1
|
Tanaka M, Kakihara S, Hirabayashi K, Imai A, Toriyama Y, Iesato Y, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Tanaka M, Cui N, Wei Y, Zhao Y, Aruga K, Yamauchi A, Murata T, Shindo T. Adrenomedullin-Receptor Activity-Modifying Protein 2 System Ameliorates Subretinal Fibrosis by Suppressing Epithelial-Mesenchymal Transition in Age-Related Macular Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:652-668. [PMID: 33385343 DOI: 10.1016/j.ajpath.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 01/06/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment. Anti-vascular endothelial growth factor drugs used to treat AMD carry the risk of inducing subretinal fibrosis. We investigated the use of adrenomedullin (AM), a vasoactive peptide, and its receptor activity-modifying protein 2, RAMP2, which regulate vascular homeostasis and suppress fibrosis. The therapeutic potential of the AM-RAMP2 system was evaluated after laser-induced choroidal neovascularization (LI-CNV), a mouse model of AMD. Neovascular formation, subretinal fibrosis, and macrophage invasion were all enhanced in both AM and RAMP2 knockout mice compared with those in wild-type mice. These pathologic changes were suppressed by intravitreal injection of AM. Comprehensive gene expression analysis of the choroid after LI-CNV with or without AM administration revealed that fibrosis-related molecules, including Tgfb, Cxcr4, Ccn2, and Thbs1, were all down-regulated by AM. In retinal pigment epithelial cells, co-administration of transforming growth factor-β and tumor necrosis factor-α induced epithelial-mesenchymal transition, which was also prevented by AM. Finally, transforming growth factor-β and C-X-C chemokine receptor type 4 (CXCR4) inhibitors eliminated the difference in subretinal fibrosis between RAMP2 knockout and wild-type mice. These findings suggest the AM-RAMP2 system suppresses subretinal fibrosis in LI-CNV by suppressing epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Masaaki Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Shinji Kakihara
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | | | - Akira Imai
- Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Yuichi Toriyama
- Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Yasuhiro Iesato
- Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nanqi Cui
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yangxuan Wei
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yunlu Zhao
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kohsuke Aruga
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akihiro Yamauchi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshinori Murata
- Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.
| |
Collapse
|
2
|
RAMP3 determines rapid recycling of atypical chemokine receptor-3 for guided angiogenesis. Proc Natl Acad Sci U S A 2019; 116:24093-24099. [PMID: 31712427 DOI: 10.1073/pnas.1905561116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Receptor-activity-modifying proteins (RAMPs) are single transmembrane-spanning proteins which serve as molecular chaperones and allosteric modulators of G-protein-coupled receptors (GPCRs) and their signaling pathways. Although RAMPs have been previously studied in the context of their effects on Family B GPCRs, the coevolution of RAMPs with many GPCR families suggests an expanded repertoire of potential interactions. Using bioluminescence resonance energy transfer-based and cell-surface expression approaches, we comprehensively screen for RAMP interactions within the chemokine receptor family and identify robust interactions between RAMPs and nearly all chemokine receptors. Most notably, we identify robust RAMP interaction with atypical chemokine receptors (ACKRs), which function to establish chemotactic gradients for directed cell migration. Specifically, RAMP3 association with atypical chemokine receptor 3 (ACKR3) diminishes adrenomedullin (AM) ligand availability without changing G-protein coupling. Instead, RAMP3 is required for the rapid recycling of ACKR3 to the plasma membrane through Rab4-positive vesicles following either AM or SDF-1/CXCL12 binding, thereby enabling formation of dynamic spatiotemporal chemotactic gradients. Consequently, genetic deletion of either ACKR3 or RAMP3 in mice abolishes directed cell migration of retinal angiogenesis. Thus, RAMP association with chemokine receptor family members represents a molecular interaction to control receptor signaling and trafficking properties.
Collapse
|
3
|
Degranulation of mast cells induced by gastric cancer-derived adrenomedullin prompts gastric cancer progression. Cell Death Dis 2018; 9:1034. [PMID: 30305610 PMCID: PMC6180028 DOI: 10.1038/s41419-018-1100-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022]
Abstract
Mast cells are prominent components of solid tumors and exhibit distinct phenotypes in different tumor microenvironments. However, their precise mechanism of communication in gastric cancer remains largely unclear. Here, we found that patients with GC showed a significantly higher mast cell infiltration in tumors. Mast cell levels increased with tumor progression and independently predicted reduced overall survival. Tumor-derived adrenomedullin (ADM) induced mast cell degranulation via PI3K-AKT signaling pathway, which effectively promoted the proliferation and inhibited the apoptosis of GC cells in vitro and contributed to the growth and progression of GC tumors in vivo, and the effect could be reversed by blocking interleukin (IL)-17A production from these mast cells. Our results illuminate a novel protumorigenic role and associated mechanism of mast cells in GC, and also provide functional evidence for these mast cells to prevent, and to treat this immunopathogenesis feature of GC.
Collapse
|
4
|
Si H, Zhang Y, Song Y, Li L. Overexpression of adrenomedullin protects mesenchymal stem cells against hypoxia and serum deprivation‑induced apoptosis via the Akt/GSK3β and Bcl‑2 signaling pathways. Int J Mol Med 2018; 41:3342-3352. [PMID: 29512737 PMCID: PMC5881801 DOI: 10.3892/ijmm.2018.3533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/02/2018] [Indexed: 01/12/2023] Open
Abstract
The poor survival rate of transplanted mesenchymal stem cells (MSCs) within the ischemic heart limits their therapeutic potential for cardiac repair. Adrenomedullin (ADM) has been identified as a potent apoptotic inhibitor. The present study aimed to investigate the protective effects of ADM on MSCs against hypoxia and serum deprivation (H/SD)‑induced apoptosis, and to determine the potential underlying mechanisms. In the present study, a recombinant adenovirus expressing the ADM gene was established and was infected into MSCs. The infection rate was determined via microscopic detection of green fluorescence and flow cytometric analysis. The mRNA expression levels of ADM were detected by reverse transcription‑polymerase chain reaction. In addition, a model of H/SD was generated. The MSCs were randomly separated into six groups: Control, enhanced green fluorescent protein (EGFP)‑Adv, EGFP‑ADM, H/SD, EGFP‑Adv + H/SD and EGFP‑ADM + H/SD. Cell viability and proliferation were determined using the Cell Counting kit‑8 assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase‑mediated‑dUTP nick‑end labeling assay and flow cytometric analysis using Annexin V‑phycoerythrin/7‑aminoactinomycin D staining. The protein expression levels of total protein kinase B (Akt), phosphorylated (p)‑Akt, total glycogen synthase kinase (GSK)3β, p‑GSK3β, B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax), caspase‑3 and cleaved caspase‑3 were detected by western blot analysis. The results indicated that ADM overexpression could improve MSC proliferation and viability, and protect MSCs against H/SD‑induced apoptosis. In addition, ADM overexpression increased Akt and GSK3β phosphorylation, and Bcl‑2/Bax ratio, and decreased the activation of caspase‑3. These results suggested that ADM protects MSCs against H/SD‑induced apoptosis, which may be mediated via the Akt/GSK3β and Bcl‑2 signaling pathways.
Collapse
Affiliation(s)
- Hongjin Si
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, P.R. China
| | - Yao Zhang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, P.R. China
| | - Yuqing Song
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, P.R. China
| | - Lili Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
5
|
Sakimoto S, Marchetti V, Aguilar E, Lee K, Usui Y, Murinello S, Bucher F, Trombley JK, Fallon R, Wagey R, Peters C, Scheppke EL, Westenskow PD, Friedlander M. CD44 expression in endothelial colony-forming cells regulates neurovascular trophic effect. JCI Insight 2017; 2:e89906. [PMID: 28138561 PMCID: PMC5256141 DOI: 10.1172/jci.insight.89906] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vascular abnormalities are a common component of eye diseases that often lead to vision loss. Vaso-obliteration is associated with inherited retinal degenerations, since photoreceptor atrophy lowers local metabolic demands and vascular support to those regions is no longer required. Given the degree of neurovascular crosstalk in the retina, it may be possible to use one cell type to rescue another cell type in the face of severe stress, such as hypoxia or genetically encoded cell-specific degenerations. Here, we show that intravitreally injected human endothelial colony-forming cells (ECFCs) that can be isolated and differentiated from cord blood in xeno-free media collect in the vitreous cavity and rescue vaso-obliteration and neurodegeneration in animal models of retinal disease. Furthermore, we determined that a subset of the ECFCs was more effective at anatomically and functionally preventing retinopathy; these cells expressed high levels of CD44, the hyaluronic acid receptor, and IGFBPs (insulin-like growth factor-binding proteins). Injection of cultured media from ECFCs or only recombinant human IGFBPs also rescued the ischemia phenotype. These results help us to understand the mechanism of ECFC-based therapies for ischemic insults and retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Susumu Sakimoto
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | - Edith Aguilar
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Kelsey Lee
- STEMCELL Technologies, Vancouver, British Columbia, Canada
| | - Yoshihiko Usui
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Salome Murinello
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Felicitas Bucher
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | - Regis Fallon
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ravenska Wagey
- STEMCELL Technologies, Vancouver, British Columbia, Canada
| | - Carrie Peters
- STEMCELL Technologies, Vancouver, British Columbia, Canada
| | | | | | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
6
|
Zhao L, Jing Y, Qu L, Meng X, Cao Y, Tan H. Expression of adrenomedullin in rats after spinal cord injury and intervention effect of recombinant human erythropoietin. Exp Ther Med 2016; 12:3680-3684. [PMID: 28101163 PMCID: PMC5228177 DOI: 10.3892/etm.2016.3832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/19/2016] [Indexed: 11/14/2022] Open
Abstract
The expression of adrenomedullin (ADM) in injured tissue of rat spinal cord was observed and the effect of recombinant human erythropoietin was analyzed. A total of 45 Sprague-Dawley rats were selected and divided into 3 equal groups including, a sham-operation group in which rats received an excision of vertebral plate; a spinal cord injury model group and a recombinant human erythropoietin group in which rats with spinal cord injury received a caudal vein injection of 300 units recombinant human erythropoietin after injury. Hematoxylin and eosin staining was performed to observe the spinal cord injury conditions. Immunohistochemical staining was performed to observe the expression of ADM. Pathologic changes in the group of recombinant human erythropoietin at various times were significantly less severe than those in the group of spinal cord injury model. The expression of ADM was increased particularly in the group of recombinant human erythropoietin (P<0.01). The improved Tarlov scores of the group of spinal cord injury model and the group of recombinant human erythropoietin were lower than those of the sham-operation group at 3, 6 and 9 days (P<0.01). Thus, the recombinant human erythropoietin is capable of alleviating the secondary injury of spinal cord. One of the mechanisms may be achieved by promoting the increase of ADM expression.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Orthopeadic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yu Jing
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Lin Qu
- Department of Orthopeadic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xiangwei Meng
- Department of Orthopeadic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yang Cao
- Department of Orthopeadic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Huibing Tan
- Department of Anatomy Teaching and Research, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
7
|
Adrenomedullin: A potential therapeutic target for retinochoroidal disease. Prog Retin Eye Res 2016; 52:112-29. [DOI: 10.1016/j.preteyeres.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
|
8
|
Chen Z, Liu G, Xiao Y, Lu P. Adrenomedullin22-52 suppresses high-glucose-induced migration, proliferation, and tube formation of human retinal endothelial cells. Mol Vis 2014; 20:259-69. [PMID: 24623968 PMCID: PMC3945807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/28/2014] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To investigate the roles of an adrenomedullin receptor antagonist (adrenomedullin(22-52)) on high-glucose-induced human retinal endothelial cell (HREC) in vitro cell biology. METHODS HRECs were cultured with different concentrations of glucose and adrenomedullin(22-52). The proliferation of HRECs was evaluated by a cell counting kit-8 assay. Cell migration was assessed by scratch wound assay, and cell sprouting was detected by tube formation assay. The mRNA levels of adrenomedullin (ADM), vascular endothelial growth factor (VEGF), ADAMTS-1, and TSP-1 were measured by reverse-transcription polymerase chain reaction (RT-PCR). The VEGF and phosphatidylinositol 3' kinase (PI3K) pathway protein expression levels were assessed by western blot analysis. RESULTS Compared with 5 mM normal glucose treatment, 30 mM glucose significantly promoted the migration of HRECs, which was attenuated by 1 μg/ml adrenomedullin(22-52). The proliferation of HRECs was also suppressed by 1 μg/ml adrenomedullin(22-52). Furthermore, compared with other groups, 5 μg/ml of adrenomedullin(22-52) was shown to suppress high-glucose-induced tube formation of HRECs. With adrenomedullin(22-52) treatment, the mRNA level of ADAMTS-1 was significantly increased. Moreover, western blot and RT-PCR analyses showed that HRECs treated with 30 mM glucose exhibited increased VEGF and PI3K pathway protein levels, while the expression levels were suppressed by 5 μg/ml of adrenomedullin(22-52). CONCLUSIONS Our study indicated that adrenomedullin(22-52) mediated the migration, proliferation and tube formation after HRECs were exposed to high levels of glucose, which may be related to its ability to affect the expression of VEGF through the PI3K pathway.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, China PR
| | - Gaoqin Liu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, China PR,Jiangsu Clinical Immunology Institute, the First Affiliated Hospital of Soochow University, Suzhou, China PR
| | - Yanhui Xiao
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, China PR
| | - Peirong Lu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, China PR,Jiangsu Clinical Immunology Institute, the First Affiliated Hospital of Soochow University, Suzhou, China PR
| |
Collapse
|