1
|
Waker CA, Kaufman MR, Brown TL. Current State of Preeclampsia Mouse Models: Approaches, Relevance, and Standardization. Front Physiol 2021; 12:681632. [PMID: 34276401 PMCID: PMC8284253 DOI: 10.3389/fphys.2021.681632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R Kaufman
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
2
|
Anderson KB, Andersen AS, Hansen DN, Sinding M, Peters DA, Frøkjaer JB, Sørensen A. Placental transverse relaxation time (T2) estimated by MRI: Normal values and the correlation with birthweight. Acta Obstet Gynecol Scand 2020; 100:934-940. [PMID: 33258106 DOI: 10.1111/aogs.14057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Placental transverse relaxation time (T2) assessed by MRI may have the potential to improve the antenatal identification of small for gestational age. The aims of this study were to provide normal values of placental T2 in relation to gestational age at the time of MRI and to explore the correlation between placental T2 and birthweight. MATERIAL AND METHODS A mixed cohort of 112 singleton pregnancies was retrieved from our placental MRI research database. MRI was performed at 23.6-41.3 weeks of gestation in a 1.5T system (TE (8): 50-440 ms, TR: 4000 ms). Normal pregnancies were defined by uncomplicated pregnancies with normal obstetric outcome and birthweight deviation within ±1 SD of the expected for gestational age. The correlation between placental T2 and birthweight was investigated using the following outcomes; small for gestational age (birthweight ≤-2 SD of the expected for gestational age) and birthweight deviation (birthweight Z-scores). RESULTS In normal pregnancies (n = 27), placenta T2 showed a significant negative linear correlation with gestational age (r = -.91, P = .0001) being 184 ms ± 15.94 ms (mean ± SD) at 20 weeks of gestation and 89 ms ± 15.94 ms at 40 weeks of gestation. Placental T2 was significantly reduced among small-for-gestational-age pregnancies (mean Z-score -1.95, P < .001). Moreover, we found a significant positive correlation between placenta T2 deviation (Z-score) and birthweight deviation (Z-score) (R2 = .26, P = .0001). CONCLUSIONS This study provides normal values of placental T2 to be used in future studies on placental MRI. Placental T2 is closely related to birthweight and may improve the antenatal identification of small-for-gestational-age pregnancies.
Collapse
Affiliation(s)
- Kristi B Anderson
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Anna S Andersen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - Ditte N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark
| | - Jens B Frøkjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Chau K, Bobek G, Xu B, Stait-Gardner T, Price W, Hennessy A, Makris A. Effect of placental growth factor in models of experimental pre-eclampsia and trophoblast invasion. Clin Exp Pharmacol Physiol 2019; 47:49-59. [PMID: 31452230 DOI: 10.1111/1440-1681.13169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Placental growth factor (PlGF) is decreased in early gestation of pregnant women who subsequently develop pre-eclampsia. In this study, pre-emptive treatment with PlGF to prevent pre-eclampsia was evaluated in an in vivo rodent model of experimental pre-eclampsia (EPE) induced by TNF-α and in an in vitro model of human first-trimester trophoblast invasion. Pregnant C57/BL6 mice were treated with recombinant mouse placental growth factor-2 (rmPlGF-2) 100 μg/kg/day IP from gestational day (gd) 10. Animals had EPE induced by continuous TNF-α infusion on gd 13 and were subject to either continuous blood pressure monitoring by radiotelemetry throughout pregnancy or live placenta T2 -weighted magnetic resonance imaging (MRI) to demonstrate placental function on gd 17. There was no difference in BP (P > .99), proteinuria (P = .9) or T2 values on MRI (P = .9) between control and rmPlGF-2-treated animals. On gd 13, animals treated with rmPlGF-2 demonstrated increased placenta PlGF (P = .01) and Toll-like receptor-3 (P = .03) mRNA expression as compared with controls. Fluorescent-labelled human uterine microvascular endothelial cells and HTR8/SVNeo cells were co-cultured on Matrigel™ and treated with recombinant human PlGF (rhPlGF) (10 ng/mL) and/or TNF-α (0.5 ng/mL). Trophoblast integration into endothelial networks was reduced by added TNF-α (P = .006), as was rhPlGF concentration in conditioned media (P < .0001). Cell integration was not ameliorated by addition of rhPlGF (P > .9). Although TNF-α-induced EPE was not reversed with pre-emptive rmPlGF-2, a further trial of pre-emptive rhPlGF in vivo is required to determine whether the absence of effect of rhPlGF demonstrated in vitro precludes PlGF as a preventative therapy for pre-eclampsia.
Collapse
Affiliation(s)
- Katrina Chau
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia.,Vascular Immunology Group, Heart Research Institute, University of Sydney, Newtown, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Gabriele Bobek
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Bei Xu
- Vascular Immunology Group, Heart Research Institute, University of Sydney, Newtown, New South Wales, Australia
| | - Timothy Stait-Gardner
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Campbelltown, New South Wales, Australia
| | - William Price
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Annemarie Hennessy
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia.,Vascular Immunology Group, Heart Research Institute, University of Sydney, Newtown, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Angela Makris
- Vascular Immunology Group, Heart Research Institute, University of Sydney, Newtown, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.,Renal Department, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
4
|
Basak K, Luís Deán-Ben X, Gottschalk S, Reiss M, Razansky D. Non-invasive determination of murine placental and foetal functional parameters with multispectral optoacoustic tomography. LIGHT, SCIENCE & APPLICATIONS 2019; 8:71. [PMID: 31666944 PMCID: PMC6804938 DOI: 10.1038/s41377-019-0181-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 05/12/2023]
Abstract
Despite the importance of placental function in embryonic development, it remains poorly understood and challenging to characterize, primarily due to the lack of non-invasive imaging tools capable of monitoring placental and foetal oxygenation and perfusion parameters during pregnancy. We developed an optoacoustic tomography approach for real-time imaging through entire ~4 cm cross-sections of pregnant mice. Functional changes in both maternal and embryo regions were studied at different gestation days when subjected to an oxygen breathing challenge and perfusion with indocyanine green. Structural phenotyping of the cross-sectional scans highlighted different internal organs, whereas multi-wavelength acquisitions enabled non-invasive label-free spectroscopic assessment of blood-oxygenation parameters in foeto-placental regions, rendering a strong correlation with the amount of oxygen administered. Likewise, the placental function in protecting the embryo from extrinsically administered agents was substantiated. The proposed methodology may potentially further serve as a probing mechanism to appraise embryo development during pregnancy in the clinical setting.
Collapse
Affiliation(s)
- Kausik Basak
- Faculty of Medicine, Technical University Munich, Munich, Germany
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Present Address: Kausik Basak, Institute of Advanced Studies and Research, JIS University, Kolkata, West Bengal India
| | - Xosé Luís Deán-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Sven Gottschalk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Michael Reiss
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Faculty of Medicine, Technical University Munich, Munich, Germany
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Soares MJ, Iqbal K, Kozai K. Hypoxia and Placental Development. Birth Defects Res 2018; 109:1309-1329. [PMID: 29105383 DOI: 10.1002/bdr2.1135] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022]
Abstract
Hemochorial placentation is orchestrated through highly regulated temporal and spatial decisions governing the fate of trophoblast stem/progenitor cells. Trophoblast cell acquisition of specializations facilitating invasion and uterine spiral artery remodeling is a labile process, sensitive to the environment, and represents a process that is vulnerable to dysmorphogenesis in pathologic states. Hypoxia is a signal guiding placental development, and molecular mechanisms directing cellular adaptations to low oxygen tension are integral to trophoblast cell differentiation and placentation. Hypoxia can also be used as an experimental tool to investigate regulatory processes controlling hemochorial placentation. These developmental processes are conserved in mouse, rat, and human placentation. Consequently, elements of these developmental events can be modeled and hypotheses tested in trophoblast stem cells and in genetically manipulated rodents. Hypoxia is also a consequence of a failed placenta, yielding pathologies that can adversely affect maternal adjustments to pregnancy, fetal health, and susceptibility to adult disease. The capacity of the placenta for adaptation to environmental challenges highlights the importance of its plasticity in safeguarding a healthy pregnancy. Birth Defects Research 109:1309-1329, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas.,Fetal Health Research, Children's Research Institute, Children's Mercy, Kansas City, Missouri
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
6
|
Langguth M, Fassin M, Alexander S, Turner KM, Burne THJ. No effect of prenatal vitamin D deficiency on autism-relevant behaviours in multiple inbred strains of mice. Behav Brain Res 2018; 348:42-52. [PMID: 29655594 DOI: 10.1016/j.bbr.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/01/2022]
Abstract
Autism Spectrum Disorders (ASD) is a group of neurodevelopmental disorders commonly characterised by verbal and non-verbal communication deficits, impaired social interaction and repetitive, stereotypic behaviours. The aetiology of ASD is most likely a combination of genetic and environmental factors. Epidemiological evidence suggests that prenatal vitamin D deficiency is associated with an increased incidence of ASD. The overall aim of this study was to investigate prenatal vitamin D deficiency on ASD-related behavioural phenotypes in multiple inbred strains of mice. We included two commonly used inbred mouse strains (C57BL/6J and BALB/c) as well as inbred BTBR mice, which show ASD-related behaviours, such as excessive self-grooming, hyperlocomotion, social interaction deficits and altered communication. We also studied the effect of prenatal vitamin D deficiency in a fourth strain; an F1 cross of C57BL/6J x BTBR mice, which have a partial BTBR phenotype. To implement prenatal vitamin D deficiency, female mice were placed on vitamin D deplete diets for ten weeks, including mating and gestation, until littering, when all dams were switched to the control diet. Behavioural symptoms related to ASD were measured, including isolation-induced ultrasonic vocalisations to measure communication, the three-chambered social interaction task to observe social interaction, the open field test to examine hyperlocomotion, assessment of grooming and rearing behaviour and finally the active place avoidance task to observe spatial learning and memory in response to a mild foot shock. Prenatal vitamin D deficiency had a negative impact on preference for social novelty in C57BL/6J mice, despite similar vocalisation phenotypes, and prenatal vitamin D-deficient F1 mice were found to be hypolocomotive in the open field test yet performed better on the active place avoidance task. Despite clear differences between strains, there were no other consistent significant main effects of maternal diet on the behaviour of the offspring. Vitamin D deficiency has been implicated as a risk factor for ASD and these data show that there is greater variation between different inbred strains in ASD-related behaviour, suggesting that prenatal vitamin D deficiency is not sufficient to recapitulate an ASD phenotype in multiple inbred strains of mice.
Collapse
Affiliation(s)
- M Langguth
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - M Fassin
- Faculté de Médecine et de Pharmacie, University of Mons, Mons, Belgium
| | - S Alexander
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Queensland, Australia
| | - K M Turner
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - T H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Queensland, Australia.
| |
Collapse
|
7
|
Bobek G, Stait-Gardner T, Price W, Makris A, Hennessy A. Quantification of placental change in mouse models of preeclampsia using magnetic resonance microscopy. Eur J Histochem 2018; 62:2868. [PMID: 29943952 PMCID: PMC6038111 DOI: 10.4081/ejh.2018.2868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 02/01/2023] Open
Abstract
Abnormal development of the placenta is postulated to be central to the aetiology of preeclampsia. This study investigates changes in placental histopathology in mouse models of preeclampsia compared to the morphology using magnetic resonance microscopy (MRM) (11.7 T) of intact ex vivo tissue followed by 3D analysis of the image data. Here, C57BL/6JArc pregnant mice were subject to either normal pregnancy (n=3), or to one of two experimental models of preeclampsia; TNF-α infusion (n=3) or reduced uterine perfusion pressure (RUPP) (n=3). Placental tissue was collected at gestational day (gd) 17, fixed in formalin and incubated with Magnavist™ contrast agent, and high resolution images (50 μm × 50 μm × 50 μm voxels) obtained by magnetic resonance imaging at 11.74 T. Visual segmentation into placental subregions and three dimensional (3D) reconstruction followed by volume analysis was performed with Amira™ 3D analysis software. The significance of differences between treatment groups in total and regional volumes was assessed. In a single placenta the volumes measure by standard histology were compared. Three placentas from each animal were imaged, segmented into anatomical regions and 3D reconstructions generated. Total placental volume, labyrinth and decidual volume were not significantly different between groups. The junctional zone volume was found to be significantly larger in the RUPP animals (18.5±1.5 mm3) compared to TNF-α infused animals (15.8±1.5) or control animals (15.0±0.7, P<0.01). However, the decidual/junctional zone volume was smaller in the TNF-a compared to control animals (P<0.05). Placental structural change in experimental models of preeclampsia is able to be visualized and quantified using MRM and 3-D analysis. These techniques could prove to be a powerful tool in examining changes in placental morphology.
Collapse
|
8
|
Arthuis CJ, Novell A, Raes F, Escoffre JM, Lerondel S, Le Pape A, Bouakaz A, Perrotin F. Real-Time Monitoring of Placental Oxygenation during Maternal Hypoxia and Hyperoxygenation Using Photoacoustic Imaging. PLoS One 2017; 12:e0169850. [PMID: 28081216 PMCID: PMC5232166 DOI: 10.1371/journal.pone.0169850] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022] Open
Abstract
Purpose This preclinical study aimed to evaluate placental oxygenation in pregnant rats by real-time photoacoustic (PA) imaging on different days of gestation and to specify variations in placental oxygen saturation under conditions of maternal hypoxia and hyperoxygenation. Material and methods Placentas of fifteen Sprague-Dawley rats were examined on days 14, 17, and 20 of pregnancy with a PA imaging system coupled to high-resolution ultrasound imaging. Pregnant rats were successively exposed to hyperoxygenated and hypoxic conditions by changing the oxygen concentration in inhaled gas. Tissue oxygen saturation was quantitatively analyzed by real-time PA imaging in the skin and 3 regions of the placenta. All procedures were performed in accordance with applicable ethical guidelines and approved by the animal care committee. Results Maternal hypoxia was associated with significantly greater decrease in blood oxygen saturation (ΔO2 Saturation) in the skin (70.74% ±7.65) than in the mesometrial triangle (32.66% ±5.75) or other placental areas (labyrinth: 18.58% ± 6.61; basal zone: 13.13% ±5.72) on different days of pregnancy (P<0.001). ΔO2 Saturation did not differ significantly between the labyrinth, the basal zone, and the decidua. After the period of hypoxia, maternal hyperoxygenation led to a significant rise in oxygen saturation, which returned to its initial values in the different placental regions (P<0.001). Conclusions PA imaging enables the variation of blood oxygen saturation to be monitored in the placenta during maternal hypoxia or hyperoxygenation. This first preclinical study suggests that the placenta plays an important role in protecting the fetus against maternal hypoxia.
Collapse
Affiliation(s)
- Chloé J. Arthuis
- Inserm U930, François Rabelais University, Tours, France
- University Hospital Center of Tours, Department of Obstetrics, Gynecology and Fetal Medicine, Tours, France
- * E-mail:
| | - Anthony Novell
- Inserm U930, François Rabelais University, Tours, France
| | - Florian Raes
- PHENOMIN-TAAM-UPS44, Center for Small Animal Imaging (CIPA), CNRS Orléans, France
| | | | - Stéphanie Lerondel
- PHENOMIN-TAAM-UPS44, Center for Small Animal Imaging (CIPA), CNRS Orléans, France
| | - Alain Le Pape
- PHENOMIN-TAAM-UPS44, Center for Small Animal Imaging (CIPA), CNRS Orléans, France
| | - Ayache Bouakaz
- Inserm U930, François Rabelais University, Tours, France
| | - Franck Perrotin
- Inserm U930, François Rabelais University, Tours, France
- University Hospital Center of Tours, Department of Obstetrics, Gynecology and Fetal Medicine, Tours, France
| |
Collapse
|
9
|
Charlton F, Bobek G, Stait-Gardner T, Price WS, Mirabito Colafella KM, Xu B, Makris A, Rye KA, Hennessy A. The protective effect of apolipoprotein in models of trophoblast invasion and preeclampsia. Am J Physiol Regul Integr Comp Physiol 2017; 312:R40-R48. [DOI: 10.1152/ajpregu.00331.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/07/2016] [Accepted: 10/27/2016] [Indexed: 01/29/2023]
Abstract
Preeclampsia is a hypertensive disorder of pregnancy. It is associated with abnormal placentation via poor placental invasion of the uterine vasculature by trophoblast cells, leading to poor placental perfusion, oxidative stress, and inflammation, all of which are implicated in its pathogenesis. A dyslipidemia characterized by low plasma levels of high-density lipoproteins (HDL) and elevated triglycerides has been described in preeclampsia. Apolipoprotein A-I (apoA-I), a constituent of HDL is an anti-inflammatory agent. This study investigated whether apoA-I protects against hypertension and adverse placental changes in a proinflammatory cytokine (TNF-α)-induced model of preeclampsia. Further, this study investigated whether apoA-I protects against the inhibitory effect of TNF-α in a human in vitro model of trophoblast invasion. Administration of apoA-I to pregnant mice before infusion with TNF-α resulted in a significant reduction in the cytokine-induced increase in systolic blood pressure. MRI measurement of T2 relaxation, a parameter that is tissue specific and sensitive to physiological changes within tissues, showed a reversal of TNF-α-induced placental changes. Preincubation of endothelial cells with apoA-I protected against the TNF-α-induced inhibition of HTR-8/SVneo (trophoblast) cell integration into endothelial (UtMVEC) networks. These data suggest that a healthy lipid profile may affect pregnancy outcomes by priming endothelial cells in preparation for trophoblast invasion.
Collapse
Affiliation(s)
- Francesca Charlton
- Vascular Immunology Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Lipid Research Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Gabriele Bobek
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- Nanoscale Organisation and Dynamics, School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia; and
| | - Tim Stait-Gardner
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- Nanoscale Organisation and Dynamics, School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia; and
| | - William S. Price
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- Nanoscale Organisation and Dynamics, School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia; and
| | | | - Bei Xu
- Vascular Immunology Group, The Heart Research Institute, Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Angela Makris
- Vascular Immunology Group, The Heart Research Institute, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Annemarie Hennessy
- Vascular Immunology Group, The Heart Research Institute, Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- Nanoscale Organisation and Dynamics, School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia; and
| |
Collapse
|
10
|
Schabel MC, Roberts VHJ, Lo JO, Platt S, Grant KA, Frias AE, Kroenke CD. Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level-dependent contrast. Magn Reson Med 2015; 76:1551-1562. [PMID: 26599502 DOI: 10.1002/mrm.26052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE To characterize spatial patterns of T2* in the placenta of the rhesus macaque (Macaca mulatta), to correlate these patterns with placental perfusion determined using dynamic contrast-enhanced MRI (DCE-MRI), and to evaluate the potential for using the blood oxygen level-dependent effect to quantify placental perfusion without the use of exogenous contrast reagent. METHODS MRI was performed on three pregnant rhesus macaques at gestational day 110. Multiecho spoiled gradient echo measurements were used to compute maps of T2*. Spatial maxima in these maps were compared with foci of early enhancement determined by DCE-MRI. RESULTS Local maxima in T2* maps were strongly correlated with spiral arteries identified by DCE-MRI, with mean spatial separations ranging from 2.34 to 6.11 mm in the three animals studied. Spatial patterns of R2* ( = 1/ T2*) within individual placental lobules can be quantitatively analyzed using a simple model to estimate fetal arterial oxyhemoglobin concentration [Hbo,f] and a parameter viPS/Φ, reflecting oxygen transport to the fetus. Estimated mean values of [Hbo,f] ranged from 4.25 mM to 4.46 mM, whereas viPS/Φ ranged from 2.80 × 105 cm-3 to 1.61 × 106 cm-3 . CONCLUSIONS Maternal spiral arteries show strong spatial correlation with foci of extended T2* observed in the primate placenta. A simple model of oxygen transport accurately describes the spatial dependence of R2* within placental lobules and enables assessment of placental function and oxygenation without requiring administration of an exogenous contrast reagent. Magn Reson Med 76:1551-1562, 2016. © 2015 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- M C Schabel
- Advanced Imaging Research Center, Oregon Health & Science University.,Utah Center for Advanced Imaging Research, University of Utah
| | - V H J Roberts
- Division of Diabetes, Obesity & Metabolism, Oregon Health & Science University
| | - J O Lo
- Division of Diabetes, Obesity & Metabolism, Oregon Health & Science University
| | - S Platt
- Division of Neuroscience, Oregon National Primate Research Center
| | - K A Grant
- Division of Neuroscience, Oregon National Primate Research Center.,Department of Behavioral Neuroscience, Oregon Health & Science University
| | - A E Frias
- Division of Diabetes, Obesity & Metabolism, Oregon Health & Science University.,Division of Developmental & Reproductive Sciences, Oregon National Primate Research Center.,Department of Obstetrics & Gynecology, Oregon Health & Science University
| | - C D Kroenke
- Advanced Imaging Research Center, Oregon Health & Science University.,Division of Neuroscience, Oregon National Primate Research Center.,Department of Behavioral Neuroscience, Oregon Health & Science University
| |
Collapse
|
11
|
Krishnamurthy U, Szalai G, Shen Y, Xu Z, Yadav BK, Tarca AL, Chaiworapongsa T, Hernandez-Andrade E, Than NG, Haacke EM, Romero R, D Med Sci, Neelavalli J. Longitudinal Changes in Placental Magnetic Resonance Imaging Relaxation Parameter in Murine Pregnancy: Compartmental Analysis. Gynecol Obstet Invest 2015; 81:193-201. [PMID: 26336923 PMCID: PMC4769121 DOI: 10.1159/000431223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/06/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To quantify gestation-dependent longitudinal changes in the magnetic resonance transverse relaxation time (T2) parameter of the major constituent regions of the mouse placenta and to evaluate their relative contributions to changes in overall placental T2. METHODS Timed-pregnant CD-1 mice underwent magnetic resonance imaging at 7.0 T field strength, on gestational day 13 (GD13), GD15 and GD17. T2 of the placenta and its constituent high and low blood perfusion regions were quantified. A linear mixed-effects model was used to fit the T2 across gestation, and the significance of coefficients was tested. RESULTS A decrease in the T2 values of the placenta and its constituent regions was observed across gestation. The temporal change in T2 was estimated to be -1.85 ms/GD (p < 0.0001) for the placenta, -1.00 ms/GD (p < 0.001) for the high-perfusion zones (HPZs) and -1.66 ms/GD (p < 0.0001) for the low-perfusion zones (LPZs). CONCLUSION T2 of the constituent zones of the murine placenta decreases with advancing gestation. While the T2 of the LPZ is smaller than that of the HPZ, there is no difference in their decrease rate relative to that of the whole placenta (p = 0.24). The results suggest an increased role of constituent volume fractions in affecting overall gestation-dependent placental T2 decrease in mice.
Collapse
Affiliation(s)
- Uday Krishnamurthy
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Gabor Szalai
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Yimin Shen
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhonghui Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Brijesh Kumar Yadav
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ewart Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | | | - D Med Sci
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Jaladhar Neelavalli
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
12
|
Krishnamurthy U, Szalai G, Neelavalli J, Shen Y, Chaiworapongsa T, Hernandez-Andrade E, Than NG, Xu Z, Yeo L, Haacke M, Romero R. Quantitative T2 changes and susceptibility-weighted magnetic resonance imaging in murine pregnancy. Gynecol Obstet Invest 2014; 78:33-40. [PMID: 24861575 PMCID: PMC4119876 DOI: 10.1159/000362552] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate gestational age-dependent changes in the T2 relaxation time in normal murine placentas in vivo. The role of susceptibility-weighted imaging (SWI) in visualization of the murine fetal anatomy was also elucidated. METHODS Timed-pregnant CD-1 mice at gestational day (GD) 12 and GD17 underwent magnetic resonance imaging. Multi-echo spin echo and SWI data were acquired. The placental T2 values on GD12 and GD17 were quantified. To account for the influence of systemic maternal physiological factors on placental perfusion, maternal muscle was used as a reference for T2 normalization. A linear mixed-effects model was used to fit the normalized T2 values, and the significance of the coefficients was tested. Fetal SWI images were processed and reviewed for venous vasculature and skeletal structures. RESULTS The average placental T2 value decreased significantly on GD17 (40.17 ± 4.10 ms) compared to the value on GD12 (55.78 ± 8.13 ms). The difference in normalized T2 values also remained significant (p = 0.001). Using SWI, major fetal venous structures like the cardinal vein, the subcardinal vein, and the portal vein were visualized on GD12. In addition, fetal skeletal structures could also be discerned on GD17. CONCLUSION The T2 value of a normal murine placenta decreases with advancing gestation. SWI provided clear visualization of the fetal venous vasculature and bony structures. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Uday Krishnamurthy
- Department of Radiology, Wayne State University School of Medicine, Detroit, Mich., USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chang H, Tran T, Billman GE, Julian MW, Hamlin RL, Simonetti OP, Ambrosio G, Baker PB, Shao G, Crouser ED, Raman SV. At-risk but viable myocardium in a large animal model of non ST-segment elevation acute coronary syndrome: cardiovascular magnetic resonance with ex vivo validation. J Cardiovasc Magn Reson 2013; 15:94. [PMID: 24107555 PMCID: PMC3852225 DOI: 10.1186/1532-429x-15-94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/01/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Patients with non-ST-segment elevation acute coronary syndrome (NSTE-ACS) have varying degrees of salvageable myocardium at risk of irreversible injury. We hypothesized that a novel model of NSTE-ACS produces acute myocardial injury, measured by increased T2 cardiovascular magnetic resonance (CMR), without significant necrosis by late gadolinium enhancement (LGE). METHODS In a canine model, partial coronary stenosis was created and electrodes placed on the epicardium. Myocardial T2, an indicator of at-risk myocardium, was measured pre- and post-tachycardic pacing. RESULTS Serum troponin-I (TnI) was not detectable in unoperated sham animals but averaged 1.97 ± 0.72 ng/mL in model animals. Coronary stenosis and pacing produced significantly higher T2 in the affected vs. the remote myocardium (53.2 ± 4.9 vs. 43.6 ± 2.8 ms, p < 0.01) with no evident injury by LGE. Microscopy revealed no significant irreversible cellular injury. Relative respiration rate (RRR) of affected vs. remote myocardial tissue was significantly lower in model vs. sham animals (0.72 ± 0.07 vs. 1.04 ± 0.07, p < 0.001). Lower RRR corresponded to higher final TnI levels (R(2) = 0.83, p = 0.004) and changes in CaMKIID and mitochondrial gene expression. CONCLUSIONS A large animal NSTE-ACS model with mild TnI elevation and without ST elevation, similar to the human syndrome, demonstrates signs of acute myocardial injury by T2-CMR without significant irreversible damage. Reduced tissue respiration and associated adaptations of critical metabolic pathways correspond to increased myocardial injury by serum biomarkers in this model. T2-CMR as a biomarker of at-risk but salvageable myocardium warrants further consideration in preclinical and clinical studies of NSTE-ACS.
Collapse
Affiliation(s)
- Henry Chang
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH 43210, USA
| | - Tam Tran
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH 43210, USA
| | - George E Billman
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, OSU, 370 W 9th Ave, Columbus, OH 43210, USA
| | - Mark W Julian
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH 43210, USA
| | - Robert L Hamlin
- Department of Veterinary Biosciences, OSU, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Orlando P Simonetti
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH 43210, USA
- Division of Cardiovascular Medicine, OSU, 473 W 12th Ave, Columbus, OH 43210, USA
- Department of Radiology, OSU, 395 W 12th Ave, Columbus, OH 43210, USA
| | - Giuseppe Ambrosio
- Division of Cardiology, University of Perugia, Ospedale S. Maria della Misericordia, Via S. Andrea delle fratte, 06156 Perugia, Italy
| | - Peter B Baker
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH 43210, USA
- Department of Pathology, OSU and Nationwide Children’s Hospital, 700 Children’s Dr, Columbus, OH 43205, USA
| | - Guohong Shao
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH 43210, USA
| | - Elliott D Crouser
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH 43210, USA
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, OSU, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Subha V Raman
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Suite 200, Columbus, OH 43210, USA
- Division of Cardiovascular Medicine, OSU, 473 W 12th Ave, Columbus, OH 43210, USA
- Department of Radiology, OSU, 395 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|