1
|
Veshchitskii A, Shkorbatova P, Merkulyeva N. Neurochemical atlas of the rabbit spinal cord. Brain Struct Funct 2024; 229:2011-2027. [PMID: 39115602 DOI: 10.1007/s00429-024-02842-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/15/2024] [Indexed: 10/18/2024]
Abstract
Complex neurophysiological and morphologic experiments require suitable animal models for investigation. The rabbit is one of the most successful models for studying spinal cord functions owing to its substantial size. However, achieving precise surgical access to specific spinal regions requires a thorough understanding of the spinal cord's cytoarchitectonic structure and its spatial relationship with the vertebrae. The comprehensive anatomo-neurochemical atlases of the spinal cord are invaluable for attaining such insight. While such atlases exist for some rodents and primates, none exist for rabbits. We have developed a spinal cord atlas for rabbits to bridge this gap. Utilizing various neurochemical markers-including antibodies to NeuN, calbindin 28 kDa, parvalbumin, choline acetyltransferase, nitric oxide synthase, and non-phosphorylated heavy-chain neurofilaments (SMI-32 antibody)-we present the visualization of diverse spinal neuronal populations, various spinal cord metrics, stereotaxic maps of transverse slices for each spinal segment, and a spatial map detailing the intricate relationship between the spinal cord and the vertebrae across its entire length.
Collapse
Affiliation(s)
- Aleksandr Veshchitskii
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia, 199034
| | - Polina Shkorbatova
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia, 199034
| | - Natalia Merkulyeva
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia, 199034.
| |
Collapse
|
2
|
Pérez-Boyero D, Hernández-Pérez C, Valero J, Cabedo VL, Alonso JR, Díaz D, Weruaga E. The eNOS isoform exhibits increased expression and activation in the main olfactory bulb of nNOS knock-out mice. Front Cell Neurosci 2023; 17:1120836. [PMID: 37006472 PMCID: PMC10061100 DOI: 10.3389/fncel.2023.1120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The main olfactory bulb (MOB) is a neural structure that processes olfactory information. Among the neurotransmitters present in the MOB, nitric oxide (NO) is particularly relevant as it performs a wide variety of functions. In this structure, NO is produced mainly by neuronal nitric oxide synthase (nNOS) but also by inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS). The MOB is considered a region with great plasticity and the different NOS also show great plasticity. Therefore, it could be considered that this plasticity could compensate for various dysfunctional and pathological alterations. We examined the possible plasticity of iNOS and eNOS in the MOB in the absence of nNOS. For this, wild-type and nNOS knock-out (nNOS-KO) mice were used. We assessed whether the absence of nNOS expression could affect the olfactory capacity of mice, followed by the analysis of the expression and distribution of the NOS isoforms using qPCR and immunofluorescence. NO production in MOB was examined using both the Griess and histochemical NADPH-diaphorase reactions. The results indicate nNOS-KO mice have reduced olfactory capacity. We observed that in the nNOS-KO animal, there is an increase both in the expression of eNOS and NADPH-diaphorase, but no apparent change in the level of NO generated in the MOB. It can be concluded that the level of eNOS in the MOB of nNOS-KO is related to the maintenance of normal levels of NO. Therefore, our findings suggest that nNOS could be essential for the proper functioning of the olfactory system.
Collapse
Affiliation(s)
- David Pérez-Boyero
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Hernández-Pérez
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jorge Valero
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Valeria Lorena Cabedo
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José Ramón Alonso
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - David Díaz
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: David Díaz,
| | - Eduardo Weruaga
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Eduardo Weruaga,
| |
Collapse
|
3
|
Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Graybuck LT, Peeler DJ, Mukherjee S, Chen W, Pun SH, Sellers DL, Tasic B, Seelig G. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018; 360:176-182. [PMID: 29545511 PMCID: PMC7643870 DOI: 10.1126/science.aam8999] [Citation(s) in RCA: 895] [Impact Index Per Article: 127.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 09/30/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
Abstract
To facilitate scalable profiling of single cells, we developed split-pool ligation-based transcriptome sequencing (SPLiT-seq), a single-cell RNA-seq (scRNA-seq) method that labels the cellular origin of RNA through combinatorial barcoding. SPLiT-seq is compatible with fixed cells or nuclei, allows efficient sample multiplexing, and requires no customized equipment. We used SPLiT-seq to analyze 156,049 single-nucleus transcriptomes from postnatal day 2 and 11 mouse brains and spinal cords. More than 100 cell types were identified, with gene expression patterns corresponding to cellular function, regional specificity, and stage of differentiation. Pseudotime analysis revealed transcriptional programs driving four developmental lineages, providing a snapshot of early postnatal development in the murine central nervous system. SPLiT-seq provides a path toward comprehensive single-cell transcriptomic analysis of other similarly complex multicellular systems.
Collapse
Affiliation(s)
| | - Charles M Roco
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Richard A Muscat
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Anna Kuchina
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Paul Sample
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - David J Peeler
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sumit Mukherjee
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Wei Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Drew L Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | | | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Jeon JS, Oh JJ, Kwak HC, Yun HY, Kim HC, Kim YM, Oh SJ, Kim SK. Age-Related Changes in Sulfur Amino Acid Metabolism in Male C57BL/6 Mice. Biomol Ther (Seoul) 2018; 26:167-174. [PMID: 28605831 PMCID: PMC5839495 DOI: 10.4062/biomolther.2017.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 11/05/2022] Open
Abstract
Alterations in sulfur amino acid metabolism are associated with an increased risk of a number of common late-life diseases, which raises the possibility that metabolism of sulfur amino acids may change with age. The present study was conducted to understand the age-related changes in hepatic metabolism of sulfur amino acids in 2-, 6-, 18- and 30-month-old male C57BL/6 mice. For this purpose, metabolite profiling of sulfur amino acids from methionine to taurine or glutathione (GSH) was performed. The levels of sulfur amino acids and their metabolites were not significantly different among 2-, 6- and 18-month-old mice, except for plasma GSH and hepatic homocysteine. Plasma total GSH and hepatic total homocysteine levels were significantly higher in 2-month-old mice than those in the other age groups. In contrast, 30-month-old mice exhibited increased hepatic methionine and cysteine, compared with all other groups, but decreased hepatic S-adenosylmethionine (SAM), S-adenosylhomocysteine and homocysteine, relative to 2-month-old mice. No differences in hepatic reduced GSH, GSH disulfide, or taurine were observed. The hepatic changes in homocysteine and cysteine may be attributed to upregulation of cystathionine β-synthase and down-regulation of γ-glutamylcysteine ligase in the aged mice. The elevation of hepatic cysteine levels may be involved in the maintenance of hepatic GSH levels. The opposite changes of methionine and SAM suggest that the regulatory role of SAM in hepatic sulfur amino acid metabolism may be impaired in 30-month-old mice.
Collapse
Affiliation(s)
- Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Ja Oh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hui Chan Kwak
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hwi-Yeol Yun
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyoung Chin Kim
- Bio-Evaluation Center, KRIBB, Ochang 28116, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Soo Jin Oh
- Bio-Evaluation Center, KRIBB, Ochang 28116, Republic of Korea.,New Drug Development Center, ASAN Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
5
|
Lisakovska O, Shymanskyy I, Mazanova A, Khomenko A, Veliky M. Vitamin D3 protects against prednisolone-induced liver injury associated with the impairment of the hepatic NF-κB/iNOS/NO pathway. Biochem Cell Biol 2017; 95:213-222. [DOI: 10.1139/bcb-2016-0070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The study was carried out to define whether prednisolone-induced damage to hepatic cells is accompanied by excessive nitric oxide (NO) levels associated with nuclear factor kappa B (NF-κB)/inducible NO synthase (iNOS) activation and evaluate the efficacy of the treatment with vitamin D3. Histopathological examination, activities of liver transaminases (alanine aminotransferase and aspartate aminotransferase), and cell death assays consistently showed that prednisolone (5 mg/kg body weight, 30 days) induces chronic liver injury in female Wistar rats. Specifically, increased hepatocellular necrosis and caspase-3-dependent apoptosis were observed. Prednisolone enhanced iNOS protein expression, NO generation, and tyrosine nitration in liver cells. Despite unchanged hepatic level of the NF-κB/p65 protein, prednisolone increased inhibitory κB-α (IκB-α) degradation, nuclear translocation, and phosphorylation of NF-κB/p65 at Ser311, indicating that NF-κB activation can be involved in the induction of iNOS/NO. All changes were associated with a 2.9-fold decrease in the serum content of 25-hydroxyvitamin D3 and significant reduction of hepatic vitamin D3 receptor (VDR) expression that points reliably to vitamin D3 deficiency and failures in VDR signaling. Vitamin D3 co-administration (100 IU/rat, 30 days) prevented glucocorticoid-evoked abnormalities in hepatic tissue. In conclusion, prednisolone-induced liver disturbances were associated with the impairment of NF-κB/iNOS/NO responses that can be ameliorated by vitamin D3 treatment through VDR-mediated mechanisms.
Collapse
Affiliation(s)
- Olha Lisakovska
- O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01601, Leontovich str., 9, Kyiv, Ukraine
- O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01601, Leontovich str., 9, Kyiv, Ukraine
| | - Ihor Shymanskyy
- O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01601, Leontovich str., 9, Kyiv, Ukraine
- O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01601, Leontovich str., 9, Kyiv, Ukraine
| | - Anna Mazanova
- O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01601, Leontovich str., 9, Kyiv, Ukraine
- O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01601, Leontovich str., 9, Kyiv, Ukraine
| | - Anna Khomenko
- O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01601, Leontovich str., 9, Kyiv, Ukraine
- O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01601, Leontovich str., 9, Kyiv, Ukraine
| | - Mykola Veliky
- O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01601, Leontovich str., 9, Kyiv, Ukraine
- O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01601, Leontovich str., 9, Kyiv, Ukraine
| |
Collapse
|
6
|
Lemon JA, Aksenov V, Samigullina R, Aksenov S, Rodgers WH, Rollo CD, Boreham DR. A multi-ingredient dietary supplement abolishes large-scale brain cell loss, improves sensory function, and prevents neuronal atrophy in aging mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:382-404. [PMID: 27199101 DOI: 10.1002/em.22019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
Transgenic growth hormone mice (TGM) are a recognized model of accelerated aging with characteristics including chronic oxidative stress, reduced longevity, mitochondrial dysfunction, insulin resistance, muscle wasting, and elevated inflammatory processes. Growth hormone/IGF-1 activate the Target of Rapamycin known to promote aging. TGM particularly express severe cognitive decline. We previously reported that a multi-ingredient dietary supplement (MDS) designed to offset five mechanisms associated with aging extended longevity, ameliorated cognitive deterioration and significantly reduced age-related physical deterioration in both normal mice and TGM. Here we report that TGM lose more than 50% of cells in midbrain regions, including the cerebellum and olfactory bulb. This is comparable to severe Alzheimer's disease and likely explains their striking age-related cognitive impairment. We also demonstrate that the MDS completely abrogates this severe brain cell loss, reverses cognitive decline and augments sensory and motor function in aged mice. Additionally, histological examination of retinal structure revealed markers consistent with higher numbers of photoreceptor cells in aging and supplemented mice. We know of no other treatment with such efficacy, highlighting the potential for prevention or amelioration of human neuropathologies that are similarly associated with oxidative stress, inflammation and cellular dysfunction. Environ. Mol. Mutagen. 57:382-404, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J A Lemon
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - V Aksenov
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - R Samigullina
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - S Aksenov
- Department of Pathology, New York-Presbyterian/Queens Hospital, 56-45 Main Street, Flushing, New York, 11355
| | - W H Rodgers
- Department of Pathology, New York-Presbyterian/Queens Hospital, 56-45 Main Street, Flushing, New York, 11355
| | - C D Rollo
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - D R Boreham
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
- Medical Sciences Division, Northern Ontario School of Medicine, 935 Ramsey Lake Road, Sudbury ON, Canada, P3E 2C6
| |
Collapse
|
7
|
Li L, Zhang Y, Hao J, Liu J, Yu P, Ma F, Mao L. Online electrochemical system as an in vivo method to study dynamic changes of ascorbate in rat brain during 3-methylindole-induced olfactory dysfunction. Analyst 2016; 141:2199-207. [DOI: 10.1039/c6an00064a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study demonstrates the application of an OECS as an in vivo method to investigate the dynamic change of ascorbate in the olfactory bulb of rats during the acute period of olfactory dysfunction.
Collapse
Affiliation(s)
- Lijuan Li
- Department of Otolaryngology Head and Neck Surgery
- Peking University Third Hospital
- Beijing 100191
- China
| | - Yinghong Zhang
- Department of Otolaryngology Head and Neck Surgery
- Peking University Third Hospital
- Beijing 100191
- China
| | - Jie Hao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery
- Peking University Third Hospital
- Beijing 100191
- China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Furong Ma
- Department of Otolaryngology Head and Neck Surgery
- Peking University Third Hospital
- Beijing 100191
- China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
8
|
Kar T, Yildirim Y, Altundağ A, Sonmez M, Kaya A, Colakoglu K, Tekeli H, Cayonu M, Hummel T. The Relationship between Age-Related Macular Degeneration and Olfactory Function. NEURODEGENER DIS 2015; 15:219-24. [DOI: 10.1159/000381216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
|
9
|
Kwak HC, Kim HC, Oh SJ, Kim SK. Effects of age increase on hepatic expression and activity of cytochrome P450 in male C57BL/6 mice. Arch Pharm Res 2014; 38:857-64. [PMID: 25060948 DOI: 10.1007/s12272-014-0452-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Effects of aging on hepatic expression and activity of cytochrome P450 (CYP) isoforms were investigated in male mice aged 2, 6, 18, and 30 months. Microsomal protein, total CYP, cytochrome b5 and NADPH-dependent cytochrome P450 reductase contents in liver were fully expressed in young (2-month-old) mice. Neither Cyp1a1 nor Cyp2c was detected in any aged mice. And Cyp1a2 was maximally expressed at 2 months and decreased with age. Hepatic levels of Cyp2b10 and Cyp3a11 were decreased in 30-month-old mice. Hepatic Cyp2e1 levels were constantly maintained from 2-month to 30-month old mice. Hepatic activities of ethoxyresorufin-O-deethylase and methoxyresorufin-O-demethylase were gradually decreased after 6 months. The 30-month-old mice exhibited the lowest activity of midazolam 1'-hydroxylase. Pentoxyresorufin-O-depenthylase activity was decreased in 30-month-old mice, but not statistically significant. There were no significant differences in hepatic activities of chlorzoxazone 6-hydroxylase and midazolam 4-hydroxylase. The present study shows that increasing age, especially 30-month-old mice, leads to decrease in expression and activity of hepatic CYP isoforms, suggesting that aging mice exhibit poor hepatic drug-metabolizing capacity.
Collapse
Affiliation(s)
- Hui Chan Kwak
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea
| | | | | | | |
Collapse
|
10
|
Gangapuram M, Mazzio E, Eyunni S, Soliman KFA, Redda KK. Synthesis and biological evaluation of substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydropyridin-1-yl]benzamide/benzene sulfonamides as anti-inflammatory agents. Arch Pharm (Weinheim) 2014; 347:360-9. [PMID: 24585402 PMCID: PMC4042835 DOI: 10.1002/ardp.201300379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022]
Abstract
The pharmacological activities of tetrahydropyridine (THP) derivatives are dependent on the substituent ring moiety. In this study, we investigate the anti-inflammatory activities of 12 newly synthesized substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydrobenzamide/benzene sulfonamides (9a-l) in murine BV-2 microglial cells. All compounds were initially screened for attenuation of nitric oxide (NO) production in lipopolysaccharide (LPS) (1 µg/mL)-activated microglial cells. The data show that only SO2 -substituted THPs were effective at sub-lethal concentrations (IC50 values of 12.92 µM (9i), 14.64 µM (9j), 19.63 µM (9k)) relative to L-N6-(1-iminoethyl)lysine positive control (IC50 = 3.1 µM). The most potent SO2 -substituted compound (9i) also blocked the LPS-inducible nitric oxide synthase (iNOS) and attenuated the release of several cytokines including IL-1α, IL-10, and IL-6. These findings establish the moderate immuno-modulating effects of SO2 -substituted THP derivatives.
Collapse
Affiliation(s)
- Madhavi Gangapuram
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | | | | | | | | |
Collapse
|
11
|
Chae YJ, Jeon JH, Lee HJ, Kim IB, Choi JS, Sung KW, Hahn SJ. Escitalopram block of hERG potassium channels. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:23-32. [DOI: 10.1007/s00210-013-0911-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/21/2013] [Indexed: 01/25/2023]
|
12
|
Combined in silico, in vivo, and in vitro studies shed insights into the acute inflammatory response in middle-aged mice. PLoS One 2013; 8:e67419. [PMID: 23844008 PMCID: PMC3699569 DOI: 10.1371/journal.pone.0067419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
We combined in silico, in vivo, and in vitro studies to gain insights into age-dependent changes in acute inflammation in response to bacterial endotoxin (LPS). Time-course cytokine, chemokine, and NO2−/NO3− data from “middle-aged” (6–8 months old) C57BL/6 mice were used to re-parameterize a mechanistic mathematical model of acute inflammation originally calibrated for “young” (2–3 months old) mice. These studies suggested that macrophages from middle-aged mice are more susceptible to cell death, as well as producing higher levels of pro-inflammatory cytokines, vs. macrophages from young mice. In support of the in silico-derived hypotheses, resident peritoneal cells from endotoxemic middle-aged mice exhibited reduced viability and produced elevated levels of TNF-α, IL-6, IL-10, and KC/CXCL1 as compared to cells from young mice. Our studies demonstrate the utility of a combined in silico, in vivo, and in vitro approach to the study of acute inflammation in shock states, and suggest hypotheses with regard to the changes in the cytokine milieu that accompany aging.
Collapse
|