1
|
Serum amyloid P component promotes formation of distinct aggregated lysozyme morphologies and reduces toxicity in Drosophila flies expressing F57I lysozyme. PLoS One 2020; 15:e0227227. [PMID: 31978114 PMCID: PMC6980568 DOI: 10.1371/journal.pone.0227227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022] Open
Abstract
Many conflicting reports about the involvement of serum amyloid P component (SAP) in amyloid diseases have been presented over the years; SAP is known to be a universal component of amyloid aggregates but it has been suggested that it can both induce and suppress amyloid formation. By using our Drosophila model of systemic lysozyme amyloidosis, SAP has previously been shown to reduce the toxicity induced by the expression of the disease-associated lysozyme variant, F57I, in the Drosophila central nervous system. This study further investigates the involvement of SAP in modulating lysozyme toxicity using histochemistry and spectral analyses on the double transgenic WT and F57I lysozyme flies to probe; i) formation of aggregates, ii) morphological differences of the aggregated lysozyme species formed in the presence or absence of SAP, iii) location of lysozyme and iv) co-localisation of lysozyme and SAP in the fly brain. We found that SAP can counteract the toxicity (measured by the reduction in the median survival time) induced by F57I lysozyme by converting toxic F57I species into less toxic amyloid-like structures, as reflected by the spectral changes that p-FTAA undergoes when bound to lysozyme deposits in F57I-F57I-SAP flies as compared to F57I-F57I flies. Indeed, when SAP was introduced to in vitro lysozyme fibril formation, the endpoint fibrils had enhanced ThT fluorescence intensity as compared to lysozyme fibrils alone. This suggests that a general mechanism for SAP's role in amyloid diseases may be to promote the formation of stable, amyloid-like fibrils, thus decreasing the impact of toxic species formed along the aggregation pathway.
Collapse
|
2
|
Cai SY, Nie L, Chen J. C-reactive protein/serum amyloid P promotes pro-inflammatory function and induces M1-type polarization of monocytes/macrophages in mudskipper, Boleophthalmus pectinirostris. FISH & SHELLFISH IMMUNOLOGY 2019; 94:318-326. [PMID: 31513914 DOI: 10.1016/j.fsi.2019.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/24/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
C-reactive protein (CRP) and serum amyloid P (SAP) play essential roles in the phagocytic cell-mediated innate immune response of mammals. In-depth studies into CRP and SAP have been completed in mammals; however, such studies, particularly those relating to the functions of CRP and SAP, are rare in fish species. In this study, a homolog of CRP/SAP (BpCRP/SAP) was identified in mudskipper (Boleophthalmus pectinirostris), which had the typical characteristics of a fish short pentraxin protein. Phylogenetic tree analysis revealed that BpCRP/SAP was most closely related to mudskipper CRP/SAP-l3. BpCRP/SAP transcripts were detected in all tested tissues, with the highest level observed in the liver; transcripts in the immune tissues and protein expression in the serum were induced in response to Edwardsiella tarda infection. The active recombinant BpCRP/SAP (rBpCRP/SAP) was able to augment the mRNA expression of pro-inflammatory cytokines and attenuate the mRNA expression of anti-inflammatory cytokines in monocytes/macrophages (MO/MΦ). In addition, phagocytosis and bacterial killing of E. tarda by mudskipper MO/MΦ were boosted by rBpCRP/SAP stimulation. rBpCRP/SAP also promoted M1-type MO/MΦ polarization, but inhibited M2-type polarization. In conclusion, the present research describes the pro-inflammatory function of BpCRP/SAP in mudskipper against E. tarda infection.
Collapse
Affiliation(s)
- Shi-Yu Cai
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Li Nie
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
3
|
Assessment of the effects of transthyretin peptide inhibitors in Drosophila models of neuropathic ATTR. Neurobiol Dis 2018; 120:118-125. [PMID: 30213731 DOI: 10.1016/j.nbd.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
|
4
|
Helmfors L, Bergkvist L, Brorsson AC. Serum Amyloid P Component Ameliorates Neurological Damage Caused by Expressing a Lysozyme Variant in the Central Nervous System of Drosophila melanogaster. PLoS One 2016; 11:e0159294. [PMID: 27428539 PMCID: PMC4948765 DOI: 10.1371/journal.pone.0159294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022] Open
Abstract
Lysozyme amyloidosis is a hereditary disease in which mutations in the gene coding for lysozyme leads to misfolding and consequently accumulation of amyloid material. To improve understanding of the processes involved we expressed human wild type (WT) lysozyme and the disease-associated variant F57I in the central nervous system (CNS) of a Drosophila melanogaster model of lysozyme amyloidosis, with and without co-expression of serum amyloid p component (SAP). SAP is known to be a universal constituent of amyloid deposits and to associate with lysozyme fibrils. There are clear indications that SAP may play an important role in lysozyme amyloidosis, which requires further elucidation. We found that flies expressing the amyloidogenic variant F57I in the CNS have a shorter lifespan than flies expressing WT lysozyme. We also identified apoptotic cells in the brains of F57I flies demonstrating that the flies' neurological functions are impaired when F57I is expressed in the nerve cells. However, co-expression of SAP in the CNS prevented cell death and restored the F57I flies' lifespan. Thus, SAP has the apparent ability to protect nerve cells from damage caused by F57I. Furthermore, it was found that co-expression of SAP prevented accumulation of insoluble forms of lysozyme in both WT- and F57I-expressing flies. Our findings suggest that the F57I mutation affects the aggregation process of lysozyme resulting in the formation of cytotoxic species and that SAP is able to prevent cell death in the F57I flies by preventing accumulation of toxic F57I structures.
Collapse
MESH Headings
- Amyloidosis/genetics
- Amyloidosis/metabolism
- Amyloidosis/pathology
- Animals
- Animals, Genetically Modified
- Apoptosis
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Disease Models, Animal
- Drosophila melanogaster/genetics
- Drosophila melanogaster/metabolism
- Gene Expression
- Humans
- Longevity/genetics
- Muramidase/genetics
- Muramidase/metabolism
- Mutation
- Neurons/metabolism
- Neurons/pathology
- Plaque, Amyloid/genetics
- Plaque, Amyloid/metabolism
- Plaque, Amyloid/pathology
- Plaque, Amyloid/prevention & control
- Protective Factors
- Protein Aggregation, Pathological/genetics
- Protein Aggregation, Pathological/metabolism
- Protein Aggregation, Pathological/pathology
- Protein Aggregation, Pathological/prevention & control
- Serum Amyloid P-Component/genetics
- Serum Amyloid P-Component/metabolism
- Transgenes
Collapse
Affiliation(s)
- Linda Helmfors
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Liza Bergkvist
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Ann-Christin Brorsson
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
5
|
Ozawa D, Nomura R, Mangione PP, Hasegawa K, Okoshi T, Porcari R, Bellotti V, Naiki H. Multifaceted anti-amyloidogenic and pro-amyloidogenic effects of C-reactive protein and serum amyloid P component in vitro. Sci Rep 2016; 6:29077. [PMID: 27380955 PMCID: PMC4933921 DOI: 10.1038/srep29077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 06/10/2016] [Indexed: 01/07/2023] Open
Abstract
C-reactive protein (CRP) and serum amyloid P component (SAP), two major classical pentraxins in humans, are soluble pattern recognition molecules that regulate the innate immune system, but their chaperone activities remain poorly understood. Here, we examined their effects on the amyloid fibril formation from Alzheimer’s amyloid β (Aβ) (1-40) and on that from D76N β2-microglobulin (β2-m) which is related to hereditary systemic amyloidosis. CRP and SAP dose-dependently and substoichiometrically inhibited both Aβ(1-40) and D76N β2-m fibril formation in a Ca2+-independent manner. CRP and SAP interacted with fresh and aggregated Aβ(1-40) and D76N β2-m on the fibril-forming pathway. Interestingly, in the presence of Ca2+, SAP first inhibited, then significantly accelerated D76N β2-m fibril formation. Electron microscopically, the surface of the D76N β2-m fibril was coated with pentameric SAP. These data suggest that SAP first exhibits anti-amyloidogenic activity possibly via A face, followed by pro-amyloidogenic activity via B face, proposing a model that the pro- and anti-amyloidogenic activities of SAP are not mutually exclusive, but reflect two sides of the same coin, i.e., the B and A faces, respectively. Finally, SAP inhibits the heat-induced amorphous aggregation of human glutathione S-transferase. A possible role of pentraxins to maintain extracellular proteostasis is discussed.
Collapse
Affiliation(s)
- Daisaku Ozawa
- Life Science Unit, Tenure-Track Program for Innovative Research, University of Fukui, Fukui 910-1193, Japan
| | - Ryo Nomura
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - P Patrizia Mangione
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Kazuhiro Hasegawa
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tadakazu Okoshi
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Riccardo Porcari
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Hironobu Naiki
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
6
|
Variants in RBP4 and AR genes modulate age at onset in familial amyloid polyneuropathy (FAP ATTRV30M). Eur J Hum Genet 2015; 24:756-60. [PMID: 26286643 DOI: 10.1038/ejhg.2015.180] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/07/2015] [Accepted: 07/22/2015] [Indexed: 12/19/2022] Open
Abstract
Familial amyloid polyneuropathy (FAP) ATTRV30M is a neurodegenerative disorder due to point mutations in the transthyretin gene, with V30M being the commonest. FAP ATTRV30M shows a wide variation in age at onset (AO) between clusters, families and generations. Portuguese patients also show remarkable AO differences between genders. Genes found to be associated with FAP ATTRV30M pathways may act as AO modifiers. Our aim was to further explore the role of APCS and RBP4 genes and to study for the first time the involvement of sex-linked genetic modifiers - AR and HSD17B1 genes - in AO variation in Portuguese families. We collected DNA from a sample of 318 patients, currently under follow-up. A total of 18 tagging SNPs from APCS, RBP4, AR and HSD17B1 and 5 additional SNPs from APCS and RBP4 previously studied were genotyped. To account for nonindependency of AO between members of the same family, we used generalized estimating equations (GEEs). We found that APCS and RBP4 were associated with late AO. In addition, rs11187545 of the RBP4 was associated with an early AO. For the AR, in the male group three SNPs were associated with an early AO, whereas in the female group four were associated with both an early and later AO. These results strengthened the role of APCS and RBP4 genes and revealed for the first time the contribution of AR genes as an AO modifier in both males and females. These findings may have important implications in genetic counseling and for new therapeutic strategies.
Collapse
|
7
|
Gautam A, D’Arpa P, Donohue DE, Muhie S, Chakraborty N, Luke BT, Grapov D, Carroll EE, Meyerhoff JL, Hammamieh R, Jett M. Acute and chronic plasma metabolomic and liver transcriptomic stress effects in a mouse model with features of post-traumatic stress disorder. PLoS One 2015; 10:e0117092. [PMID: 25629821 PMCID: PMC4309402 DOI: 10.1371/journal.pone.0117092] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022] Open
Abstract
Acute responses to intense stressors can give rise to post-traumatic stress disorder (PTSD). PTSD diagnostic criteria include trauma exposure history and self-reported symptoms. Individuals who meet PTSD diagnostic criteria often meet criteria for additional psychiatric diagnoses. Biomarkers promise to contribute to reliable phenotypes of PTSD and comorbidities by linking biological system alterations to behavioral symptoms. Here we have analyzed unbiased plasma metabolomics and other stress effects in a mouse model with behavioral features of PTSD. In this model, C57BL/6 mice are repeatedly exposed to a trained aggressor mouse (albino SJL) using a modified, resident-intruder, social defeat paradigm. Our recent studies using this model found that aggressor-exposed mice exhibited acute stress effects including changed behaviors, body weight gain, increased body temperature, as well as inflammatory and fibrotic histopathologies and transcriptomic changes of heart tissue. Some of these acute stress effects persisted, reminiscent of PTSD. Here we report elevated proteins in plasma that function in inflammation and responses to oxidative stress and damaged tissue at 24 hrs post-stressor. Additionally at this acute time point, transcriptomic analysis indicated liver inflammation. The unbiased metabolomics analysis showed altered metabolites in plasma at 24 hrs that only partially normalized toward control levels after stress-withdrawal for 1.5 or 4 wks. In particular, gut-derived metabolites were altered at 24 hrs post-stressor and remained altered up to 4 wks after stress-withdrawal. Also at the 4 wk time point, hyperlipidemia and suppressed metabolites of amino acids and carbohydrates in plasma coincided with transcriptomic indicators of altered liver metabolism (activated xenobiotic and lipid metabolism). Collectively, these system-wide sequelae to repeated intense stress suggest that the simultaneous perturbed functioning of multiple organ systems (e.g., brain, heart, intestine and liver) can interact to produce injuries that lead to chronic metabolic changes and disorders that have been associated with PTSD.
Collapse
Affiliation(s)
- Aarti Gautam
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Tacoma, WA 98402, United States of America
| | - Peter D’Arpa
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Tacoma, WA 98402, United States of America
| | - Duncan E. Donohue
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Tacoma, WA 98402, United States of America
| | - Seid Muhie
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Nabarun Chakraborty
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Tacoma, WA 98402, United States of America
| | - Brian T. Luke
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Dmitry Grapov
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, United States of America
| | - Erica E. Carroll
- Army Institute for Public Health, Aberdeen Proving Ground, Aberdeen, MD 21010–5403, United States of America
| | - James L. Meyerhoff
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Tacoma, WA 98402, United States of America
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Marti Jett
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| |
Collapse
|
8
|
Huang L, Liu X, Cheng B, Huang K. How our bodies fight amyloidosis: effects of physiological factors on pathogenic aggregation of amyloidogenic proteins. Arch Biochem Biophys 2015; 568:46-55. [PMID: 25615529 DOI: 10.1016/j.abb.2015.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/08/2015] [Accepted: 01/11/2015] [Indexed: 12/15/2022]
Abstract
The process of protein aggregation from soluble amyloidogenic proteins to insoluble amyloid fibrils plays significant roles in the onset of over 30 human amyloidogenic diseases, such as Prion disease, Alzheimer's disease and type 2 diabetes mellitus. Amyloid deposits are commonly found in patients suffered from amyloidosis; however, such deposits are rarely seen in healthy individuals, which may be largely attributed to the self-regulation in vivo. A vast number of physiological factors have been demonstrated to directly affect the process of amyloid formation in vivo. In this review, physiological factors that influence amyloidosis, including biological factors (chaperones, natural antibodies, enzymes, lipids and saccharides) and physicochemical factors (metal ions, pH environment, crowding and pressure, etc.), together with the mechanisms underlying these proteostasis effects, are summarized.
Collapse
Affiliation(s)
- Lianqi Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Biao Cheng
- Department of Pharmacy, Central Hospital of Wuhan, Wuhan, Hubei 430014, PR China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, Hubei 430075, PR China.
| |
Collapse
|
9
|
Gao M, Estel K, Seeliger J, Friedrich RP, Dogan S, Wanker EE, Winter R, Ebbinghaus S. Modulation of human IAPP fibrillation: cosolutes, crowders and chaperones. Phys Chem Chem Phys 2014; 17:8338-48. [PMID: 25406896 DOI: 10.1039/c4cp04682j] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cellular environment determines the structure and function of proteins. Marginal changes of the environment can severely affect the energy landscape of protein folding. However, despite the important role of chaperones on protein folding, less is known about chaperonal modulation of protein aggregation and fibrillation considering different classes of chaperones. We find that the pharmacological chaperone O4, the chemical chaperone proline as well as the protein chaperone serum amyloid P component (SAP) are inhibitors of the type 2 diabetes mellitus-related aggregation process of islet amyloid polypeptide (IAPP). By applying biophysical methods such as thioflavin T fluorescence spectroscopy, fluorescence anisotropy, total reflection Fourier-transform infrared spectroscopy, circular dichroism spectroscopy and atomic force microscopy we analyse and compare their inhibition mechanism. We demonstrate that the fibrillation reaction of human IAPP is strongly inhibited by formation of globular, amorphous assemblies by both, the pharmacological and the protein chaperones. We studied the inhibition mechanism under cell-like conditions by using the artificial crowding agents Ficoll 70 and sucrose. Under such conditions the suppressive effect of proline was decreased, whereas the pharmacological chaperone remains active.
Collapse
Affiliation(s)
- Mimi Gao
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.
Collapse
|
11
|
Obici L, Merlini G. An overview of drugs currently under investigation for the treatment of transthyretin-related hereditary amyloidosis. Expert Opin Investig Drugs 2014; 23:1239-51. [PMID: 25003808 DOI: 10.1517/13543784.2014.922541] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Transthyretin (TTR)-related hereditary amyloidosis is an adult-onset, dominantly inherited, systemic neurodegenerative disease endemic in some populations. Stabilization of the native structure of TTR by small-molecule ligands has recently proved effective in slowing neurological progression. Two drugs, tafamidis and diflunisal, are now available for most patients, particularly in the early stage of the disease. However, this disorder remains life threatening with several unmet needs. There are great expectations for a number of novel agents undergoing investigation. AREAS COVERED The authors review the current investigational drugs for the treatment of TTR amyloidosis according to the different steps of the fibrillogenesis process they target. Innovative approaches include suppression of TTR secretion, prevention of TTR misfolding by stronger stabilizers identified through structure-based design and high-throughput screening methodologies as well as the redirection of pathogenic aggregates toward nontoxic species and reabsorption of deposits through amyloid disrupters and immunotherapy. EXPERT OPINION Suppression of TTR synthesis by antisense oligonucleotides and small-interfering RNA is presently one of the most promising therapeutic approaches. However, well-designed clinical trials are required to establish their safety and efficacy compared with liver transplantation, tafamidis and diflunisal. With a longer time frame, it may be possible to develop combination therapies that target multiple steps of the aggregation process that could provide the best long-life effective treatments for this devastating disease.
Collapse
Affiliation(s)
- Laura Obici
- Amyloidosis Research and Treatment Center, IRCCS Fondazione Policlinico San Matteo , Viale Golgi, 19, 27100 Pavia , Italy
| | | |
Collapse
|