1
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
2
|
Qin J, Kilkus JP, Dawson G. The cross roles of sphingosine kinase 1/2 and ceramide glucosyltransferase in cell growth and death. Biochem Biophys Res Commun 2018; 500:597-602. [PMID: 29673590 DOI: 10.1016/j.bbrc.2018.04.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 11/29/2022]
Abstract
Sphingosine-1-phosphate is synthesized by two sphingosine kinases, cytosolic SK1 and nuclear SK2 but SK2 expression was much higher than SK1in mouse skin fibroblasts. However, in SK2-/- cells, SK1 expression was markedly increased to SK2 levels whereas in SK1-/- cells, SK2 expression was unaffected. Ceramide, glucosylceramide and sphingosine levels were all increased in SK1-/- but less so in SK2-/- cells and S1P levels were not significantly reduced in either SK1-/- or SK2-/- cells. Greatly increased Ceramide glucosyltransferase expression was observed in SK1-/- cells but less so in SK2-/- cells suggested a role in drug resistance. SK2-/- cells grew faster than control and SK1-/-. The cell division gene PCNA was significantly overexpressed in SK2-/- cells, suggesting a cross regulation between SKs and Ceramide glucosyltransferase.
Collapse
Affiliation(s)
- Jingdong Qin
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| | - John P Kilkus
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Glyn Dawson
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Caohuy H, Yang Q, Eudy Y, Ha TA, Xu AE, Glover M, Frizzell RA, Jozwik C, Pollard HB. Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR). J Biol Chem 2014; 289:35953-68. [PMID: 25384981 DOI: 10.1074/jbc.m114.598649] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is due to a folding defect in the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, ΔF508, prevents CFTR from trafficking to the apical plasma membrane. Here we show that activation of the PDK1/SGK1 signaling pathway with C4-ceramide (C4-CER), a non-toxic small molecule, functionally corrects the trafficking defect in both cultured CF cells and primary epithelial cell explants from CF patients. The mechanism of C4-CER action involves a series of mutual autophosphorylation and phosphorylation events between PDK1 and SGK1. Detailed mechanistic studies indicate that C4-CER initially induces autophosphorylation of SGK1 at Ser(422). SGK1[Ser(P)(422)] and C4-CER coincidently bind PDK1 and permit PDK1 to autophosphorylate at Ser(241). Then PDK1[Ser(P)(241)] phosphorylates SGK1[Ser(P)(422)] at Thr(256) to generate fully activated SGK1[Ser(422), Thr(P)(256)]. SGK1[Ser(P)(422),Thr(P)(256)] phosphorylates and inactivates the E3 ubiquitin ligase Nedd4-2. ΔF508-CFTR is thus free to traffic to the plasma membrane. Importantly, C4-CER-mediated activation of both PDK1 and SGK1 is independent of the PI3K/Akt/mammalian target of rapamycin signaling pathway. Physiologically, C4-CER significantly increases maturation and stability of ΔF508-CFTR (t½ ∼10 h), enhances cAMP-activated chloride secretion, and suppresses hypersecretion of interleukin-8 (IL-8). We suggest that candidate drugs for CF directed against the PDK1/SGK1 signaling pathway, such as C4-CER, provide a novel therapeutic strategy for a life-limiting disorder that affects one child, on average, each day.
Collapse
Affiliation(s)
- Hung Caohuy
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Qingfeng Yang
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Yvonne Eudy
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Thien-An Ha
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Andrew E Xu
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Matthew Glover
- the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Raymond A Frizzell
- the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Catherine Jozwik
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Harvey B Pollard
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| |
Collapse
|
4
|
Dong CH, Zhang YT, Huang G, Dong JJ, Liu HX, Tian XH, Wang J, Lv ZG, Song LN, Yu WQ. A solid phase approach to PDMP analogs: A general strategy for combinatorial library. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|