1
|
Rubaie KA, Raef H, Stone DU, Kozak I. Retinopathy and Uveitis in Congenital Generalized Lipodystrophy with Hypertriglyceridemia and Uncontrolled Diabetes (Berardinelli-Seip Syndrome). Middle East Afr J Ophthalmol 2020; 26:250-252. [PMID: 32153340 PMCID: PMC7034154 DOI: 10.4103/meajo.meajo_94_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/17/2019] [Accepted: 11/16/2019] [Indexed: 11/24/2022] Open
Abstract
Congenital lipodystrophy syndromes are characterized by a paucity of adipose tissue and are associated with metabolic abnormalities including insulin resistance, diabetes mellitus, and severe hypertriglyceridemia. Herein, we present a case of proliferative diabetic retinopathy with an attack of anterior uveitis in a young female with congenital generalized lipodystrophy – Berardinelli-Seip syndrome. To the best of our knowledge, this is the first description of ocular involvement in Berardinelli–Seip syndrome.
Collapse
Affiliation(s)
- Khaled A Rubaie
- Vitreoretinal and Uveitis Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Hussein Raef
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Donald U Stone
- Vitreoretinal and Uveitis Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Igor Kozak
- Vitreoretinal and Uveitis Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,Moorfields Eye Hospitals, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Henne M, Goodman JM, Hariri H. Spatial compartmentalization of lipid droplet biogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158499. [PMID: 31352131 PMCID: PMC7050823 DOI: 10.1016/j.bbalip.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store metabolic energy in the form of neutral lipids (typically triacylglycerols and steryl esters). Beyond being inert energy storage compartments, LDs are dynamic organelles that participate in numerous essential metabolic functions. Cells generate LDs de novo from distinct sub-regions at the endoplasmic reticulum (ER), but what determines sites of LD formation remains a key unanswered question. Here, we review the factors that determine LD formation at the ER, and discuss how they work together to spatially and temporally coordinate LD biogenesis. These factors include lipid synthesis enzymes, assembly proteins, and membrane structural requirements. LDs also make contact with other organelles, and these inter-organelle contacts contribute to defining sites of LD production. Finally, we highlight emerging non-canonical roles for LDs in maintaining cellular homeostasis during stress.
Collapse
Affiliation(s)
- Mike Henne
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Hanaa Hariri
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
3
|
Exploring Seipin: From Biochemistry to Bioinformatics Predictions. Int J Cell Biol 2018; 2018:5207608. [PMID: 30402103 PMCID: PMC6192094 DOI: 10.1155/2018/5207608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/12/2018] [Accepted: 09/03/2018] [Indexed: 01/30/2023] Open
Abstract
Seipin is a nonenzymatic protein encoded by the BSCL2 gene. It is involved in lipodystrophy and seipinopathy diseases. Named in 2001, all seipin functions are still far from being understood. Therefore, we reviewed much of the research, trying to find a pattern that could explain commonly observed features of seipin expression disorders. Likewise, this review shows how this protein seems to have tissue-specific functions. In an integrative view, we conclude by proposing a theoretical model to explain how seipin might be involved in the triacylglycerol synthesis pathway.
Collapse
|
4
|
Dantas de Medeiros JL, Carneiro Bezerra B, Brito de Araújo TA, Craveiro Sarmento AS, de Azevedo Medeiros LB, Peroni Gualdi L, Luna Cruz MDS, Xavier Nobre TT, Gomes Lima J, Araújo de Melo Campos JT. Impairment of respiratory muscle strength in Berardinelli-Seip congenital lipodystrophy subjects. Respir Res 2018; 19:173. [PMID: 30208912 PMCID: PMC6134719 DOI: 10.1186/s12931-018-0879-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Berardinelli-Seip Congenital Generalized Lipodystrophy (BSCL) is an ultra-rare metabolic disease characterized by hypertriglyceridemia, hyperinsulinemia, hyperglycemia, hypoleptinemia, and diabetes mellitus. Although cardiovascular disturbances have been observed in BSCL patients, there are no studies regarding the Respiratory Muscle Strength (RMS) in this type of lipodystrophy. This study aimed to evaluate RMS in BSCL subjects compared with healthy subjects. METHODS Eleven individuals with BSCL and 11 healthy subjects matched for age and gender were included in this study. The Maximum Inspiratory Pressure (MIP), Maximum Expiratory Pressure (MEP), and Peripheral Muscle Strength (PMS) were measured for three consecutive years. BSCL subjects were compared to healthy individuals for MIP, MEP, and PMS. Correlations between PMS and MIP were also analyzed. The genetic diagnosis was performed, and sociodemographic and anthropometric data were also collected. RESULTS BSCL subjects showed significantly lower values for MIP and MEP (p < 0.0001 and p = 0.0002, respectively) in comparison to healthy subjects, but no changes in handgrip strength (p = 0.15). Additionally, we did not observe changes in MIP, MEP, and PMS two years after the first analysis, showing maintenance of respiratory dysfunction in BSCL subjects (p = 0.05; p = 0.45; p = 0.99). PMS and MIP were not correlated in these subjects (r = 0.56; p = 0.18). CONCLUSION BSCL subjects showed lower respiratory muscle strength when compared with healthy subjects; however, PMS was not altered. These findings were maintained at similar levels during the two years of evaluation. Our data reveal the first association of BSCL with the development of respiratory muscle weakness.
Collapse
Affiliation(s)
| | - Bruno Carneiro Bezerra
- Faculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN Brazil
| | | | - Aquiles Sales Craveiro Sarmento
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil
| | - Lázaro Batista de Azevedo Medeiros
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil
| | - Lucien Peroni Gualdi
- Faculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN Brazil
| | - Maria do Socorro Luna Cruz
- Faculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN Brazil
| | | | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes (HUOL)/UFRN, Natal, RN Brazil
| | - Julliane Tamara Araújo de Melo Campos
- Faculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN Brazil
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil
| |
Collapse
|
5
|
Yeo CR, Agrawal M, Hoon S, Shabbir A, Shrivastava MK, Huang S, Khoo CM, Chhay V, Yassin MS, Tai ES, Vidal-Puig A, Toh SA. SGBS cells as a model of human adipocyte browning: A comprehensive comparative study with primary human white subcutaneous adipocytes. Sci Rep 2017; 7:4031. [PMID: 28642596 PMCID: PMC5481408 DOI: 10.1038/s41598-017-04369-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/19/2017] [Indexed: 01/20/2023] Open
Abstract
The Simpson Golabi Behmel Syndrome (SGBS) pre-adipocyte cell strain is widely considered to be a representative in vitro model of human white pre-adipocytes. A recent study suggested that SGBS adipocytes exhibit an unexpected transient brown phenotype. Here, we comprehensively examined key differences between SGBS adipocytes and primary human white subcutaneous (PHWSC) adipocytes. RNA-Seq analysis revealed that extracellular matrix (ECM)-receptor interaction and metabolic pathways were the top two KEGG pathways significantly enriched in SGBS adipocytes, which included positively enriched mitochondrial respiration and oxidation pathways. Compared to PHWSC adipocytes, SGBS adipocytes showed not only greater induction of adipogenic gene expression during differentiation but also increased levels of UCP1 mRNA and protein expression. Functionally, SGBS adipocytes displayed higher ISO-induced basal leak respiration and overall oxygen consumption rate, along with increased triglyceride accumulation and insulin-stimulated glucose uptake. In conclusion, we confirmed that SGBS adipocytes, which are considered of white adipose tissue origin can shift towards a brown/beige adipocyte phenotype. These differences indicate SGBS cells may help to identify mechanisms leading to browning, and inform our understanding for the use of SGBS vis-à-vis primary human subcutaneous adipocytes as a human white adipocyte model, guiding the selection of appropriate cell models in future metabolic research.
Collapse
Affiliation(s)
- Chia Rou Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Madhur Agrawal
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*Star, 138668, Singapore, Singapore
| | - Asim Shabbir
- Department of Surgery, National University Hospital, 119074, Singapore, Singapore
| | - Manu Kunaal Shrivastava
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Shiqi Huang
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, Singapore, 117542, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
- Department of Medicine, National University Health System, 119228, Singapore, Singapore
| | - Vanna Chhay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - M Shabeer Yassin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
- Department of Medicine, National University Health System, 119228, Singapore, Singapore
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sue-Anne Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore.
- Department of Medicine, National University Health System, 119228, Singapore, Singapore.
| |
Collapse
|
6
|
Wee K, Yang W, Sugii S, Han W. Towards a mechanistic understanding of lipodystrophy and seipin functions. Biosci Rep 2014; 34:e00141. [PMID: 25195639 PMCID: PMC4182903 DOI: 10.1042/bsr20140114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 01/11/2023] Open
Abstract
CGL (Congenital generalized lipodystrophy) is a genetic disorder characterized by near complete loss of adipose tissue along with increased ectopic fat storage in other organs including liver and muscle. Of the four CGL types, BSCL2 (Berardinelli-Seip Congenital lipodystrophy type 2), resulting from mutations in the BSCL2/seipin gene, exhibits the most severe lipodystrophic phenotype with loss of both metabolic and mechanical adipose depots. The majority of Seipin mutations cause C-terminal truncations, along with a handful of point mutations. Seipin localizes to the ER and is composed of a conserved region including a luminal loop and two transmembrane domains, plus cytosolic N- and C-termini. Animal models deficient in seipin recapitulate the human lipodystrophic phenotype. Cells isolated from seipin knockout mouse models also exhibit impaired adipogenesis. Mechanistically, seipin appears to function as a scaffolding protein to bring together interacting partners essential for lipid metabolism and LD (lipid droplet) formation during adipocyte development. Moreover, cell line and genetic studies indicate that seipin functions in a cell-autonomous manner. Here we will provide a brief overview of the genetic association of the CGLs, and focus on the current understanding of differential contributions of distinct seipin domains to lipid storage and adipogenesis. We will also discuss the roles of seipin-interacting partners, including lipin 1 and 14-3-3β, in mediating seipin-dependent regulation of cellular pathways such as actin cytoskeletal remodelling.
Collapse
Key Words
- adipocyte
- lipid droplet
- lipin
- lipolysis
- metabolism
- obesity
- agpat, 1-acylglycerol-3-phosphate-o-acyl-transferase
- bscl, berardinelli–seip congenital lipodystrophy
- c/ebp, ccaat/enhancer binding protein
- candle, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature
- cav1, caveolin-1
- cgl, congenital generalized lipodystrophy
- er, endoplasmic reticulum
- hcv, hepatitis c virus
- il-6, interleukin-6
- ld, lipid droplet
- lpa, lysophosphatidic acid
- mef, mouse embryonic fibroblasts
- nfat, nuclear factor of activated t cells
- nsrebp1c, nuclear srebp1c
- pa, phosphatidic acid
- pio, pioglitazone
- pka, protein kinase a
- pparγ, peroxisome proliferator-activated receptor gamma
- ptrf, polymerase i and transcript release factor
- tag, triacylglycerol
- tmds, transmembrane domains
- tnfα, tumor necrosis factor alpha
- wat, white adipose tissue
Collapse
Affiliation(s)
- Kenneth Wee
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wulin Yang
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shigeki Sugii
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
- ‡Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Weiping Han
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
- †Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- ‡Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
7
|
Su YF, Yang SH, Lee YH, Wu BC, Huang SC, Liu CM, Chen SL, Pan YF, Chou S, Chou MY, Yang HW. Aspirin-induced inhibition of adipogenesis was p53-dependent and associated with inactivation of pentose phosphate pathway. Eur J Pharmacol 2014; 738:101-10. [DOI: 10.1016/j.ejphar.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
|
8
|
Wei S, Soh SLY, Xia J, Ong WY, Pang ZP, Han W. Motor neuropathy-associated mutation impairs Seipin functions in neurotransmission. J Neurochem 2014; 129:328-38. [DOI: 10.1111/jnc.12638] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/18/2013] [Accepted: 12/12/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Shunhui Wei
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
| | - Stephanie Li-Ying Soh
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
| | - Julia Xia
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
- Child Health Institute of New Jersey; Department of Neuroscience and Cell Biology; Rutgers Robert Wood Johnson Medical School; New Brunswick New Jersey USA
| | - Wei-Yi Ong
- Department of Anatomy; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Zhiping P. Pang
- Child Health Institute of New Jersey; Department of Neuroscience and Cell Biology; Rutgers Robert Wood Johnson Medical School; New Brunswick New Jersey USA
| | - Weiping Han
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
- Institute of Molecular and Cell Biology; A*STAR; Singapore
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- Cardiovascular and Metabolic Disorders Program; Duke-NUS Graduate Medical School; Singapore
| |
Collapse
|
9
|
Sim MFM, Talukder MMU, Dennis RJ, O’Rahilly S, Edwardson JM, Rochford JJ. Analysis of naturally occurring mutations in the human lipodystrophy protein seipin reveals multiple potential pathogenic mechanisms. Diabetologia 2013; 56:2498-506. [PMID: 23989774 PMCID: PMC3824349 DOI: 10.1007/s00125-013-3029-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/22/2013] [Indexed: 02/01/2023]
Abstract
AIMS/HYPOTHESIS In humans, disruption of the gene BSCL2, encoding the protein seipin, causes congenital generalised lipodystrophy (CGL) with severe insulin resistance and dyslipidaemia. While the causative gene has been known for over a decade, the molecular functions of seipin are only now being uncovered. Most pathogenic mutations in BSCL2 represent substantial disruptions including significant deletions and frameshifts. However, several more subtle mutations have been reported that cause premature stop codons or single amino acid substitutions. Here we have examined these mutant forms of seipin to gain insight into how they may cause CGL. METHODS We generated constructs expressing mutant seipin proteins and determined their expression and localisation. We also assessed their capacity to recruit the key adipogenic phosphatidic acid phosphatase lipin 1, a recently identified molecular role of seipin in developing adipocytes. Finally, we used atomic force microscopy to define the oligomeric structure of seipin and to determine whether this is affected by the mutations. RESULTS We show that the R275X mutant of seipin is not expressed in pre-adipocytes. While the other premature stop mutant forms fail to bind lipin 1 appropriately, the point mutants T78A, L91P and A212P all retain this capacity. We demonstrate that wild-type human seipin forms oligomers of 12 subunits in a circular configuration but that the L91P and A212P mutants of seipin do not. CONCLUSIONS/INTERPRETATION Our study represents the most comprehensive analysis so far of mutants of seipin causing lipodystrophy and reveals several different molecular mechanisms by which these mutations may cause disease.
Collapse
Affiliation(s)
- M. F. Michelle Sim
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | | | - Rowena J. Dennis
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | | | - Justin J. Rochford
- Rowett Institute of Nutrition and Health, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD UK
| |
Collapse
|
10
|
Dollet L, Magré J, Cariou B, Prieur X. Function of seipin: new insights from Bscl2/seipin knockout mouse models. Biochimie 2013; 96:166-72. [PMID: 23831461 DOI: 10.1016/j.biochi.2013.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/20/2013] [Indexed: 11/30/2022]
Abstract
Mutations in BSCL2/seipin cause Berardinelli-Seip congenital lipodystrophy (BSCL), a rare recessive disorder characterized by near absence of adipose tissue and severe insulin resistance. Since the discovery of the gene in 2001, several cellular studies intended to unravel the biological function of seipin and revealed that seipin-deficiency alters adipocyte differentiation and lipid droplet morphology. However, the exact function of the protein remains unclear and the pathophysiology of BSCL in patients carrying BSCL2/seipin mutations is poorly understood. A major breakthrough in the field of seipin came recently, with the demonstration by three independent groups that Bscl2-deficient mice (Bscl2(-/-)) developed severe lipodystrophy with only residual white and brown fat pads, validating a critical role for seipin in adipose tissue homeostasis. Using in vivo, ex vivo and in vitro methods, these studies demonstrate that seipin plays a key role in adipogenesis, lipid droplet homeostasis and cellular triglyceride lipolysis. In addition to adipose tissue impairment, Bscl2(-/-) mice are diabetic and display severe hepatic steatosis. Treatment with thiazolidinediones (TZD) in Bscl2(-/-) mice increases adipose tissue mass and partially rescues the metabolic complications associated with BSCL, highlighting that lipoatrophy is the major cause of the BSCL phenotype. Except an unexpected hypotriglyceridemia, Bscl2(-/-) mice phenotype represents an almost perfect picture of the human disease. This review analyses how these studies using Bscl2(-/-) mice brought new insights into seipin function and the mechanisms involved in the pathophysiology of BSCL. We also analyse some of the human data in the light of the mouse phenotyping and discuss the validity of Bscl2(-/-) mice model to test pharmaceutical approaches for treating BSCL and its associated metabolic complications.
Collapse
Affiliation(s)
- Lucile Dollet
- INSERM UMR 1087, IRS-UN, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France
| | | | | | | |
Collapse
|
11
|
Yang W, Thein S, Guo X, Xu F, Venkatesh B, Sugii S, Radda GK, Han W. Seipin differentially regulates lipogenesis and adipogenesis through a conserved core sequence and an evolutionarily acquired C-terminus. Biochem J 2013; 452:37-44. [PMID: 23458123 DOI: 10.1042/bj20121870] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Homozygous mutations in BSCL2 (Berardinelli-Seip congenital lipodystrophy)/seipin cause CGL2 (congenital generalized lipodystrophy type 2). Recent data suggest that seipin regulates LD (lipid droplet) dynamics and adipocyte differentiation, but whether these roles are mechanistically linked remains unclear. To understand how seipin regulates these processes, we investigated the evolutionary changes of seipin orthologues, and studied individual domains in regulating lipid accumulation in non-adipocytes and adipocytes. Mammalian seipins comprise at least two distinct functional domains, a conserved core sequence and an evolutionarily acquired C-terminus. Despite its requirement for adipocyte formation, seipin overexpression inhibited oleate-induced LD formation and accumulation in nonadipocytes, which was mediated by the core sequence. In contrast, seipin overexpression did not inhibit LD accumulation during adipocyte differentiation or the adipogenic process in 3T3-L1 cells. However, adipogenesis and LD accumulation were impaired in 3T3-L1 cells expressing a seipin mutant lacking the C-terminus. Furthermore, expression of the same mutant without the C-terminus failed to rescue the adipogenic defects in seipin-knockdown cells, demonstrating the importance of the C-terminus for seipin's function in adipocyte development. We propose that seipin is involved in lipid homoeostasis by restricting lipogenesis and LD accumulation in non-adipocytes, while promoting adipogenesis to accommodate excess energy storage.
Collapse
Affiliation(s)
- Wulin Yang
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, 11 Biopolis Way, Singapore 138667
| | | | | | | | | | | | | | | |
Collapse
|