1
|
Ho M, Bianchi G, Anderson KC. Proteomics-inspired precision medicine for treating and understanding multiple myeloma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020; 5:67-85. [PMID: 34414281 DOI: 10.1080/23808993.2020.1732205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction Remarkable progress in molecular characterization methods has led to significant improvements in how we manage multiple myeloma (MM). The introduction of novel therapies has led to significant improvements in overall survival over the past 10 years. However, MM remains incurable and treatment choice is largely based on outdated risk-adaptive strategies that do not factor in improved treatment outcomes in the context of modern therapies. Areas covered This review discusses current risk-adaptive strategies in MM and the clinical application of proteomics in the monitoring of treatment response, disease progression, and minimal residual disease (MRD). We also discuss promising biomarkers of disease progression, treatment response, and chemoresistance. Finally, we will discuss an immunomics-based approach to monoclonal antibody (mAb), vaccine, and CAR-T cell development. Expert opinion It is an exciting era in oncology with basic scientific knowledge translating in novel therapeutic approaches to improve patient outcomes. With the advent of effective immunotherapies and targeted therapies, it has become crucial to identify biomarkers to aid in the stratification of patients based on anticipated sensitivity to chemotherapy. As a paradigm of diseases highly dependent on protein homeostasis, multiple myeloma provides the perfect opportunity to investigate the use of proteomics to aid in precision medicine.
Collapse
Affiliation(s)
- Matthew Ho
- UCD School of Medicine, College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Giada Bianchi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Guang MHZ, McCann A, Bianchi G, Zhang L, Dowling P, Bazou D, O’Gorman P, Anderson KC. Overcoming multiple myeloma drug resistance in the era of cancer 'omics'. Leuk Lymphoma 2018; 59:542-561. [PMID: 28610537 PMCID: PMC6152877 DOI: 10.1080/10428194.2017.1337115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple myeloma (MM) is among the most compelling examples of cancer in which research has markedly improved the length and quality of lives of those afflicted. Research efforts have led to 18 newly approved treatments over the last 12 years, including seven in 2015. However, despite significant improvement in overall survival, MM remains incurable as most patients inevitably, yet unpredictably, develop refractory disease. Recent advances in high-throughput 'omics' techniques afford us an unprecedented opportunity to (1) understand drug resistance at the genomic, transcriptomic, and proteomic level; (2) discover novel diagnostic, prognostic, and therapeutic biomarkers; (3) develop novel therapeutic targets and rational drug combinations; and (4) optimize risk-adapted strategies to circumvent drug resistance, thus bringing us closer to a cure for MM. In this review, we provide an overview of 'omics' technologies in MM biomarker and drug discovery, highlighting recent insights into MM drug resistance gleaned from the use of 'omics' techniques. Moving from the bench to bedside, we also highlight future trends in MM, with a focus on the potential use of 'omics' technologies as diagnostic, prognostic, or response/relapse monitoring tools to guide therapeutic decisions anchored upon highly individualized, targeted, durable, and rationally informed combination therapies with curative potential.
Collapse
Affiliation(s)
- Matthew Ho Zhi Guang
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
- UCD School of Medicine, College of Health and Agricultural
Science and UCD Conway Institute of Biomolecular and Biomedical Research, University
College Dublin, UCD, Belfield, Dublin 4, Ireland
| | - Amanda McCann
- UCD School of Medicine, College of Health and Agricultural
Science and UCD Conway Institute of Biomolecular and Biomedical Research, University
College Dublin, UCD, Belfield, Dublin 4, Ireland
| | - Giada Bianchi
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
| | - Li Zhang
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
- Department of Hematology, West China Hospital, Sichuan
University, Chengdu, China
| | - Paul Dowling
- Department of Haematology, Mater Misericordiae University
Hospital, Dublin 7, Ireland
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University
Hospital, Dublin 7, Ireland
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University
Hospital, Dublin 7, Ireland
| | - Kenneth C. Anderson
- Department of Medical Oncology, Jerome Lipper Multiple
Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
Massachusetts, USA
| |
Collapse
|