1
|
Sydnor VJ, Bagautdinova J, Larsen B, Arcaro MJ, Barch DM, Bassett DS, Alexander-Bloch AF, Cook PA, Covitz S, Franco AR, Gur RE, Gur RC, Mackey AP, Mehta K, Meisler SL, Milham MP, Moore TM, Müller EJ, Roalf DR, Salo T, Schubiner G, Seidlitz J, Shinohara RT, Shine JM, Yeh FC, Cieslak M, Satterthwaite TD. A sensorimotor-association axis of thalamocortical connection development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598749. [PMID: 38915591 PMCID: PMC11195180 DOI: 10.1101/2024.06.13.598749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Human cortical development follows a sensorimotor-to-association sequence during childhood and adolescence1-6. The brain's capacity to enact this sequence over decades indicates that it relies on intrinsic mechanisms to regulate inter-regional differences in the timing of cortical maturation, yet regulators of human developmental chronology are not well understood. Given evidence from animal models that thalamic axons modulate windows of cortical plasticity7-12, here we evaluate the overarching hypothesis that structural connections between the thalamus and cortex help to coordinate cortical maturational heterochronicity during youth. We first introduce, cortically annotate, and anatomically validate a new atlas of human thalamocortical connections using diffusion tractography. By applying this atlas to three independent youth datasets (ages 8-23 years; total N = 2,676), we reproducibly demonstrate that thalamocortical connections develop along a maturational gradient that aligns with the cortex's sensorimotor-association axis. Associative cortical regions with thalamic connections that take longest to mature exhibit protracted expression of neurochemical, structural, and functional markers indicative of higher circuit plasticity as well as heightened environmental sensitivity. This work highlights a central role for the thalamus in the orchestration of hierarchically organized and environmentally sensitive windows of cortical developmental malleability.
Collapse
Affiliation(s)
- Valerie J. Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joëlle Bagautdinova
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Michael J. Arcaro
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University in St Louis, St Louis, Missouri, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Philip A. Cook
- Penn Image Computing and Science Lab (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Covitz
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA
| | - Alexandre R. Franco
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Strategic Data Initiatives, Child Mind Institute, New York, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Raquel E. Gur
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Neurodevelopment and Psychosis Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C. Gur
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allyson P. Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Kahini Mehta
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven L. Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Division of Medical Sciences, Cambridge, MA, USA
| | - Michael P. Milham
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Tyler M. Moore
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eli J. Müller
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - David R. Roalf
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taylor Salo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jakob Seidlitz
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, & Informatics, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James M. Shine
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Mukherjee D, Xue B, Chen CT, Chang M, Kao JPY, Kanold PO. Early retinal deprivation crossmodally alters nascent subplate circuits and activity in the auditory cortex during the precritical period. Cereb Cortex 2023; 33:9038-9053. [PMID: 37259176 PMCID: PMC10350824 DOI: 10.1093/cercor/bhad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Sensory perturbation in one modality results in the adaptive reorganization of neural pathways within the spared modalities, a phenomenon known as "crossmodal plasticity," which has been examined during or after the classic "critical period." Because peripheral perturbations can alter the auditory cortex (ACX) activity and functional connectivity of the ACX subplate neurons (SPNs) even before the critical period, called the precritical period, we investigated if retinal deprivation at birth crossmodally alters the ACX activity and SPN circuits during the precritical period. We deprived newborn mice of visual inputs after birth by performing bilateral enucleation. We performed in vivo widefield imaging in the ACX of awake pups during the first two postnatal weeks to investigate cortical activity. We found that enucleation alters spontaneous and sound-evoked activities in the ACX in an age-dependent manner. Next, we performed whole-cell patch clamp recording combined with laser scanning photostimulation in ACX slices to investigate circuit changes in SPNs. We found that enucleation alters the intracortical inhibitory circuits impinging on SPNs, shifting the excitation-inhibition balance toward excitation and this shift persists after ear opening. Together, our results indicate that crossmodal functional changes exist in the developing sensory cortices at early ages before the onset of the classic critical period.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Binghan Xue
- Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Chih-Ting Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Minzi Chang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Joseph P Y Kao
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
- Department of Biology, University of Maryland, College Park, MD 20742, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
3
|
Mukherjee D, Xue B, Chen CT, Chang M, Kao JPY, Kanold PO. Early retinal deprivation crossmodally alters nascent subplate circuits and activity in the auditory cortex during the precritical period. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529453. [PMID: 36865142 PMCID: PMC9980129 DOI: 10.1101/2023.02.21.529453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Sensory perturbation in one modality results in adaptive reorganization of neural pathways within the spared modalities, a phenomenon known as "crossmodal plasticity", which has been examined during or after the classic 'critical period'. Because peripheral perturbations can alter auditory cortex (ACX) activity and functional connectivity of the ACX subplate neurons (SPNs) even before the classic critical period, called the precritical period, we investigated if retinal deprivation at birth crossmodally alters ACX activity and SPN circuits during the precritical period. We deprived newborn mice of visual inputs after birth by performing bilateral enucleation. We performed in vivo imaging in the ACX of awake pups during the first two postnatal weeks to investigate cortical activity. We found that enucleation alters spontaneous and sound-evoked activity in the ACX in an age-dependent manner. Next, we performed whole-cell patch clamp recording combined with laser scanning photostimulation in ACX slices to investigate circuit changes in SPNs. We found that enucleation alters the intracortical inhibitory circuits impinging on SPNs shifting the excitation-inhibition balance towards excitation and this shift persists after ear opening. Together, our results indicate that crossmodal functional changes exist in the developing sensory cortices at early ages before the onset of the classic critical period.
Collapse
|
4
|
López-Bendito G, Aníbal-Martínez M, Martini FJ. Cross-Modal Plasticity in Brains Deprived of Visual Input Before Vision. Annu Rev Neurosci 2022; 45:471-489. [PMID: 35803589 DOI: 10.1146/annurev-neuro-111020-104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unimodal sensory loss leads to structural and functional changes in both deprived and nondeprived brain circuits. This process is broadly known as cross-modal plasticity. The evidence available indicates that cross-modal changes underlie the enhanced performances of the spared sensory modalities in deprived subjects. Sensory experience is a fundamental driver of cross-modal plasticity, yet there is evidence from early-visually deprived models supporting an additional role for experience-independent factors. These experience-independent factors are expected to act early in development and constrain neuronal plasticity at later stages. Here we review the cross-modal adaptations elicited by congenital or induced visual deprivation prior to vision. In most of these studies, cross-modal adaptations have been addressed at the structural and functional levels. Here, we also appraise recent data regarding behavioral performance in early-visually deprived models. However, further research is needed to explore how circuit reorganization affects their function and what brings about enhanced behavioral performance.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| | - Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| | - Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| |
Collapse
|
5
|
Martínez-Méndez R, Pérez-Torres D, Gómez-Chavarín M, Padilla-Cortés P, Fiordelisio T, Gutiérrez-Ospina G. Bilateral enucleation at birth modifies calcium spike amplitude, but not frequency, in neurons of the somatosensory thalamus and cortex: Implications for developmental cross-modal plasticity. IBRO Rep 2019; 7:108-116. [PMID: 31799470 PMCID: PMC6881598 DOI: 10.1016/j.ibror.2019.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 11/07/2019] [Indexed: 11/17/2022] Open
Abstract
Bilateral eye enucleation at birth (BE) leads to an expansion of the primary somatosensory cortex (S1) in rat pups. Although increased growth of the somatosensory thalamo-cortical afferents (STCAs) in part explains S1 expansion, timing mechanisms governing S1 formation are also involved. In this work, we begin the search of a developmental clock by intending to document the existence of putative clock neurons in the somatosensory thalamus (VPM) and S1 based upon changes of spontaneous spike amplitude; a biophysical property sensitive to circadian regulation; the latter known to be shifted by enucleation. In addition, we also evaluated whether STCAs growth rate and segregation timing were modified, as parameters the clock might time. We found that spontaneous spike amplitude transiently, but significantly, increased or decreased in VPM and S1 neurons of BE rat pups, respectively, as compared to their control counterparts. The growth rate and segregation timing of STCAs was, however, unaffected by BE. These results support the existence of a developmental clock that ticks differently in the VPM and S1 after BE. This observation, together with the fact that STCAs growth rate and segregation timing is unchanged, suggests that S1 expansion in BE rats may in part be controlled at the cortical level.
Collapse
Key Words
- ACSF, artificial cerebrospinal fluid
- AChE, acetylcholinesterase
- BE, birth-enucleated
- Barrel formation
- Blind
- CP, cortical plate
- DAPI, 4′,6-diamidino-2-phenylindole
- Developmental clock
- Developmental timing
- DiI, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine Perchlorate
- PD, postnatal day
- S, sighted
- S1, primary somatosensory cortex
- SEM, standard error of the mean
- STCAs, somatosensory thalamo-cortical afferents
- Somatosensory cortex specification
- Spontaneous activity
- VPM, ventral posteromedial nucleus
- τd, decay time constant
Collapse
Affiliation(s)
- Raquel Martínez-Méndez
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Daniel Pérez-Torres
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Margarita Gómez-Chavarín
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Patricia Padilla-Cortés
- Unidad de Cromatografía de Alta Resolución, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| |
Collapse
|
6
|
Neural Coding of Whisker-Mediated Touch in Primary Somatosensory Cortex Is Altered Following Early Blindness. J Neurosci 2018; 38:6172-6189. [PMID: 29807911 DOI: 10.1523/jneurosci.0066-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022] Open
Abstract
Sensory systems do not develop and function independently of one another, yet they are typically studied in isolation. Effects of multisensory interactions on the developing neocortex can be revealed by altering the ratios of incoming sensory inputs associated with different modalities. We investigated neural responses in primary somatosensory cortex (S1) of short-tailed opossums (Monodelphis domestica; either sex) after the elimination of visual input through bilateral enucleation very early in development. To assess the influence of tactile experience after vision loss, we also examined naturally occurring patterns of exploratory behavior. In early blind (EB) animals, overall levels of tactile experience were similar to those of sighted controls (SC); locomotor activity was unimpaired and accompanied by whisking. Using extracellular single-unit recording techniques under anesthesia, we found that EB animals exhibited a reduction in the magnitude of neural responses to whisker stimuli in S1, coupled with spatial sharpening of receptive fields, in comparison to SC animals. These alterations manifested as two different effects on sensory processing in S1 of EB animals: the ability of neurons to detect single whisker stimulation was decreased, whereas their ability to discriminate between stimulation of neighboring whiskers was enhanced. The increased selectivity of S1 neurons in EB animals was reflected in improved population decoding performance for whisker stimulus position, particularly along the rostrocaudal axis of the snout, which aligns with the primary axis of natural whisker motion. These findings suggest that a functionally distinct form of somatosensory plasticity occurs when vision is lost early in development.SIGNIFICANCE STATEMENT After sensory loss, compensatory behavior mediated through the spared senses could be generated entirely through the recruitment of brain areas associated with the deprived sense. Alternatively, functional compensation in spared modalities may be achieved through a combination of plasticity in brain areas corresponding to both spared and deprived sensory modalities. Although activation of neurons in cortex associated with a deprived sense has been described frequently, it is unclear whether this is the only substrate available for compensation or if plasticity within cortical fields corresponding to spared modalities, particularly primary sensory cortices, may also contribute. Here, we demonstrate empirically that early loss of vision alters coding of sensory inputs in primary somatosensory cortex in a manner that supports enhanced tactile discrimination.
Collapse
|
7
|
Gonzalez-Perez O, López-Virgen V, Ibarra-Castaneda N. Permanent Whisker Removal Reduces the Density of c-Fos+ Cells and the Expression of Calbindin Protein, Disrupts Hippocampal Neurogenesis and Affects Spatial-Memory-Related Tasks. Front Cell Neurosci 2018; 12:132. [PMID: 29867365 PMCID: PMC5962760 DOI: 10.3389/fncel.2018.00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
Facial vibrissae, commonly known as whiskers, are the main sensitive tactile system in rodents. Whisker stimulation triggers neuronal activity that promotes neural plasticity in the barrel cortex (BC) and helps create spatial maps in the adult hippocampus. Moreover, activity-dependent inputs and calcium homeostasis modulate adult neurogenesis. Therefore, the neuronal activity of the BC possibly regulates hippocampal functions and neurogenesis. To assess whether tactile information from facial whiskers may modulate hippocampal functions and neurogenesis, we permanently eliminated whiskers in CD1 male mice and analyzed the effects in cellular composition, molecular expression and memory processing in the adult hippocampus. Our data indicated that the permanent deprivation of whiskers reduced in 4-fold the density of c-Fos+ cells (a calcium-dependent immediate early gene) in cornu ammonis subfields (CA1, CA2 and CA3) and 4.5-fold the dentate gyrus (DG). A significant reduction in the expression of calcium-binding proteincalbindin-D28k was also observed in granule cells of the DG. Notably, these changes coincided with an increase in apoptosis and a decrease in the proliferation of neural precursor cells in the DG, which ultimately reduced the number of Bromodeoxyuridine (BrdU)+NeuN+ mature neurons generated after whisker elimination. These abnormalities in the hippocampus were associated with a significant impairment of spatial memory and navigation skills. This is the first evidence indicating that tactile inputs from vibrissal follicles strongly modify the expression of c-Fos and calbindin in the DG, disrupt different aspects of hippocampal neurogenesis, and support the notion that spatial memory and navigation skills strongly require tactile information in the hippocampus.
Collapse
Affiliation(s)
- Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico.,El Colegio de Colima, Colima, Mexico
| | - Verónica López-Virgen
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico.,Medical Sciences PhD Program, School of Medicine, University of Colima, Colima, Mexico
| | | |
Collapse
|
8
|
Antón-Bolaños N, Espinosa A, López-Bendito G. Developmental interactions between thalamus and cortex: a true love reciprocal story. Curr Opin Neurobiol 2018; 52:33-41. [PMID: 29704748 DOI: 10.1016/j.conb.2018.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Abstract
The developmental programs that control the specification of cortical and thalamic territories are maintained largely as independent processes. However, bulk of evidence demonstrates the requirement of the reciprocal interactions between cortical and thalamic neurons as key for the correct development of functional thalamocortical circuits. This reciprocal loop of connections is essential for sensory processing as well as for the execution of complex sensory-motor tasks. Here, we review recent advances in our understanding of how mutual collaborations between both brain regions define area patterning and cell differentiation in the thalamus and cortex.
Collapse
Affiliation(s)
- Noelia Antón-Bolaños
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Ana Espinosa
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain.
| |
Collapse
|
9
|
Martini FJ, Moreno-Juan V, Filipchuk A, Valdeolmillos M, López-Bendito G. Impact of thalamocortical input on barrel cortex development. Neuroscience 2017; 368:246-255. [PMID: 28412498 DOI: 10.1016/j.neuroscience.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 01/22/2023]
Abstract
The development of cortical maps requires the balanced interaction between genetically determined programs and input/activity-dependent signals generated spontaneously or triggered from the environment. The somatosensory pathway of mice provides an excellent scenario to study cortical map development because of its highly organized cytoarchitecture, known as the barrel field. This precise organization makes evident even small alterations in the cortical map layout. In this review, we will specially focus on the thalamic factors that control barrel field development. We will summarize the role of thalamic input integration and identity, neurotransmission and spontaneous activity in cortical map formation and early cross-modal plasticity.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Anton Filipchuk
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
10
|
Moreno-Juan V, Filipchuk A, Antón-Bolaños N, Mezzera C, Gezelius H, Andrés B, Rodríguez-Malmierca L, Susín R, Schaad O, Iwasato T, Schüle R, Rutlin M, Nelson S, Ducret S, Valdeolmillos M, Rijli FM, López-Bendito G. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat Commun 2017; 8:14172. [PMID: 28155854 PMCID: PMC5296753 DOI: 10.1038/ncomms14172] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/06/2016] [Indexed: 11/27/2022] Open
Abstract
The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. How sensory maps are formed in the brain is only partially understood. Here the authors describe spontaneous calcium waves that propagate across different sensory nuclei in the embryonic thalamus; disrupting the wave pattern triggers thalamic gene expression changes and eventually alters the size of cortical areas.
Collapse
Affiliation(s)
- Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Anton Filipchuk
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Noelia Antón-Bolaños
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Cecilia Mezzera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Belen Andrés
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Luis Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Rafael Susín
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Olivier Schaad
- NCCR frontiers in Genetics, University of Geneva, CH-1211 Geneva 4, Switzerland.,Department of Biochemistry, Sciences II, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics (NIG), Mishima 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert Ludwigs University, 79106 Freiburg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort Freiburg, 79108 Freiburg, Germany
| | - Michael Rutlin
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA.,Department of Biochemistry and Molecular Biophysics, HHMI, Columbia University Medical Center, New York, New York 10032, USA
| | - Sacha Nelson
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|
11
|
Mezzera C, López-Bendito G. Cross-modal plasticity in sensory deprived animal models: From the thalamocortical development point of view. J Chem Neuroanat 2015; 75:32-40. [PMID: 26459021 DOI: 10.1016/j.jchemneu.2015.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/30/2015] [Accepted: 09/18/2015] [Indexed: 11/28/2022]
Abstract
Over recent decades, our understanding of the plasticity of the central nervous system has expanded enormously. Accordingly, it is now widely accepted that the brain can adapt to changes by reorganizing its circuitry, both in response to external stimuli and experience, as well as through intrinsic mechanisms. A clear example of this is the activation of a deprived sensory area and the expansion of spared sensory cortical regions in individuals who suffered peripheral sensory loss. Despite the efforts to understand these neuroplastic changes, the mechanisms underlying such adaptive remodeling remains poorly understood. Progress in understanding these events may be hindered by the highly varied data obtained from the distinct experimental paradigms analyzed, which include different animal models and neuronal systems, as well as studies into the onset of sensory loss. Here, we will establish the current state-of-the-art describing the principal observations made according to the time of sensory deprivation with respect to the development of the thalamocortical connectivity. We will review the experimental data obtained from animal models where sensory deprivation has been induced either before or after thalamocortical axons reach and invade their target cortical areas. The anatomical and functional effects of sensory loss on the primary sensory areas of the cortex will be presented. Indeed, we consider that the comparative approach of this review is a necessary step in order to help deciphering the processes that underlie sensory neuroplasticity, for which studies in animal models have been indispensable. Understanding these mechanisms will then help to develop restorative strategies and prostheses that will overcome the functional loss.
Collapse
Affiliation(s)
- Cecilia Mezzera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Av Ramon y Cajal s/n, San Joan d'Alacant 03550, Alicante, Spain.
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Av Ramon y Cajal s/n, San Joan d'Alacant 03550, Alicante, Spain.
| |
Collapse
|
12
|
Nys J, Scheyltjens I, Arckens L. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss. Front Syst Neurosci 2015; 9:60. [PMID: 25972788 PMCID: PMC4412011 DOI: 10.3389/fnsys.2015.00060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
Abstract
The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research.
Collapse
Affiliation(s)
- Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven Leuven, Belgium
| | | | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven Leuven, Belgium
| |
Collapse
|