1
|
Zhou J, Zhu L. Shared genetic links between hypothyroidism and psychiatric disorders: evidence from a comprehensive genetic analysis. Front Endocrinol (Lausanne) 2024; 15:1370019. [PMID: 38904036 PMCID: PMC11187243 DOI: 10.3389/fendo.2024.1370019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background Epidemiologic studies have suggested co-morbidity between hypothyroidism and psychiatric disorders. However, the shared genetic etiology and causal relationship between them remain currently unclear. Methods We assessed the genetic correlations between hypothyroidism and psychiatric disorders [anxiety disorders (ANX), schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP)] using summary association statistics from genome-wide association studies (GWAS). Two disease-associated pleiotropic risk loci and genes were identified, and pathway enrichment, tissue enrichment, and other analyses were performed to determine their specific functions. Furthermore, we explored the causal relationship between them through Mendelian randomization (MR) analysis. Results We found significant genetic correlations between hypothyroidism with ANX, SCZ, and MDD, both in the Linkage disequilibrium score regression (LDSC) approach and the high-definition likelihood (HDL) approach. Meanwhile, the strongest correlation was observed between hypothyroidism and MDD (LDSC: rg=0.264, P=7.35×10-12; HDL: rg=0.304, P=4.14×10-17). We also determined a significant genetic correlation between MDD with free thyroxine (FT4) and thyroid-stimulating hormone (TSH) levels. A total of 30 pleiotropic risk loci were identified between hypothyroidism and psychiatric disorders, of which the 15q14 locus was identified in both ANX and SCZ (P values are 6.59×10-11 and 2.10×10-12, respectively) and the 6p22.1 locus was identified in both MDD and SCZ (P values are 1.05×10-8 and 5.75×10-14, respectively). Sixteen pleiotropic risk loci were identified between MDD and indicators of thyroid function, of which, four loci associated with MDD (1p32.3, 6p22.1, 10q21.1, 11q13.4) were identified in both FT4 normal level and Hypothyroidism. Further, 79 pleiotropic genes were identified using Magma gene analysis (P<0.05/18776 = 2.66×10-6). Tissue-specific enrichment analysis revealed that these genes were highly enriched into six brain-related tissues. The pathway analysis mainly involved nucleosome assembly and lipoprotein particles. Finally, our two-sample MR analysis showed a significant causal effect of MDD on the increased risk of hypothyroidism, and BIP may reduce TSH normal levels. Conclusions Our findings not only provided evidence of a shared genetic etiology between hypothyroidism and psychiatric disorders, but also provided insights into the causal relationships and biological mechanisms that underlie their relationship. These findings contribute to a better understanding of the pleiotropy between hypothyroidism and psychiatric disorders, while having important implications for intervention and treatment goals for these disorders.
Collapse
Affiliation(s)
- Jianlong Zhou
- People’s Hospital of Deyang City, Affiliated to Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki PF, Inoue F, Pereira DA, Capauto D, Norton S, Vaccarino FM, PsychENCODE Consortium, Pollen AA, Nowakowski TJ, Ahituv N, Pollard KS. Massively parallel characterization of regulatory elements in the developing human cortex. Science 2024; 384:eadh0559. [PMID: 38781390 PMCID: PMC12085231 DOI: 10.1126/science.adh0559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
Nucleotide changes in gene regulatory elements are important determinants of neuronal development and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin regions, including thousands of sequences with cell type-specific accessibility and variants associated with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and 164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marilyn Steyert
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Ryan Ziffra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Daniela A. Pereira
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Davide Capauto
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | | | - Alex A. Pollen
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine S. Pollard
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Lv Y, Wen L, Hu WJ, Deng C, Ren HW, Bao YN, Su BW, Gao P, Man ZY, Luo YY, Li CJ, Xiang ZX, Wang B, Luan ZL. Schizophrenia in the genetic era: a review from development history, clinical features and genomic research approaches to insights of susceptibility genes. Metab Brain Dis 2024; 39:147-171. [PMID: 37542622 DOI: 10.1007/s11011-023-01271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting 1% of the world population and ranks as one of the disorders providing the most severe burden for society. Schizophrenia etiology remains obscure involving multi-risk factors, such as genetic, environmental, nutritional, and developmental factors. Complex interactions of genetic and environmental factors have been implicated in the etiology of schizophrenia. This review provides an overview of the historical origins, pathophysiological mechanisms, diagnosis, clinical symptoms and corresponding treatment of schizophrenia. In addition, as schizophrenia is a polygenic, genetic disorder caused by the combined action of multiple micro-effective genes, we further detail several approaches, such as candidate gene association study (CGAS) and genome-wide association study (GWAS), which are commonly used in schizophrenia genomics studies. A number of GWASs about schizophrenia have been performed with the hope to identify novel, consistent and influential risk genetic factors. Finally, some schizophrenia susceptibility genes have been identified and reported in recent years and their biological functions are also listed. This review may serve as a summary of past research on schizophrenia genomics and susceptibility genes (NRG1, DISC1, RELN, BDNF, MSI2), which may point the way to future schizophrenia genetics research. In addition, depending on the above discovery of susceptibility genes and their exact function, the development and application of antipsychotic drugs will be promoted in the future.
Collapse
Affiliation(s)
- Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lin Wen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wen-Juan Hu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chong Deng
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hui-Wen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ya-Nan Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bo-Wei Su
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ping Gao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zi-Yue Man
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Jie Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xin Xiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bing Wang
- Department of Endocrinology and Metabolism, The Central hospital of Dalian University of Technology, Dalian, 116000, China.
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
4
|
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki PF, Inoue F, Pereira DA, Capauto D, Norton S, Vaccarino FM, Pollen A, Nowakowski TJ, Ahituv N, Pollard KS. Massively parallel characterization of psychiatric disorder-associated and cell-type-specific regulatory elements in the developing human cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528663. [PMID: 36824845 PMCID: PMC9949039 DOI: 10.1101/2023.02.15.528663] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Nucleotide changes in gene regulatory elements are important determinants of neuronal development and disease. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 sequences, including differentially accessible cell-type specific regions in the developing cortex and single-nucleotide variants associated with psychiatric disorders. In primary cells, we identified 46,802 active enhancer sequences and 164 disorder-associated variants that significantly alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning, we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Sean Whalen
- Gladstone Institutes; San Francisco, CA, USA
| | - Marilyn Steyert
- Department of Anatomy, University of California, San Francisco; San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco; San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco; San Francisco, CA, USA
| | - Ryan Ziffra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
| | | | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University; Kyoto, Japan
| | - Daniela A. Pereira
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | | | - Scott Norton
- Child Study Center, Yale University; New Haven, CT, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University; New Haven, CT, USA
- Department of Neuroscience, Yale University; New Haven, CT, USA
| | - Alex Pollen
- Department of Neurology, University of California, San Francisco; San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California, San Francisco; San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco; San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco; San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco; San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Katherine S. Pollard
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
- Gladstone Institutes; San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco; San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
5
|
Piao YH, Cui Y, Rami FZ, Li L, Karamikheirabad M, Kang SH, Kim SW, Kim JJ, Lee BJ, Chung YC. Methylome-wide Association Study of Patients with Recent-onset Psychosis. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:462-473. [PMID: 35879030 PMCID: PMC9329103 DOI: 10.9758/cpn.2022.20.3.462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022]
Abstract
Objective Dysregulation of gene expression through epigenetic mechanisms may have a vital role in the pathogenesis of schizophrenia (SZ). In this study, we investigated the association of altered methylation patterns with SZ symptoms and early trauma in patients and healthy controls. Methods The present study was conducted to identify methylation changes in CpG sites in peripheral blood associated with recent-onset (RO) psychosis using methylome-wide analysis. Lifestyle factors, such as smoking, alcohol, exercise, and diet, were controlled. Results We identified 2,912 differentially methylated CpG sites in patients with RO psychosis compared to controls. Most of the genes associated with the top 20 differentially methylated sites had not been reported in previous methylation studies and were involved in apoptosis, autophagy, axonal growth, neuroinflammation, protein folding, etc. The top 15 significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways included the oxytocin signaling pathway, long-term depression pathway, axon guidance, endometrial cancer, long-term potentiation, mitogen-activated protein kinase signaling pathway, and glutamatergic pathway, among others. In the patient group, significant associations of novel methylated genes with early trauma and psychopathology were observed. Conclusion Our results suggest an association of differential DNA methylation with the pathophysiology of psychosis and early trauma. Blood DNA methylation signatures show promise as biomarkers of future psychosis.
Collapse
Affiliation(s)
- Yan-Hong Piao
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Yin Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Ling Li
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Maryam Karamikheirabad
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Shi Hyun Kang
- Department of Social Psychiatry and Rehabilitation, National Center for Mental Health, Seoul, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Jung Jin Kim
- Department of Psychiatry, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul, Korea
| | - Bong Ju Lee
- Department of Psychiatry, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
6
|
Uezato A, Jitoku D, Shimazu D, Yamamoto N, Kurumaji A, Iwayama Y, Toyota T, Yoshikawa T, Haroutunian V, Bentea E, Meller J, Sullivan CR, Meador-Woodruff JH, McCullumsmith RE, Nishikawa T. Differential genetic associations and expression of PAPST1/SLC35B2 in bipolar disorder and schizophrenia. J Neural Transm (Vienna) 2022; 129:913-924. [PMID: 35501530 DOI: 10.1007/s00702-022-02503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Abstract
Lithium's inhibitory effect on enzymes involved in sulfation process, such as inhibition of 3'(2')-phosphoadenosine 5'-phosphate (PAP) phosphatase, is a possible mechanism of its therapeutic effect for bipolar disorder (BD). 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is translocated from cytosol to Golgi lumen by PAPS transporter 1 (PAPST1/SLC35B2), where it acts as a sulfa donor. Since SLC35B2 was previously recognized as a molecule that facilitates the release of D-serine, a co-agonist of N-methyl-D-aspartate type glutamate receptor, altered function of SLC35B2 might be associated with the pathophysiology of BD and schizophrenia (SCZ). We performed genetic association analyses of the SLC35B2 gene using Japanese cohorts with 366 BD cases and 370 controls and 2012 SCZ cases and 2170 controls. We then investigated expression of SLC35B2 mRNA in postmortem brains by QPCR using a Caucasian cohort with 33 BD and 34 SCZ cases and 34 controls and by in situ hybridization using a Caucasian cohort with 37 SCZ and 29 controls. We found significant associations between three SNPs (rs575034, rs1875324, and rs3832441) and BD, and significantly reduced SLC35B2 mRNA expression in postmortem dorsolateral prefrontal cortex (DLPFC) of BD. Moreover, we observed normalized SLC35B2 mRNA expression in BD subgroups who were medicated with lithium. While there was a significant association of SLC35B2 with SCZ (SNP rs2233437), its expression was not changed in SCZ. These findings indicate that SLC35B2 might be differentially involved in the pathophysiology of BD and SCZ by influencing the sulfation process and/or glutamate system in the central nervous system.
Collapse
Affiliation(s)
- Akihito Uezato
- School of Health and Welfare, International University of Health and Welfare, Tochigi, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Jitoku
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dai Shimazu
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Musashishinjo-Kokorono Clinic, Kanagawa, Japan
| | - Naoki Yamamoto
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Basic Medical Research, and School of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Akeo Kurumaji
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Shimousa-Nakayama Mental Clinic, Chiba, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Office of the Center Director, RIKEN Center for Brain Science, Saitama, Japan
| | - Vahram Haroutunian
- Department of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Eduard Bentea
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine-l'Alleud, Belgium
| | - Jarek Meller
- Departments of Environmental Health, Electrical Engineering and Computing Systems and Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
- Promedica, Toledo, OH, USA
| | - Toru Nishikawa
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
- Department of Pharmacology, Faculty of Medicine, and Pharmacological Research Center, Showa University, 1-5-8, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
7
|
Abstract
BACKGROUND Despite adequate antipsychotic treatment, most people with schizophrenia continue to exhibit persistent positive and negative symptoms and cognitive impairments. The current study was designed to examine the efficacy and safety of adjunctive anti-inflammatory combination therapy for these illness manifestations. METHODS Thirty-nine people with either Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, schizophrenia or schizoaffective disorder were entered into a 12-week double-blind, 2-arm, triple-dummy, placebo-controlled, randomized clinical trial: 19 were randomized to anti-inflammatory combination therapy and 20 were randomized to placebo. The Brief Psychiatric Rating Scale positive symptom item total score was used to assess positive symptom change, the Scale for the Assessment of Negative Symptoms total score was used to assess negative symptom change, the Calgary Depression Scale total score was used to assess depressive symptom change, and the MATRICS Consensus Cognitive Battery was used to assess neuropsychological test performance. RESULTS There was a significant time effect for Brief Psychiatric Rating Scale positive symptom item score (t226 = -2.66, P = 0.008), but the treatment (t54=1.52, P = 0.13) and treatment × time (t223 = 0.47, P = 0.64) effects were not significant. There were no significant time (t144 = 0.53, P = 0.72), treatment (t58=0.48, P = 0.63), or treatment × time (t143 = -0.20, P = 0.84) effects for the Scale for the Assessment of Negative Symptoms total score; or for any of the other symptom measures. There were no significant group differences in the change in the MATRICS Consensus Cognitive Battery composite score over the course of the study (F1,26=2.20, P = 0.15). CONCLUSIONS The study results suggest that there is no significant benefit of combined anti-inflammatory treatment for persistent positive symptoms or negative symptoms or cognitive impairments (clinicaltrials.gov trial number: NCT01514682).
Collapse
|
8
|
Al-Naama N, Mackeh R, Kino T. C 2H 2-Type Zinc Finger Proteins in Brain Development, Neurodevelopmental, and Other Neuropsychiatric Disorders: Systematic Literature-Based Analysis. Front Neurol 2020; 11:32. [PMID: 32117005 PMCID: PMC7034409 DOI: 10.3389/fneur.2020.00032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are multifaceted pathologic conditions manifested with intellectual disability, autistic features, psychiatric problems, motor dysfunction, and/or genetic/chromosomal abnormalities. They are associated with skewed neurogenesis and brain development, in part through dysfunction of the neural stem cells (NSCs) where abnormal transcriptional regulation on key genes play significant roles. Recent accumulated evidence highlights C2H2-type zinc finger proteins (C2H2-ZNFs), the largest transcription factor family in humans, as important targets for the pathologic processes associated with NDDs. In this review, we identified their significant accumulation (74 C2H2-ZNFs: ~10% of all human member proteins) in brain physiology and pathology. Specifically, we discuss their physiologic contribution to brain development, particularly focusing on their actions in NSCs. We then explain their pathologic implications in various forms of NDDs, such as morphological brain abnormalities, intellectual disabilities, and psychiatric disorders. We found an important tendency that poly-ZNFs and KRAB-ZNFs tend to be involved in the diseases that compromise gross brain structure and human-specific higher-order functions, respectively. This may be consistent with their characteristic appearance in the course of species evolution and corresponding contribution to these brain activities.
Collapse
Affiliation(s)
- Njoud Al-Naama
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Rafah Mackeh
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Tomoshige Kino
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
9
|
Perdomo-Sabogal Á, Nowick K. Genetic Variation in Human Gene Regulatory Factors Uncovers Regulatory Roles in Local Adaptation and Disease. Genome Biol Evol 2019; 11:2178-2193. [PMID: 31228201 PMCID: PMC6685493 DOI: 10.1093/gbe/evz131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 01/13/2023] Open
Abstract
Differences in gene regulation have been suggested to play essential roles in the evolution of phenotypic changes. Although DNA changes in cis-regulatory elements affect only the regulation of its corresponding gene, variations in gene regulatory factors (trans) can have a broader effect, because the expression of many target genes might be affected. Aiming to better understand how natural selection may have shaped the diversity of gene regulatory factors in human, we assembled a catalog of all proteins involved in controlling gene expression. We found that at least five DNA-binding transcription factor classes are enriched among genes located in candidate regions for selection, suggesting that they might be relevant for understanding regulatory mechanisms involved in human local adaptation. The class of KRAB-ZNFs, zinc-finger (ZNF) genes with a Krüppel-associated box, stands out by first, having the most genes located on candidate regions for positive selection. Second, displaying most nonsynonymous single nucleotide polymorphisms (SNPs) with high genetic differentiation between populations within these regions. Third, having 27 KRAB-ZNF gene clusters with high extended haplotype homozygosity. Our further characterization of nonsynonymous SNPs in ZNF genes located within candidate regions for selection, suggests regulatory modifications that might influence the expression of target genes at population level. Our detailed investigation of three candidate regions revealed possible explanations for how SNPs may influence the prevalence of schizophrenia, eye development, and fertility in humans, among other phenotypes. The genetic variation we characterized here may be responsible for subtle to rough regulatory changes that could be important for understanding human adaptation.
Collapse
Affiliation(s)
- Álvaro Perdomo-Sabogal
- Human Biology Group, Department of Biology, Chemistry and Pharmacy, Institute for Zoology, Freie Universität Berlin, Germany
| | - Katja Nowick
- Human Biology Group, Department of Biology, Chemistry and Pharmacy, Institute for Zoology, Freie Universität Berlin, Germany
| |
Collapse
|
10
|
Kelly DL, Li X, Kilday C, Feldman S, Clark S, Liu F, Buchanan RW, Tonelli LH. Increased circulating regulatory T cells in medicated people with schizophrenia. Psychiatry Res 2018; 269:517-523. [PMID: 30195746 PMCID: PMC6207456 DOI: 10.1016/j.psychres.2018.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/01/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023]
Abstract
Immunological abnormalities are increasingly reported in people with schizophrenia, but no clear functional biomarkers associated with genetic correlates of the disease have been found. Regulatory T cells (Tregs) are key immunoregulatory cells involved in the control of inflammatory processes and their functions are directly related to the human leucocyte antigen (HLA) gene, which has been implicated in schizophrenia genetic studies. However, there is a lack of studies reporting Treg status in people with schizophrenia. In the current study, the proportion of circulating Tregs was examined using flow cytometry in 26 medicated participants with schizophrenia and 17 healthy controls. Psychiatric symptoms and cognitive function were evaluated using the Scale for the Assessment of Negative Symptoms, the Brief Psychiatric Rating Scale, and the MATRICS Consensus Cognitive Battery. The proportion of Tregs was found to be significantly greater in the schizophrenia group compared to healthy controls. No differences were observed in total lymphocyte counts or CD3+ and CD4+ T cells, confirming a specific effect for Tregs. Elevated Tregs in schizophrenia correlated with fewer negative symptoms, a core domain of the illness. These results suggest that Tregs may contribute to improved negative symptoms in schizophrenia, possibly by counteracting on-going inflammatory processes.
Collapse
Affiliation(s)
- Deanna L Kelly
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building Room 934 E, Baltimore 21201, MD, USA
| | - Catherine Kilday
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephanie Feldman
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building Room 934 E, Baltimore 21201, MD, USA
| | - Fang Liu
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leonardo H Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building Room 934 E, Baltimore 21201, MD, USA.
| |
Collapse
|
11
|
Assessment of a glyoxalase I frameshift variant, p.P122fs, in Japanese patients with schizophrenia. Psychiatr Genet 2018; 28:90-93. [PMID: 29975244 DOI: 10.1097/ypg.0000000000000204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Enhanced carbonyl stress has been observed in a subgroup of patients with schizophrenia. Glyoxalase I, which is encoded by GLO1, is an enzyme that protects against carbonyl stress. In this study, we focused on the association between rare genetic variants of GLO1 and schizophrenia. First, we identified one heterozygous frameshift variant, p.P122fs, in 370 Japanese schizophrenia cases with allele frequencies of up to 1% by exon-targeted mutation screening of GLO1. We then performed an association analysis on 1282 cases and 1764 controls with this variant. The variant was found in three cases and eight controls. There was no statistically significant association between p.P122fs in GLO1 and schizophrenia (P=0.25). This frameshift variant in GLO1 might occur at near-polymorphic frequencies in the Japanese population, although further investigations using larger samples and biological analyses are needed to exclude the possibility of a low-penetrance genetic risk associated with this variant.
Collapse
|
12
|
Zhang Y, Fang X, Fan W, Tang W, Cai J, Song L, Zhang C. Interaction between BDNF and TNF-α genes in schizophrenia. Psychoneuroendocrinology 2018; 89:1-6. [PMID: 29306772 DOI: 10.1016/j.psyneuen.2017.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/04/2017] [Accepted: 12/28/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Our recent work reported that tumor necrosis factor-α (TNF-α) is negatively correlated with brain-derived neurotrophic factor (BDNF) in patients with schizophrenia. A previous study has shown that TNF-α could regulate the extracellular secretion of BDNF. Therefore, we hypothesized that the TNF-α gene (TNF-α) may interact with the BDNF gene (BDNF) to influence schizophrenia risk. METHODS We recruited 694 patients with schizophrenia from three mental hospitals in Eastern China and 725 healthy controls. The Positive and Negative Syndrome Scale (PANSS) was employed to evaluate symptom severity. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was performed to assess cognitive function. The SNPs rs6265 in BDNF and rs1799964 in TNF-α were genotyped. RESULTS There were no significant differences in allele and genotype frequencies in either rs6265 or rs1799964 between the case and control groups. A significant association of rs6265 AA + AG × rs1799964 CC + CT with schizophrenia was observed (OR = 1.14, 95%CI: 1.02-1.27; P = .02). There were significant differences in the RBANS attention and total scores between the patients with rs6265A and rs1799964C alleles and those without these two alleles (P = .03 and P = .03 after Bonferroni correction, respectively). CONCLUSION Our findings provided preliminary evidence that the interaction of BDNF and TNF-α may confer susceptibility to schizophrenia and cognitive dysfunction.
Collapse
Affiliation(s)
- Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kangning Hospital, Wenzhou, Zhejiang, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisheng Song
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Yue W, Yu X, Zhang D. Progress in genome-wide association studies of schizophrenia in Han Chinese populations. NPJ SCHIZOPHRENIA 2017; 3:24. [PMID: 28798405 PMCID: PMC5552785 DOI: 10.1038/s41537-017-0029-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/29/2017] [Accepted: 05/03/2017] [Indexed: 01/01/2023]
Abstract
Since 2006, genome-wide association studies of schizophrenia have led to the identification of numerous novel risk loci for this disease. However, there remains a geographical imbalance in genome-wide association studies, which to date have primarily focused on Western populations. During the last 6 years, genome-wide association studies in Han Chinese populations have identified both the sharing of susceptible loci across ethnicities and genes unique to Han Chinese populations. Here, we review recent progress in genome-wide association studies of schizophrenia in Han Chinese populations. Researchers have identified and replicated the sharing of susceptible genes, such as within the major histocompatibility complex, microRNA 137 (MIR137), zinc finger protein 804A (ZNF804A), vaccinia related kinase 2 (VRK2), and arsenite methyltransferase (AS3MT), across both European and East Asian populations. Several copy number variations identified in European populations have also been validated in the Han Chinese, including duplications at 16p11.2, 15q11.2-13.1, 7q11.23, and VIPR2 and deletions at 22q11.2, 1q21.1-q21.2, and NRXN1. However, these studies have identified some potential confounding factors, such as genetic heterogeneity and the effects of natural selection on tetraspanin 18 (TSPAN18) or zinc finger protein 323 (ZNF323), which may explain the population differences in genome-wide association studies. In the future, genome-wide association studies in Han Chinese populations should include meta-analyzes or mega-analyses with enlarged sample sizes across populations, deep sequencing, precision medicine treatment, and functional exploration of the risk genes for schizophrenia.
Collapse
Affiliation(s)
- Weihua Yue
- Institute of Mental Health, the Sixth Hospital, Peking University, 100191, Beijing, China.
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), 100191, Beijing, China.
| | - Xin Yu
- Institute of Mental Health, the Sixth Hospital, Peking University, 100191, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), 100191, Beijing, China
| | - Dai Zhang
- Institute of Mental Health, the Sixth Hospital, Peking University, 100191, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), 100191, Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences & PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
| |
Collapse
|
14
|
Yu S, Yu CL, Huang YC, Tu HP, Lan CC. Risk of developing psoriasis in patients with schizophrenia: a nationwide retrospective cohort study. J Eur Acad Dermatol Venereol 2017; 31:1497-1504. [DOI: 10.1111/jdv.14303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Affiliation(s)
- S. Yu
- Graduate Institute of Clinical Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Dermatology; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Dermatology; Kaohsiung Municipal Ta-Tung Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
| | - C.-L. Yu
- Taipei Cancer Center; Taipei Medical University Hospital; Taipei Medical University; Taipei Taiwan
| | - Y.-C. Huang
- Graduate Institute of Clinical Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Psychiatry; Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - H.-P. Tu
- Department of Public Health and Environmental Medicine; School of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Medical Research; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
| | - C.-C.E. Lan
- Department of Dermatology; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Dermatology; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|
15
|
Association of NKAPL, TSPAN18, and MPC2 gene variants with schizophrenia based on new data and a meta-analysis in Han Chinese. Acta Neuropsychiatr 2017; 29:87-94. [PMID: 27460766 DOI: 10.1017/neu.2016.36] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Schizophrenia (SZ) is suggested to be a complex polygenetic disorder with high heritability. Genome-wide association studies have found that the rs1635, rs11038167, and rs10489202 polymorphisms are associated with SZ in Han Chinese. However, results of validation studies are inconsistent. This study aimed to test the association between the NKAPL rs1635, TSPAN18 rs11038167, and MPC2 rs10489202 polymorphisms and SZ in a Chinese population. METHODS This study contained 700 unrelated SZ patients (300 Zhuang and 400 Han) and 700 gender- and age-matched controls (300 Zhuang and 400 Han). The polymorphisms in TSPAN18 (rs11038167), NKAPL (rs1635), and MPC2 (rs10489202) were genotyped using the Sequenom MassARRAY method. Statistical analyses were performed with PLINK program and SPSS l6.0 for Windows. STATA11.1 was used for meta-analysis. RESULTS No statistically significant difference was found in different allele and genotype frequencies of rs1635, rs11038167, and rs10489202 between SZ cases and controls of Zhuang and Han ethnicities and the total samples (all p>0.05). Further meta-analysis suggested that single-nucleotide polymorphism rs10489202 was significantly associated with SZ in a Han Chinese population (p OR=0.002). CONCLUSIONS Our case-control study failed to validate the significant association of NKAPL rs1635, TSPAN18 rs11038167, and MPC2 rs10489202 polymorphisms with SZ susceptibility in the southern Zhuang or Han Chinese population. However, meta-analysis showed a significant association between MPC2 variant rs10489202 and SZ susceptibility in Han Chinese.
Collapse
|
16
|
Cardoso MABS, do Nascimento TJ, Bernardo GP, Bernardo LP, Barbosa MMFL, Neto PJN, de Sousa DF, Júnior AGT, de Lima MAP, Moreira MM, de Sousa Gregório D, do Nascimento Santos LC, Rolim Neto ML. Are There Schizophrenia Genetic Markers and Mutations? A Systematic Review and Meta-Analyses. Health (London) 2017. [DOI: 10.4236/health.2017.95058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Abstract
OBJECTIVE Recent advances have provided compelling evidence for the role of excessive complement activity in the pathophysiology of schizophrenia. In this study, we aimed to detect the association of the gene encoding complement factor H (CFH), a regulator in complement activation, with schizophrenia. MATERIALS AND METHODS A sample of 1783 individuals with or without schizophrenia was recruited for genetic analysis. Genomic DNA samples were extracted from peripheral blood cells using multiplex polymerase chain reaction and the SNaPshot assay. A Database for Schizophrenia Genetic Research (SZDB) was used to detect the association of brain CFH expression with schizophrenia. Next, we performed a genotype-phenotype analysis to identify the relationship between CFH Y402H polymorphism and clinical features of schizophrenia. RESULTS There was a significant association of hippocampal CFH expression with schizophrenia (P=0.017), whereas this significance did not survive after adjusting for false discovery rate (P=0.105). Comparing the genotype and allele frequencies of the genotyped single-nucleotide polymorphisms between case and control groups showed no significant difference. There were significant differences in the scores of negative symptoms and delayed memory between the patients with C allele and those without C allele (P<0.01 and P=0.04 after Bonferroni correction, respectively). Furthermore, we observed a marginally significant association between the Y402H polymorphism and CFH expression in the hippocampus (P=0.051); however, this significance was lost after multiple testing correction (P=0.51, after Bonferroni correction). CONCLUSION Our findings provide suggestive evidence for the role of CFH in the development of negative symptoms and cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Qinyu Lv
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kanging Hospital, Wenzhou, People's Republic of China
| | - Zhenghui Yi
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| |
Collapse
|
18
|
Common variants on 17q25 and gene-gene interactions conferring risk of schizophrenia in Han Chinese population and regulating gene expressions in human brain. Mol Psychiatry 2016; 21:1244-50. [PMID: 26728569 DOI: 10.1038/mp.2015.204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/11/2015] [Accepted: 11/05/2015] [Indexed: 11/09/2022]
Abstract
Recently, two genome-wide association studies (GWASs) of schizophrenia (SCZ) in Han Chinese identified several susceptibility loci. Replication efforts aiming to validate the GWAS findings were made and focused on the top hits. We conducted a more extensive follow-up study in an independent sample of 1471 cases and 1528 matched controls to verify 26 genetic variants by including nine top single-nucleotide polymorphisms (SNPs) that reached genome-wide significance and 17 promising SNPs nominated in the initial discovery phase. rs8073471 in an intron of tubulin-folding cofactor D (TBCD) obtained nominal significance (P<0.01) in single SNP analysis. Logistic regression identified significant interaction between rs3744165 (5'-untranslated region variant of exon 2 of zinc finger protein 750 (ZNF750), and in an intron of TBCD) and rs8073471 (Deviance test P-value=2.77 × 10(-34)). Both SNPs are located at 17q25, an interesting region that has been implicated in SCZ. By using the Genotype-Tissue Expression (GTEx) data set, we implemented an expression quantitative trait loci epistasis analysis to explore the association between the genotype combinations of the two SNPs and gene expression levels in 13 areas of human central nervous system. We observed that rs3744165 × rs8073471 interaction modulated the expression profile of TEAD3 (P=1.87 × 10(-8)), SH3TC2 (P=2.00 × 10(-8)), KCNK9 (P=5.20 × 10(-7)) and PPDPF (P=1.13 × 10(-6)) in postmortem cortex tissue; EFNA1 (P=7.26 × 10(-9)), RNU4ATAC (P=2.32 × 10(-8)) and NUPL2 (P=6.79 × 10(-8)) in cerebellum tissue. To the best of our knowledge, our study is the first one that links TBCD and ZNF750 mutations to SCZ susceptibility and to the transcript levels in human brain tissues. Further efforts are needed to understand the role of those variants in the pathogenesis of SCZ.
Collapse
|
19
|
Morgan LZ, Rollins B, Sequeira A, Byerley W, DeLisi LE, Schatzberg AF, Barchas JD, Myers RM, Watson SJ, Akil H, Bunney WE, Vawter MP. Quantitative Trait Locus and Brain Expression of HLA-DPA1 Offers Evidence of Shared Immune Alterations in Psychiatric Disorders. MICROARRAYS 2016; 5. [PMID: 26998349 PMCID: PMC4795482 DOI: 10.3390/microarrays5010006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genome-wide association studies of schizophrenia encompassing the major histocompatibility locus (MHC) were highly significant following genome-wide correction. This broad region implicates many genes including the MHC complex class II. Within this interval we examined the expression of two MHC II genes (HLA-DPA1 and HLA-DRB1) in brain from individual subjects with schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and controls by differential gene expression methods. A third MHC II mRNA, CD74, was studied outside of the MHC II locus, as it interacts within the same immune complex. Exon microarrays were performed in anterior cingulate cortex (ACC) in BD compared to controls, and both HLA-DPA1 and CD74 were decreased in expression in BD. The expression of HLA-DPA1 and CD74 were both reduced in hippocampus, amygdala, and dorsolateral prefrontal cortex regions in SZ and BD compared to controls by specific qPCR assay. We found several novel HLA-DPA1 mRNA variants spanning HLA-DPA1 exons 2-3-4 as suggested by exon microarrays. The intronic rs9277341 SNP was a significant cis expression quantitative trait locus (eQTL) that was associated with the total expression of HLA-DPA1 in five brain regions. A biomarker study of MHC II mRNAs was conducted in SZ, BD, MDD, and control lymphoblastic cell lines (LCL) by qPCR assay of 87 subjects. There was significantly decreased expression of HLA-DPA1 and CD74 in BD, and trends for reductions in SZ in LCLs. The discovery of multiple splicing variants in brain for HLA-DPA1 is important as the HLA-DPA1 gene is highly conserved, there are no reported splicing variants, and the functions in brain are unknown. Future work on the function and localization of MHC Class II proteins in brain will help to understand the role of alterations in neuropsychiatric disorders. The HLA-DPA1 eQTL is located within a large linkage disequilibrium block that has an irrefutable association with schizophrenia. Future tests in a larger cohort are needed to determine the significance of this eQTL association with schizophrenia. Our findings support the long-held hypothesis that alterations in immune function are associated with the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Ling Z. Morgan
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697; (L.Z.M.); (B.R.); (A.S.)
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA;
| | - Brandi Rollins
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697; (L.Z.M.); (B.R.); (A.S.)
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA;
| | - Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697; (L.Z.M.); (B.R.); (A.S.)
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA;
| | - William Byerley
- Department of Psychiatry, University of California, San Francisco, CA 94103, USA;
| | - Lynn E. DeLisi
- VA Boston Healthcare System, Brockton, MA 02301, USA;
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Alan F. Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA;
| | - Jack D. Barchas
- Department of Psychiatry, Cornell University of California, Ithaca, NJ 10065, USA;
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA;
| | - Stanley J. Watson
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (S.J.W.); (H.A.)
| | - Huda Akil
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (S.J.W.); (H.A.)
| | - William E. Bunney
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA;
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697; (L.Z.M.); (B.R.); (A.S.)
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA;
- Correspondence: ; Tel.: + 949-824-9014; Fax: + 949-824-1787
| |
Collapse
|
20
|
Yamada K, Hattori E, Iwayama Y, Toyota T, Iwata Y, Suzuki K, Kikuchi M, Hashimoto T, Kanahara N, Mori N, Yoshikawa T. Population-dependent contribution of the major histocompatibility complex region to schizophrenia susceptibility. Schizophr Res 2015; 168:444-9. [PMID: 26324334 DOI: 10.1016/j.schres.2015.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022]
Abstract
There is consistent data from European cohorts suggesting a genetic contribution from the major histocompatibility complex (MHC) to the pathogenesis of schizophrenia. However, the genomic complexity and ethnicity-specific diversity found in the MHC cause difficulties in identifying causal variants or genes, and there is a need for studies encompassing the entire MHC region in multiple ethnic populations. Here, we report on association signals in the MHC region, with schizophrenia in the Japanese population. We genotyped and imputed a total of 10,131 single nucleotide polymorphisms (SNPs), spanning the entire MHC interval. The analysis included 3302 participants (1518 schizophrenics and 1784 healthy controls) from the Japanese population. In this study, we present evidence for association at rs494620, located in the SLC44A4 gene. The association survived after correction for multiple testing (unadjusted P=7.78×10(-5), empirical P=0.0357). The imputation results detected the highest association at rs707937 in the MSH5-SAPCD1 gene (imputed P=8.40×10(-5)). In expression analysis using postmortem brains from schizophrenia and control samples, MSH5-SAPCD1 showed marginally significant expression differences in Brodmann's area 46 (P=0.044 by unpaired t test with Welch's correction, P=0.099 by Mann-Whitney U test). Our study further strengthens evidence for the involvement of the MHC in schizophrenia across populations, and provides insight into population-specific mechanisms for the MHC region in schizophrenia susceptibility.
Collapse
Affiliation(s)
- Kazuo Yamada
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Eiji Hattori
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yasuhide Iwata
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8641, Japan
| | - Tasuku Hashimoto
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan.
| |
Collapse
|
21
|
Wang S, Lu H, Ni J, Zhang J, Tang W, Lu W, Cai J, Zhang C. An evaluation of association between common variants in C4BPB/C4BPA genes and schizophrenia. Neurosci Lett 2015; 590:189-92. [DOI: 10.1016/j.neulet.2015.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/19/2015] [Accepted: 02/03/2015] [Indexed: 01/19/2023]
|
22
|
Sun Y, Hu D, Liang J, Bao YP, Meng SQ, Lu L, Shi J. Association between variants of zinc finger genes and psychiatric disorders: systematic review and meta-analysis. Schizophr Res 2015; 162:124-37. [PMID: 25667193 DOI: 10.1016/j.schres.2015.01.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
Abstract
Psychiatric disorders have a negative impact on society and human lives. Genetic factors are involved in the occurrence and development of psychiatric diseases. ZNF804A has been identified as one of the most compelling risk genes associated with broad phenotypes related to psychosis. We conducted a systematic meta-analysis and reviewed ZNF804A variants in psychosis-related disorders, including schizophrenia, bipolar disorder, and attention-deficit hyperactivity disorder. We also summarized the association between other zinc finger protein genes (ZNFs) and psychiatric diseases. The meta-analysis included a total of six variants of ZNF804A and three variants of other ZNFs (ZDHHC8 and ZKSCAN4), and the effects of ZNF variants on neurocognition and neuroimaging phenotypes were reviewed. The biological functions of these variants are also presented. We verified that ZNF804A was significantly related to psychiatric diseases, and the association between ZNF804A rs1344706 and psychosis (schizophrenia and bipolar disorder) did not vary with disease or ethnicity. The main brain area regulated by ZNF804A rs1344706 was the dorsolateral prefrontal cortex. The effect of ZNF804A variants on cognition did not display consistency with different diseases or methodologies. These findings suggest that ZNF804A might play an important role in common pathogenesis of psychiatric diseases, and its variants are likely involved in regulating the expression of psychosis-related genes, especially the dopamine pathway genes. Further research should focus on the molecular mechanisms by which ZNF804A variants act in psychiatric diseases and related phenotypes.
Collapse
Affiliation(s)
- Yan Sun
- National Institute on Drug Dependence, Beijing 100191, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Die Hu
- National Institute on Drug Dependence, Beijing 100191, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Jie Liang
- National Institute on Drug Dependence, Beijing 100191, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Yan-Ping Bao
- National Institute on Drug Dependence, Beijing 100191, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Shi-Qiu Meng
- National Institute on Drug Dependence, Beijing 100191, China; Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Lin Lu
- National Institute on Drug Dependence, Beijing 100191, China; Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China
| | - Jie Shi
- National Institute on Drug Dependence, Beijing 100191, China; Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China; The State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China; Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, Beijing 100191, China.
| |
Collapse
|
23
|
Chen SF, Chao YL, Shen YC, Chen CH, Weng CF. Resequencing and association study of the NFKB activating protein-like gene (NKAPL) in schizophrenia. Schizophr Res 2014; 157:169-74. [PMID: 24972756 DOI: 10.1016/j.schres.2014.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/28/2014] [Accepted: 05/31/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Schizophrenia is a highly inheritable disorder, but many aspects of its etiology and pathophysiology remain poorly understood. Recently, in the Han Chinese population, a SNP rs1635 located within the exon of the NKAPL gene (encoding NFKB activating protein-like) achieved genome-wide significance in schizophrenia. METHODS In order to find the causal variants of the NKAPL gene in schizophrenia, we searched for genetic variants in the promoter region, and exons (including both UTR ends) using direct sequencing in a sample of patients with schizophrenia (n=515) and non-psychotic controls (n=456), all Han Chinese from Taiwan, and conducted an association and rudimentary functional study. RESULTS We identified 5 common SNPs (defined as minor allele frequency (MAF)>0.01) in the NKAPL gene. In a case-control association analysis, the minor allele (A) of rs1635 was significantly more common among patients than controls (P=0.0003, OR=1.41, 95% CI=1.17-1.71). A haplotype analysis of the 5 common SNPs indicated a risk haplotype (rs12000C-rs1635A-rs9461446C-rs3734564G-rs1679709G) associated with schizophrenia (P=2.77e-005, OR=1.53, 95% CI=1.25-1.87). In addition, we identified 4 patient-specific rare SNPs (MAF<0.01) (c.137G>A, c.213G>A, c.752C>T (rs370337122), and c.844G>A (rs147161729)) within the NKAPL gene. In silico analysis demonstrated their functional impact on the protein; however, there was also 1 control-specific rare SNP (c.119G>A) detected within the NKAPL gene, indicating that the clinical relevance of these putatively pathological rare SNPs is not straightforward. CONCLUSIONS This study suggested that rs1635 in the NKAPL gene appeared to play a role in conferring susceptibility to schizophrenia. In addition, some rare SNPs in the NKAPL gene with possibly damaging effects may be important in our patients. Our study provides genetic clues to indicate the involvement of NKAPL in schizophrenia.
Collapse
Affiliation(s)
- Shih-Fen Chen
- Department of Life Science and Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan
| | - Yu-Lin Chao
- Department of Psychiatry, Tzu-Chi General Hospital at Hualien, and School of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Yu-Chih Shen
- Department of Psychiatry, Tzu-Chi General Hospital at Hualien, and School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan.
| |
Collapse
|
24
|
Corvin A, Morris DW. Genome-wide association studies: findings at the major histocompatibility complex locus in psychosis. Biol Psychiatry 2014; 75:276-83. [PMID: 24199664 DOI: 10.1016/j.biopsych.2013.09.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/18/2013] [Accepted: 09/18/2013] [Indexed: 02/07/2023]
Abstract
The major histocompatibility complex (MHC) is one of the most intensively investigated, genetically diverse regions of the genome. In its extended form, it encodes more than 400 genes critical to immunity but is also involved in many other functions. In 2009, three simultaneously published genome-wide association studies (GWAS) reported the first compelling evidence for involvement of the MHC in schizophrenia susceptibility. In this review, we describe the structure and function of the MHC, discuss some of the challenges for genetic analysis of the region, and provide an update on findings from GWAS studies before describing potential approaches to interpreting the role of the locus in schizophrenia etiology. The GWAS literature supports involvement of the MHC locus in schizophrenia susceptibility. Current evidence suggests that the MHC plays a more significant role in schizophrenia susceptibility than in other psychiatric disorders. Because of the substantial diversity at the locus, there are differences in the implicated risk variants between ancestral groups, as there are for many other disorders. This is somewhat different than the pattern emerging at other loci. The association findings presently capture large genomic regions, with at least some evidence to suggest that multiple signals may be involved. Based on notable successes in other disorders, we suggest approaches to refining association signals at the locus. Finally, we discuss that these genetic data may be used to understand how the MHC contributes to the complex etiology of schizophrenia.
Collapse
Affiliation(s)
- Aiden Corvin
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Derek W Morris
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|