome resequencing of two elite indica rice varieties, RGD-7S and Taifeng B, whose F1 progeny showed hybrid weakness and hybrid vigor when grown in the early- and late-cropping seasons, respectively. Approximately 150 million 100-bp pair-end reads were generated, which covered ∼86% of the rice (Oryza sativa L. japonica 'Nipponbare') reference genome. A total of 2,758,740 polymorphic sites including 2,408,845 SNPs and 349,895 InDels were detected in RGD-7S and Taifeng B, respectively. Applying stringent parameters, we identified 961,791 SNPs and 46,640 InDels between RGD-7S and Taifeng B (RGD-7S/Taifeng B). The density of DNA polymorphisms was 256.8 SNPs and 12.5 InDels per 100 kb for RGD-7S/Taifeng B. Copy number variations (CNVs) were also investigated. In RGD-7S, 1989 of 2727 CNVs were overlapped in 218 genes, and 1231 of 2010 CNVs were annotated in 175 genes in Taifeng B. In addition, we verified a subset of InDels in the interval of hybrid weakness genes, Hw3 and Hw4, and obtained some polymorphic InDel markers, which will provide a sound foundation for cloning hybrid weakness genes. Analysis of genomic variations will also contribute to understanding the genetic basis of hybrid weakness and heterosis.
Collapse
Affiliation(s)
- Chong-Yun Fu
- a Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China.,b Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, P.R. China
| | - Wu-Ge Liu
- a Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China.,b Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, P.R. China
| | - Di-Lin Liu
- a Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China.,b Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, P.R. China
| | - Ji-Hua Li
- a Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China.,b Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, P.R. China
| | - Man-Shan Zhu
- a Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China.,b Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, P.R. China
| | - Yi-Long Liao
- a Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China.,b Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, P.R. China
| | - Zhen-Rong Liu
- a Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China.,b Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, P.R. China
| | - Xue-Qin Zeng
- a Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China.,b Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, P.R. China
| | - Feng Wang
- a Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China.,b Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, P.R. China
| |
Collapse
|
8
|
Lee BP, Pilling LC, Emond F, Flurkey K, Harrison DE, Yuan R, Peters LL, Kuchel GA, Ferrucci L, Melzer D, Harries LW. Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. Aging Cell 2016; 15:903-13. [PMID: 27363602 PMCID: PMC5013025 DOI: 10.1111/acel.12499] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2016] [Indexed: 12/31/2022] Open
Abstract
Dysregulation of splicing factor expression and altered alternative splicing are associated with aging in humans and other species, and also with replicative senescence in cultured cells. Here, we assess whether expression changes of key splicing regulator genes and consequent effects on alternative splicing are also associated with strain longevity in old and young mice, across 6 different mouse strains with varying lifespan (A/J, NOD.B10Sn-H2(b) /J, PWD.Phj, 129S1/SvlmJ, C57BL/6J and WSB/EiJ). Splicing factor expression and changes to alternative splicing were associated with strain lifespan in spleen and to a lesser extent in muscle. These changes mainly involved hnRNP splicing inhibitor transcripts with most changes more marked in spleens of young animals from long-lived strains. Changes in spleen isoform expression were suggestive of reduced cellular senescence and retained cellular proliferative capacity in long-lived strains. Changes in muscle isoform expression were consistent with reduced pro-inflammatory signalling in longer-lived strains. Two splicing regulators, HNRNPA1 and HNRNPA2B1, were also associated with parental longevity in humans, in the InCHIANTI aging study. Splicing factors may represent a driver, mediator or early marker of lifespan in mouse, as expression differences were present in the young animals of long-lived strains. Changes to alternative splicing patterns of key senescence genes in spleen and key remodelling genes in muscle suggest that correct regulation of alternative splicing may enhance lifespan in mice. Expression of some splicing factors in humans was also associated with parental longevity, suggesting that splicing regulation may also influence lifespan in humans.
Collapse
Affiliation(s)
| | - Luke C. Pilling
- Epidemiology and Public Health; Institute of Biomedical and Clinical Sciences; University of Exeter Medical School; University of Exeter; Devon UK
| | | | - Kevin Flurkey
- The Jackson Laboratory Nathan Shock Centre of Excellence in the Basic Biology of Aging; Bar Harbor ME USA
| | - David E. Harrison
- The Jackson Laboratory Nathan Shock Centre of Excellence in the Basic Biology of Aging; Bar Harbor ME USA
| | - Rong Yuan
- The Jackson Laboratory Nathan Shock Centre of Excellence in the Basic Biology of Aging; Bar Harbor ME USA
| | - Luanne L. Peters
- The Jackson Laboratory Nathan Shock Centre of Excellence in the Basic Biology of Aging; Bar Harbor ME USA
| | - George A. Kuchel
- UConn Centre on Aging; University of Connecticut Health Centre; Farmington CT USA
| | | | - David Melzer
- Epidemiology and Public Health; Institute of Biomedical and Clinical Sciences; University of Exeter Medical School; University of Exeter; Devon UK
- UConn Centre on Aging; University of Connecticut Health Centre; Farmington CT USA
| | | |
Collapse
|
9
|
Nygaard M, Debrabant B, Tan Q, Deelen J, Andersen‐Ranberg K, Craen AJ, Beekman M, Jeune B, Slagboom PE, Christensen K, Christiansen L. Copy number variation associates with mortality in long-lived individuals: a genome-wide assessment. Aging Cell 2016; 15:49-55. [PMID: 26446717 PMCID: PMC4717275 DOI: 10.1111/acel.12407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 11/30/2022] Open
Abstract
Copy number variants (CNVs) represent a significant source of genetic variation in the human genome and have been implicated in numerous diseases and complex traits. To date, only a few studies have investigated the role of CNVs in human lifespan. To investigate the impact of CNVs on prospective mortality at the extreme end of life, where the genetic component of lifespan appears most profound, we analyzed genomewide CNV data in 603 Danish nonagenarians and centenarians (mean age 96.9 years, range 90.0–102.5 years). Replication was performed in 500 long‐lived individuals from the Leiden Longevity Study (mean age 93.2 years, range 88.9–103.4 years). First, we assessed the association between the CNV burden of each individual (the number of CNVs, the average CNV length, and the total CNV length) and mortality and found a significant increase in mortality per 10 kb increase in the average CNV length, both for all CNVs (hazard ratio (HR) = 1.024, P = 0.002) and for duplications (HR = 1.011, P = 0.005), as well as per 100 kb increase in the total length of deletions (HR = 1.009, P = 0.0005). Next, we assessed the relation between specific deletions and duplications and mortality. Although no genome–wide significant associations were discovered, we identified six deletions and one duplication that showed consistent association with mortality in both or either of the sexes across both study populations. These results indicate that the genome–wide CNV burden, specifically the average CNV length and the total CNV length, associates with higher mortality in long‐lived individuals.
Collapse
Affiliation(s)
- Marianne Nygaard
- The Danish Aging Research Center Epidemiology, Biostatistics and Biodemography Department of Public Health University of Southern Denmark J.B. Winsloews Vej 9B, 5000, Odense C Denmark
- Department of Clinical Genetics Odense University Hospital Sdr. Boulevard 29, 5000, Odense C Denmark
| | - Birgit Debrabant
- The Danish Aging Research Center Epidemiology, Biostatistics and Biodemography Department of Public Health University of Southern Denmark J.B. Winsloews Vej 9B, 5000, Odense C Denmark
| | - Qihua Tan
- The Danish Aging Research Center Epidemiology, Biostatistics and Biodemography Department of Public Health University of Southern Denmark J.B. Winsloews Vej 9B, 5000, Odense C Denmark
- Department of Clinical Genetics Odense University Hospital Sdr. Boulevard 29, 5000, Odense C Denmark
| | - Joris Deelen
- Department of Molecular Epidemiology Leiden University Medical Center P.O. Box 9600, 2300 RC Leiden The Netherlands
| | - Karen Andersen‐Ranberg
- The Danish Aging Research Center Epidemiology, Biostatistics and Biodemography Department of Public Health University of Southern Denmark J.B. Winsloews Vej 9B, 5000, Odense C Denmark
| | - Anton J.M. Craen
- Department of Gerontology and Geriatrics Leiden University Medical Center P.O. Box 9600, 2300 RC Leiden The Netherlands
| | - Marian Beekman
- Department of Molecular Epidemiology Leiden University Medical Center P.O. Box 9600, 2300 RC Leiden The Netherlands
| | - Bernard Jeune
- The Danish Aging Research Center Epidemiology, Biostatistics and Biodemography Department of Public Health University of Southern Denmark J.B. Winsloews Vej 9B, 5000, Odense C Denmark
| | - Pieternella E. Slagboom
- Department of Molecular Epidemiology Leiden University Medical Center P.O. Box 9600, 2300 RC Leiden The Netherlands
| | - Kaare Christensen
- The Danish Aging Research Center Epidemiology, Biostatistics and Biodemography Department of Public Health University of Southern Denmark J.B. Winsloews Vej 9B, 5000, Odense C Denmark
- Department of Clinical Genetics Odense University Hospital Sdr. Boulevard 29, 5000, Odense C Denmark
- Department of Clinical Biochemistry and Pharmacology Odense University Hospital Sdr. Boulevard 29, 5000 Odense C Denmark
| | - Lene Christiansen
- The Danish Aging Research Center Epidemiology, Biostatistics and Biodemography Department of Public Health University of Southern Denmark J.B. Winsloews Vej 9B, 5000, Odense C Denmark
| |
Collapse
|
10
|
Dajani R, Li J, Wei Z, Glessner JT, Chang X, Cardinale CJ, Pellegrino R, Wang T, Hakooz N, Khader Y, Sheshani A, Zandaki D, Hakonarson H. CNV Analysis Associates AKNAD1 with Type-2 Diabetes in Jordan Subpopulations. Sci Rep 2015; 5:13391. [PMID: 26292654 PMCID: PMC4543987 DOI: 10.1038/srep13391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022] Open
Abstract
Previous studies have identified a number of single nucleotide polymorphisms (SNPs) associated with type-2 diabetes (T2D), but copy number variation (CNV) association has rarely been addressed, especially in populations from Jordan. To investigate CNV associations for T2D in populations in Jordan, we conducted a CNV analysis based on intensity data from genome-wide SNP array, including 34 T2D cases and 110 healthy controls of Chechen ethnicity, as well as 34 T2D cases and 106 healthy controls of Circassian ethnicity. We found a CNV region in protein tyrosine phosphatase receptor type D (PTPRD) with significant association with T2D. PTPRD has been reported to be associated with T2D in genome-wide association studies (GWAS). We additionally identified 16 CNV regions associated with T2D which overlapped with gene exons. Of particular interest, a CNV region in the gene AKNA Domain Containing 1 (AKNAD1) surpassed the experiment-wide significance threshold. Endoplasmic reticulum (ER)-related pathways were significantly enriched among genes which are predicted to be functionally associated with human or mouse homologues of AKNAD1. This is the first CNV analysis of a complex disease in populations of Jordan. We identified and experimentally validated a significant CNVR in gene AKNAD1 associated with T2D.
Collapse
Affiliation(s)
- Rana Dajani
- Department of Biology and Biotechnology, Hashemite University, Zarqa, Jordan.,Cell Therapy Center, University of Jordan, Amman, Jordan
| | - Jin Li
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Joseph T Glessner
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xiao Chang
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher J Cardinale
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Renata Pellegrino
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tiancheng Wang
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nancy Hakooz
- Department of Biopharmaceutics and Clinical Pharmacy Faculty of Pharmacy-University of Jordan, Amman, Jordan.,Faculty of pharmacy, Zarqa University, Zarqa, Jordan
| | - Yousef Khader
- Department of Community Medicine, Public Health and Family Medicine, Faculty of Medicine, Jordan University for Science and Technology, Irbid, Jordan
| | - Amina Sheshani
- Department of Biology and Biotechnology, Hashemite University, Zarqa, Jordan
| | - Duaa Zandaki
- Department of Biology and Biotechnology, Hashemite University, Zarqa, Jordan
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Connolly JJ, Glessner JT, Almoguera B, Crosslin DR, Jarvik GP, Sleiman PM, Hakonarson H. Copy number variation analysis in the context of electronic medical records and large-scale genomics consortium efforts. Front Genet 2014; 5:51. [PMID: 24672537 PMCID: PMC3957100 DOI: 10.3389/fgene.2014.00051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/18/2014] [Indexed: 12/18/2022] Open
Abstract
The goal of this paper is to review recent research on copy number variations (CNVs) and their association with complex and rare diseases. In the latter part of this paper, we focus on how large biorepositories such as the electronic medical record and genomics (eMERGE) consortium may be best leveraged to systematically mine for potentially pathogenic CNVs, and we end with a discussion of how such variants might be reported back for inclusion in electronic medical records as part of medical history.
Collapse
Affiliation(s)
- John J Connolly
- The Center for Applied Genomics, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Joseph T Glessner
- The Center for Applied Genomics, Children's Hospital of Philadelphia Philadelphia, PA, USA ; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| | - Berta Almoguera
- The Center for Applied Genomics, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - David R Crosslin
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center Seattle, WA, USA
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center Seattle, WA, USA
| | - Patrick M Sleiman
- The Center for Applied Genomics, Children's Hospital of Philadelphia Philadelphia, PA, USA ; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia Philadelphia, PA, USA ; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| |
Collapse
|
12
|
Polymorphisms in the superoxidase dismutase genes reveal no association with human longevity in Germans: a case-control association study. Biogerontology 2013; 14:719-27. [PMID: 24146173 DOI: 10.1007/s10522-013-9470-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/20/2013] [Indexed: 01/10/2023]
Abstract
The role of superoxide dismutases (SODs) in aging and oxidative stress regulation has been widely studied and there is growing evidence that imbalances in these processes influence lifespan in several species. In humans, genetic polymorphisms in SOD genes may play an important role in the development of age-related diseases and genetic variation in SOD2 is thought to be associated with longevity. These observations prompted us to perform a case-control association study using a comprehensive haplotype tagging approach for the three SOD genes (SOD1, SOD2, SOD3) by testing a total of 19 SNPs in our extensive collection of 1,612 long-lived individuals (centenarians and nonagenarians) and 1,104 younger controls. Furthermore, we intended to replicate the previous association of the SOD2 SNP rs4880 with longevity observed in a Danish cohort. In our study, no association was detected between the tested SNPs and the longevity phenotype, neither in the entire long-lived sample set nor in the centenarian subgroup analysis. Our results suggest that there is no considerable influence of sequence variation in the SOD genes on human longevity in Germans.
Collapse
|