1
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
2
|
Maleki S, Poujade FA, Bergman O, Gådin JR, Simon N, Lång K, Franco-Cereceda A, Body SC, Björck HM, Eriksson P. Endothelial/Epithelial Mesenchymal Transition in Ascending Aortas of Patients With Bicuspid Aortic Valve. Front Cardiovasc Med 2019; 6:182. [PMID: 31921896 PMCID: PMC6928128 DOI: 10.3389/fcvm.2019.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is the progressive enlargement of the aorta due to destructive changes in the connective tissue of the aortic wall. Aneurysm development is silent and often first manifested by the drastic events of aortic dissection or rupture. As yet, therapeutic agents that halt or reverse the process of aortic wall deterioration are absent, and the only available therapeutic recommendation is elective prophylactic surgical intervention. Being born with a bicuspid instead of the normal tricuspid aortic valve (TAV) is a major risk factor for developing aneurysm in the ascending aorta later in life. Although the pathophysiology of the increased aneurysm susceptibility is not known, recent studies are suggestive of a transformation of aortic endothelium into a more mesenchymal state i.e., an endothelial-to-mesenchymal transition in these individuals. This process involves the loss of endothelial cell features, resulting in junction instability and enhanced vascular permeability of the ascending aorta that may lay the ground for increased aneurysm susceptibility. This finding differentiates and further emphasizes the specific characteristics of aneurysm development in individuals with a bicuspid aortic valve (BAV). This review discusses the possibility of a developmental fate shared between the aortic endothelium and aortic valves. It further speculates about the impact of aortic endothelium phenotypic shift on aneurysm development in individuals with a BAV and revisits previous studies in the light of the new findings.
Collapse
Affiliation(s)
- Shohreh Maleki
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Flore-Anne Poujade
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Otto Bergman
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Jesper R Gådin
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Nancy Simon
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Karin Lång
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Simon C Body
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
3
|
Radhakrishna U, Albayrak S, Zafra R, Baraa A, Vishweswaraiah S, Veerappa AM, Mahishi D, Saiyed N, Mishra NK, Guda C, Ali-Fehmi R, Bahado-Singh RO. Placental epigenetics for evaluation of fetal congenital heart defects: Ventricular Septal Defect (VSD). PLoS One 2019; 14:e0200229. [PMID: 30897084 PMCID: PMC6428297 DOI: 10.1371/journal.pone.0200229] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
Ventricular Septal Defect (VSD), the most common congenital heart defect, is characterized by a hole in the septum between the right and left ventricles. The pathogenesis of VSD is unknown in most clinical cases. There is a paucity of data relevant to epigenetic changes in VSD. The placenta is a fetal tissue crucial in cardiac development and a potentially useful surrogate for evaluating the development of heart tissue. To understand epigenetic mechanisms that may play a role in the development of VSD, genome-wide DNA methylation assay on placentas of 8 term subjects with isolated VSD and no known or suspected genetic syndromes and 10 unaffected controls was performed using the Illumina HumanMethylation450 BeadChip assay. We identified a total of 80 highly accurate potential CpGs in 80 genes for detection of VSD; area under the receiver operating characteristic curve (AUC ROC) 1.0 with significant 95% CI (FDR) p-values < 0.05 for each individual locus. The biological processes and functions for many of these differentially methylated genes are previously known to be associated with heart development or disease, including cardiac ventricle development (HEY2, ISL1), heart looping (SRF), cardiac muscle cell differentiation (ACTC1, HEY2), cardiac septum development (ISL1), heart morphogenesis (SRF, HEY2, ISL1, HEYL), Notch signaling pathway (HEY2, HEYL), cardiac chamber development (ISL1), and cardiac muscle tissue development (ACTC1, ISL1). In addition, we identified 8 microRNAs that have the potential to be biomarkers for the detection of VSD including: miR-191, miR-548F1, miR-148A, miR-423, miR-92B, miR-611, miR-2110, and miR-548H4. To our knowledge this is the first report in which placental analysis has been used for determining the pathogenesis of and predicting VSD.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States of America
- * E-mail:
| | - Samet Albayrak
- Department of Obstetrics and Gynaecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Rita Zafra
- Department of Obstetrics and Gynaecology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alosh Baraa
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States of America
| | - Avinash M. Veerappa
- Department of Studies in Genetics and Genomics, Laboratory of Genomic Sciences, University of Mysore, Mysore, India
| | - Deepthi Mahishi
- Department of Studies in Genetics and Genomics, Laboratory of Genomic Sciences, University of Mysore, Mysore, India
| | - Nazia Saiyed
- Biotechnology, Nirma Institute of Science, Nirma University, Ahmedabad, India
| | - Nitish K. Mishra
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Centre Omaha, Nebraska, United States of America
| | - Chittibabu Guda
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Centre Omaha, Nebraska, United States of America
| | - Rouba Ali-Fehmi
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States of America
| |
Collapse
|
4
|
Jahangiri L, Sharpe M, Novikov N, González-Rosa JM, Borikova A, Nevis K, Paffett-Lugassy N, Zhao L, Adams M, Guner-Ataman B, Burns CE, Burns CG. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development 2016; 143:113-22. [PMID: 26732840 DOI: 10.1242/dev.126136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vertebrate heart forms through successive phases of cardiomyocyte differentiation. Initially, cardiomyocytes derived from first heart field (FHF) progenitors assemble the linear heart tube. Thereafter, second heart field (SHF) progenitors differentiate into cardiomyocytes that are accreted to the poles of the heart tube over a well-defined developmental window. Although heart tube elongation deficiencies lead to life-threatening congenital heart defects, the variables controlling the initiation, rate and duration of myocardial accretion remain obscure. Here, we demonstrate that the AP-1 transcription factor, Fos-like antigen 2 (Fosl2), potentiates the rate of myocardial accretion from the zebrafish SHF. fosl2 mutants initiate accretion appropriately, but cardiomyocyte production is sluggish, resulting in a ventricular deficit coupled with an accumulation of SHF progenitors. Surprisingly, mutant embryos eventually correct the myocardial deficit by extending the accretion window. Overexpression of Fosl2 also compromises production of SHF-derived ventricular cardiomyocytes, a phenotype that is consistent with precocious depletion of the progenitor pool. Our data implicate Fosl2 in promoting the progenitor to cardiomyocyte transition and uncover the existence of regulatory mechanisms to ensure appropriate SHF-mediated cardiomyocyte contribution irrespective of embryonic stage.
Collapse
Affiliation(s)
- Leila Jahangiri
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Michka Sharpe
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Natasha Novikov
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Juan Manuel González-Rosa
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Asya Borikova
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Nevis
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Noelle Paffett-Lugassy
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Long Zhao
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Meghan Adams
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Burcu Guner-Ataman
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Caroline E Burns
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - C Geoffrey Burns
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Boogerd CJ, Aneas I, Sakabe N, Dirschinger RJ, Cheng QJ, Zhou B, Chen J, Nobrega MA, Evans SM. Probing chromatin landscape reveals roles of endocardial TBX20 in septation. J Clin Invest 2016; 126:3023-35. [PMID: 27348591 DOI: 10.1172/jci85350] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/05/2016] [Indexed: 12/29/2022] Open
Abstract
Mutations in the T-box transcription factor TBX20 are associated with multiple forms of congenital heart defects, including cardiac septal abnormalities, but our understanding of the contributions of endocardial TBX20 to heart development remains incomplete. Here, we investigated how TBX20 interacts with endocardial gene networks to drive the mesenchymal and myocardial movements that are essential for outflow tract and atrioventricular septation. Selective ablation of Tbx20 in murine endocardial lineages reduced the expression of extracellular matrix and cell migration genes that are critical for septation. Using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we identified accessible chromatin within endocardial lineages and intersected these data with TBX20 ChIP-seq and chromatin loop maps to determine that TBX20 binds a conserved long-range enhancer to regulate versican (Vcan) expression. We also observed reduced Vcan expression in Tbx20-deficient mice, supporting a direct role for TBX20 in Vcan regulation. Further, we show that the Vcan enhancer drove reporter gene expression in endocardial lineages in a TBX20-binding site-dependent manner. This work illuminates gene networks that interact with TBX20 to orchestrate cardiac septation and provides insight into the chromatin landscape of endocardial lineages during septation.
Collapse
|
6
|
Zhang Q, Yang Z, Jia Z, Liu C, Guo C, Lu H, Chen P, Ma K, Wang W, Zhou C. ISL-1 is overexpressed in non-Hodgkin lymphoma and promotes lymphoma cell proliferation by forming a p-STAT3/p-c-Jun/ISL-1 complex. Mol Cancer 2014; 13:181. [PMID: 25070240 PMCID: PMC4125377 DOI: 10.1186/1476-4598-13-181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/22/2014] [Indexed: 12/20/2022] Open
Abstract
Background Insulin enhancer binding protein-1 (ISL-1), a LIM-homeodomain transcription factor, is essential for the heart, motor neuron and pancreas development. Recently, ISL-1 has been found in some types of human cancers. However, how ISL-1 exerts the role in tumor development is not clear. Methods and results The expression of ISL-1 was assessed in 211 human lymphoma samples and 23 normal lymph node samples. Immunohistochemistry results demonstrated a markedly higher expression of ISL-1 in 75% of non-Hodgkin lymphoma (NHL) samples compared with that in normal lymph nodes or Hodgkin lymphoma (HL) samples. CCK-8 analysis, cell cycle assay and xenograft model were performed to characterize the association between ISL-1 expression level and biological functions in NHL. The results showed that ISL-1 overexpression obviously promoted NHL cells proliferation, changed the cell cycle distribution in vitro and significantly enhanced xenografted lymphoma development in vivo. Real-time PCR, Western blot, luciferase assay and ChIP assay were used to explore the potential regulatory targets of ISL-1 and the results demonstrated that ISL-1 activated the c-Myc expression in NHL by direct binding to a conserved binding site on the c-Myc enhancer. Further results revealed that ISL-1 could be positively regulated by the c-Jun N-terminal kinase (JNK) and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. Both the JNK and JAK/STAT signaling inhibitors could significantly suppressed the growth of NHL cells through the down-regulation of ISL-1 as demonstrated by CCK-8 and Western blot assays. Bioinformatic analysis and luciferase assay exhibited that ISL-1 was a novel target of p-STAT3 and p-c-jun. ChIP, Co-IP and ChIP-re-IP analysis revealed that ISL-1 could participate with p-STAT3 and p-c-Jun to form a p-STAT3/p-c-Jun/ISL-1 transcriptional complex that binds directly on the ISL-1 promoter, demonstrating a positive feedback regulatory mechanism for ISL-1 expression in NHL. Conclusions Our results provide the first evidence that ISL-1 is tightly linked to NHL proliferation and development by promoting c-Myc transcription, and its aberrant expression was regulated by p-STAT3/p-c-Jun/ISL-1 complex activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xueyuan Road, 100191 Beijing, China.
| | | |
Collapse
|
7
|
Bard-Chapeau EA, Szumska D, Jacob B, Chua BQL, Chatterjee GC, Zhang Y, Ward JM, Urun F, Kinameri E, Vincent SD, Ahmed S, Bhattacharya S, Osato M, Perkins AS, Moore AW, Jenkins NA, Copeland NG. Mice carrying a hypomorphic Evi1 allele are embryonic viable but exhibit severe congenital heart defects. PLoS One 2014; 9:e89397. [PMID: 24586749 PMCID: PMC3937339 DOI: 10.1371/journal.pone.0089397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 01/21/2014] [Indexed: 12/26/2022] Open
Abstract
The ecotropic viral integration site 1 (Evi1) oncogenic transcription factor is one of a number of alternative transcripts encoded by the Mds1 and Evi1 complex locus (Mecom). Overexpression of Evi1 has been observed in a number of myeloid disorders and is associated with poor patient survival. It is also amplified and/or overexpressed in many epithelial cancers including nasopharyngeal carcinoma, ovarian carcinoma, ependymomas, and lung and colorectal cancers. Two murine knockout models have also demonstrated Evi1's critical role in the maintenance of hematopoietic stem cell renewal with its absence resulting in the death of mutant embryos due to hematopoietic failure. Here we characterize a novel mouse model (designated Evi1fl3) in which Evi1 exon 3, which carries the ATG start, is flanked by loxP sites. Unexpectedly, we found that germline deletion of exon3 produces a hypomorphic allele due to the use of an alternative ATG start site located in exon 4, resulting in a minor Evi1 N-terminal truncation and a block in expression of the Mds1-Evi1 fusion transcript. Evi1δex3/δex3 mutant embryos showed only a mild non-lethal hematopoietic phenotype and bone marrow failure was only observed in adult Vav-iCre/+, Evi1fl3/fl3 mice in which exon 3 was specifically deleted in the hematopoietic system. Evi1δex3/δex3 knockout pups are born in normal numbers but die during the perinatal period from congenital heart defects. Database searches identified 143 genes with similar mutant heart phenotypes as those observed in Evi1δex3/δex3 mutant pups. Interestingly, 42 of these congenital heart defect genes contain known Evi1-binding sites, and expression of 18 of these genes are also effected by Evi1 siRNA knockdown. These results show a potential functional involvement of Evi1 target genes in heart development and indicate that Evi1 is part of a transcriptional program that regulates cardiac development in addition to the development of blood.
Collapse
Affiliation(s)
| | - Dorota Szumska
- Welcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | | | | | - Gouri C. Chatterjee
- MYSM School of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jerrold M. Ward
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Fatma Urun
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan
| | - Emi Kinameri
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan
| | - Stéphane D. Vincent
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Inserm U964, Université de Strasbourg, Illkirch, France
| | - Sayadi Ahmed
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | | | | | - Archibald S. Perkins
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Adrian W. Moore
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan
| | | | - Neal G. Copeland
- Institute of Molecular and Cell Biology, Singapore, Singapore
- * E-mail:
| |
Collapse
|
8
|
Murray TVA, Smyrnias I, Shah AM, Brewer AC. NADPH oxidase 4 regulates cardiomyocyte differentiation via redox activation of c-Jun protein and the cis-regulation of GATA-4 gene transcription. J Biol Chem 2013; 288:15745-59. [PMID: 23589292 DOI: 10.1074/jbc.m112.439844] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH oxidase 4 (Nox4) generates reactive oxygen species (ROS) that can modulate cellular phenotype and function in part through the redox modulation of the activity of transcription factors. We demonstrate here the potential of Nox4 to drive cardiomyocyte differentiation in pluripotent embryonal carcinoma cells, and we show that this involves the redox activation of c-Jun. This in turn acts to up-regulate GATA-4 expression, one of the earliest markers of cardiotypic differentiation, through a defined and highly conserved cis-acting motif within the GATA-4 promoter. These data therefore suggest a mechanism whereby ROS act in pluripotential cells in vivo to regulate the initial transcription of critical tissue-restricted determinant(s) of the cardiomyocyte phenotype, including GATA-4. The ROS-dependent activation, mediated by Nox4, of widely expressed redox-regulated transcription factors, such as c-Jun, is fundamental to this process.
Collapse
Affiliation(s)
- Thomas V A Murray
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, United Kingdom
| | | | | | | |
Collapse
|