1
|
Barta T, Monsempès C, Demondion E, Chatterjee A, Kostal L, Lucas P. Stimulus duration encoding occurs early in the moth olfactory pathway. Commun Biol 2024; 7:1252. [PMID: 39363042 PMCID: PMC11449909 DOI: 10.1038/s42003-024-06921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Pheromones convey rich ethological information and guide insects' search behavior. Insects navigating in turbulent environments are tasked with the challenge of coding the temporal structure of an odor plume, obliging recognition of the onset and offset of whiffs of odor. The coding mechanisms that shape odor offset recognition remain elusive. We designed a device to deliver sharp pheromone pulses and simultaneously measured the response dynamics from pheromone-tuned olfactory receptor neurons (ORNs) in male moths and Drosophila. We show that concentration-invariant stimulus duration encoding is implemented in moth ORNs by spike frequency adaptation at two time scales. A linear-nonlinear model fully captures the underlying neural computations and offers an insight into their biophysical mechanisms. Drosophila use pheromone cis-vaccenyl acetate (cVA) only for very short distance communication and are not faced with the need to encode the statistics of the cVA plume. Their cVA-sensitive ORNs are indeed unable to encode odor-off events. Expression of moth pheromone receptors in Drosophila cVA-sensitive ORNs indicates that stimulus-offset coding is receptor independent. In moth ORNs, stimulus-offset coding breaks down for short ( < 200 ms) whiffs. This physiological constraint matches the behavioral latency of switching from the upwind surge to crosswind cast flight upon losing contact with the pheromone.
Collapse
Affiliation(s)
- Tomas Barta
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, 904-0412, Okinawa, Japan.
| | - Christelle Monsempès
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Elodie Demondion
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Abhishek Chatterjee
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Lubomir Kostal
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
| | - Philippe Lucas
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
| |
Collapse
|
2
|
Tichy H, Martzok A, Linhart M, Zopf LM, Hellwig M. Multielectrode recordings of cockroach antennal lobe neurons in response to temporal dynamics of odor concentrations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:411-436. [PMID: 36645471 PMCID: PMC10102049 DOI: 10.1007/s00359-022-01605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 01/17/2023]
Abstract
The initial representation of the instantaneous temporal information about food odor concentration in the primary olfactory center, the antennal lobe, was examined by simultaneously recording the activity of antagonistic ON and OFF neurons with 4-channel tetrodes. During presentation of pulse-like concentration changes, ON neurons encode the rapid concentration increase at pulse onset and the pulse duration, and OFF neurons the rapid concentration decrease at pulse offset and the duration of the pulse interval. A group of ON neurons establish a concentration-invariant representation of odor pulses. The responses of ON and OFF neurons to oscillating changes in odor concentration are determined by the rate of change in dependence on the duration of the oscillation period. By adjusting sensitivity for fluctuating concentrations, these neurons improve the representation of the rate of the changing concentration. In other ON and OFF neurons, the response to changing concentrations is invariant to large variations in the rate of change due to variations in the oscillation period, facilitating odor identification in the antennal-lobe. The independent processing of odor identity and the temporal dynamics of odor concentration may speed up processing time and improve behavioral performance associated with plume tracking, especially when the air is not moving.
Collapse
Affiliation(s)
- Harald Tichy
- Department of Neurosciences and Developmental Biology, University of Vienna, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Alexander Martzok
- Department of Neurosciences and Developmental Biology, University of Vienna, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria
| | - Marlene Linhart
- Department of Neurosciences and Developmental Biology, University of Vienna, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria
| | - Lydia M Zopf
- Department of Neurosciences and Developmental Biology, University of Vienna, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria
| | - Maria Hellwig
- Department of Neurosciences and Developmental Biology, University of Vienna, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria
| |
Collapse
|
3
|
Golov Y, Benelli N, Gurka R, Harari A, Zilman G, Liberzon A. Open-source computational simulation of moth-inspired navigation algorithm: A benchmark framework. MethodsX 2021; 8:101529. [PMID: 35004194 PMCID: PMC8720835 DOI: 10.1016/j.mex.2021.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/24/2021] [Indexed: 10/24/2022] Open
|
4
|
Ando N, Kanzaki R. Insect-machine hybrid robot. CURRENT OPINION IN INSECT SCIENCE 2020; 42:61-69. [PMID: 32992040 DOI: 10.1016/j.cois.2020.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Recently, insect-machine hybrid robots have been developed that incorporate insects into robots or incorporate machines into insects. Most previous studies were motivated to use the function of insects for robots, but this technology can also prove to be useful as an experimental tool for neuroethology. We reviewed hybrid robots in terms of the closed-loop between an insect, a robot, and the real environment. The incorporated biological components provided the robot sensory signals that were received by the insects and the adaptive functions of the brain. The incorporated artificial components permitted us to understand the biological system by controlling insect behavior. Hybrid robots thus extend the roles of mobile robot experiments in neuroethology for both model evaluation and brain function analysis.
Collapse
Affiliation(s)
- Noriyasu Ando
- Department of Systems Life Engineering, Maebashi Institute of Technology, 460-1, Kamisadori-cho, Maebashi, Gunma 371-0816, Japan.
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Moth Mating: Modeling Female Pheromone Calling and Male Navigational Strategies to Optimize Reproductive Success. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Male and female moths communicate in complex ways to search for and to select a mate. In a process termed calling, females emit small quantities of pheromones, generating plumes that spread in the environment. Males detect the plume through their antennae and navigate toward the female. The reproductive process is marked by female choice and male–male competition, since multiple males aim to reach the female but only the first can mate with her. This provides an opportunity for female selection on male traits such as chemosensitivity to pheromone molecules and mobility. We develop a mathematical framework to investigate the overall mating likelihood, the mean first arrival time, and the quality of the first male to reach the female for four experimentally observed female calling strategies unfolding over a typical one-week mating period. We present both analytical solutions of a simplified model as well as results from agent-based numerical simulations. Our findings suggest that, by adjusting call times and the amount of released pheromone, females can optimize the mating process. In particular, shorter calling times and lower pheromone titers at onset of the mating period that gradually increase over time allow females to aim for higher-quality males while still ensuring that mating occurs by the end of the mating period.
Collapse
|
6
|
Lan B, Kanzaki R, Ando N. Dropping Counter: A Detection Algorithm for Identifying Odour-Evoked Responses from Noisy Electroantennograms Measured by a Flying Robot. SENSORS 2019; 19:s19204574. [PMID: 31640187 PMCID: PMC6832354 DOI: 10.3390/s19204574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/12/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022]
Abstract
The electroantennogram (EAG) is a technique used for measuring electrical signals from the antenna of an insect. Its rapid response time, quick recovery speed, and high sensitivity make it suitable for odour-tracking tasks employing mobile robots. However, its application to flying robots has not been extensively studied owing to the electrical and mechanical noises generated. In this study, we investigated the characteristics of the EAG mounted on a tethered flying quadcopter and developed a special counter-based algorithm for detecting the odour-generated responses. As the EAG response is negative, the algorithm creates a window and compares the values inside it. Once a value is smaller than the first one, the counter will increase by one and finally turns the whole signal into a clearer odour stimulated result. By experimental evaluation, the new algorithm gives a higher cross-correlation coefficient when compared with the fixed-threshold method. The result shows that the accuracy of this novel algorithm for recognising odour-evoked EAG signals from noise exceeds that of the traditional method; furthermore, the use of insect antennae as odour sensors for flying robots is demonstrated to be feasible.
Collapse
Affiliation(s)
- Bluest Lan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Meguro-ku, Komaba, Tokyo 153-8904, Japan.
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Meguro-ku, Komaba, Tokyo 153-8904, Japan.
| | - Noriyasu Ando
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Meguro-ku, Komaba, Tokyo 153-8904, Japan.
- Department of Systems Life Engineering, Faculty of Engineering, Maebashi Institute of Technology, 460-1 Kamisadori-cho, Maebashi, Gunma 371-0816, Japan.
| |
Collapse
|
7
|
Gassias E, Durand N, Demondion E, Bourgeois T, Aguilar P, Bozzolan F, Debernard S. A critical role for Dop1-mediated dopaminergic signaling in the plasticity of behavioral and neuronal responses to sex pheromone in a moth. J Exp Biol 2019; 222:jeb.211979. [DOI: 10.1242/jeb.211979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022]
Abstract
Most animal species, including insects, are able to modulate their responses to sexual chemosignals and this flexibility originates from the remodeling of olfactory areas under the influence of dopaminergic system. In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and after a prior exposure to pheromone signal and this change is accompanied by an increase in neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs). To identify the underlying neuromodulatory mechanisms, we examined whether this age- and experience-dependent olfactory plasticity is mediated by dopamine (DA) through the Dop1 receptor, an ortholog of the vertebrate D1-type dopamine receptors, which is positively coupled to adenylyl cyclase. We cloned A. ipsilon Dop1 (AiDop1) which is expressed predominantly in brain and especially in ALs and its knockdown induced decreased AL cAMP amounts and altered sex pheromone-orientated flight. The levels of DA, AiDop1 expression and cAMP in ALs increased from the third day of adult life and at 24h and 48h following pre-exposure to sex pheromone and the dynamic of these changes correlated with the increased responsiveness to sex pheromone. These results demonstrate that Dop1 is required for the display of male sexual behavior and that age- and experience-related neuronal and behavioral changes are sustained by DA-Dop1 signaling that operates within ALs probably through cAMP-dependent mechanisms in A. ipsilon. Thus, this study expands our understanding of the neuromodulatory mechanisms underlying olfactory plasticity, mechanisms that appear to be highly conserved between insects and mammals.
Collapse
Affiliation(s)
- Edmundo Gassias
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
8
|
Jacob V, Monsempès C, Rospars JP, Masson JB, Lucas P. Olfactory coding in the turbulent realm. PLoS Comput Biol 2017; 13:e1005870. [PMID: 29194457 PMCID: PMC5736211 DOI: 10.1371/journal.pcbi.1005870] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/19/2017] [Accepted: 11/01/2017] [Indexed: 01/10/2023] Open
Abstract
Long-distance olfactory search behaviors depend on odor detection dynamics. Due to turbulence, olfactory signals travel as bursts of variable concentration and spacing and are characterized by long-tail distributions of odor/no-odor events, challenging the computing capacities of olfactory systems. How animals encode complex olfactory scenes to track the plume far from the source remains unclear. Here we focus on the coding of the plume temporal dynamics in moths. We compare responses of olfactory receptor neurons (ORNs) and antennal lobe projection neurons (PNs) to sequences of pheromone stimuli either with white-noise patterns or with realistic turbulent temporal structures simulating a large range of distances (8 to 64 m) from the odor source. For the first time, we analyze what information is extracted by the olfactory system at large distances from the source. Neuronal responses are analyzed using linear-nonlinear models fitted with white-noise stimuli and used for predicting responses to turbulent stimuli. We found that neuronal firing rate is less correlated with the dynamic odor time course when distance to the source increases because of improper coding during long odor and no-odor events that characterize large distances. Rapid adaptation during long puffs does not preclude however the detection of puff transitions in PNs. Individual PNs but not individual ORNs encode the onset and offset of odor puffs for any temporal structure of stimuli. A higher spontaneous firing rate coupled to an inhibition phase at the end of PN responses contributes to this coding property. This allows PNs to decode the temporal structure of the odor plume at any distance to the source, an essential piece of information moths can use in their tracking behavior.
Collapse
Affiliation(s)
- Vincent Jacob
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, Versailles, France
- Peuplements végétaux et bioagresseurs en milieu végétal, CIRAD, Université de la Réunion, Saint Pierre, Ile de la Réunion, France
| | - Christelle Monsempès
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, Versailles, France
| | - Jean-Pierre Rospars
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, Versailles, France
| | - Jean-Baptiste Masson
- Decision and Bayesian Computation, Pasteur Institute, CNRS UMR 3571, 25-28 rue du Dr Roux, 75015 Paris, France
- Bioinformatics and Biostatistics Hub, C3BI, Pasteur Institute, CNRS USR 3756, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Philippe Lucas
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, Versailles, France
- * E-mail:
| |
Collapse
|
9
|
Ando N, Emoto S, Kanzaki R. Insect-controlled Robot: A Mobile Robot Platform to Evaluate the Odor-tracking Capability of an Insect. J Vis Exp 2016. [PMID: 28060258 DOI: 10.3791/54802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Robotic odor source localization has been a challenging area and one to which biological knowledge has been expected to contribute, as finding odor sources is an essential task for organism survival. Insects are well-studied organisms with regard to odor tracking, and their behavioral strategies have been applied to mobile robots for evaluation. This "bottom-up" approach is a fundamental way to develop biomimetic robots; however, the biological analyses and the modeling of behavioral mechanisms are still ongoing. Therefore, it is still unknown how such a biological system actually works as the controller of a robotic platform. To answer this question, we have developed an insect-controlled robot in which a male adult silkmoth (Bombyx mori) drives a robot car in response to odor stimuli; this can be regarded as a prototype of a future insect-mimetic robot. In the cockpit of the robot, a tethered silkmoth walked on an air-supported ball and an optical sensor measured the ball rotations. These rotations were translated into the movement of the two-wheeled robot. The advantage of this "hybrid" approach is that experimenters can manipulate any parameter of the robot, which enables the evaluation of the odor-tracking capability of insects and provides useful suggestions for robotic odor-tracking. Furthermore, these manipulations are non-invasive ways to alter the sensory-motor relationship of a pilot insect and will be a useful technique for understanding adaptive behaviors.
Collapse
Affiliation(s)
- Noriyasu Ando
- Research Center for Advanced Science and Technology, The University of Tokyo;
| | - Shuhei Emoto
- Research Center for Advanced Science and Technology, The University of Tokyo
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo
| |
Collapse
|
10
|
Lavialle-Defaix C, Jacob V, Monsempès C, Anton S, Rospars JP, Martinez D, Lucas P. Firing and intrinsic properties of antennal lobe neurons in the Noctuid moth Agrotis ipsilon. Biosystems 2015; 136:46-58. [PMID: 26126723 DOI: 10.1016/j.biosystems.2015.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/04/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
The antennal lobe (AL) of the Noctuid moth Agrotis ipsilon has emerged as an excellent model for studying olfactory processing and its plasticity in the central nervous system. Odor-evoked responses of AL neurons and input-to-output transformations involved in pheromone processing are well characterized in this species. However, the intrinsic electrical properties responsible of the firing of AL neurons are poorly known. To this end, patch-clamp recordings in current- and voltage-clamp mode from neurons located in the two main clusters of cell bodies in the ALs were combined with intracellular staining on A. ipsilon males. Staining indicated that the lateral cluster (LC) is composed of 85% of local neurons (LNs) and 15% of projection neurons (PNs). The medial cluster (MC) contains only PNs. Action potentials were readily recorded from the soma in LNs and PNs located in the LC but not from PNs in the MC where recordings showed small or no action potentials. In the LC, the spontaneous activity of about 20% of the LNs presented irregular bursts while being more regular in PNs. We also identified a small population of LNs lacking voltage-gated Na(+) currents and generating spikelets. We focused on the firing properties of LNs since in about 60% of LNs, but not in PNs, action potentials were followed by depolarizing afterpotentials (DAPs). These DAPs could generate a second action potential, so that the activity was composed of action potential doublets. DAPs depended on voltage, Ca(2+)-channels and possibly on Ca(2+)-activated non-specific cationic channels. During steady state current injection, DAPs occurred after each action potential and did not require high-frequency firing. The amplitude of DAPs increased when the interspike interval was small, typically within bursts, likely arising from a Ca(2+) build up. DAPs were more often found in bursting than in non-bursting LNs but do not support bursting activity. DAPs and spike doublets also occurred during odor-evoked activity suggesting that they can mediate olfactory integration in the AL.
Collapse
Affiliation(s)
- Céline Lavialle-Defaix
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Vincent Jacob
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Christelle Monsempès
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Sylvia Anton
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 42 rue Georges Morel, 49071 Beaucouzé, France
| | - Jean-Pierre Rospars
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Dominique Martinez
- UMR7503, Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS), Vandœuvre-lès-Nancy, France
| | - Philippe Lucas
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France.
| |
Collapse
|
11
|
Modeling the cellular mechanisms and olfactory input underlying the triphasic response of moth pheromone-sensitive projection neurons. PLoS One 2015; 10:e0126305. [PMID: 25962173 PMCID: PMC4427114 DOI: 10.1371/journal.pone.0126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projection neurons (PNs) exhibit a triphasic firing pattern of excitation (E1)-inhibition (I)-excitation (E2) in response to a pulse of the sex pheromone. To understand the mechanisms underlying this stereotypical discharge, we developed a biophysical model of a PN receiving inputs from olfactory receptor neurons (ORNs) via nicotinic cholinergic synapses. The ORN is modeled as an inhomogeneous Poisson process whose firing rate is a function of time and is fitted to extracellular data recorded in response to pheromone stimulations at various concentrations and durations. The PN model is based on the Hodgkin-Huxley formalism with realistic ionic currents whose parameters were derived from previous studies. Simulations revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small conductance K+ current) and that the excitatory phase E2 can result from the long-lasting response of the ORNs. Parameter analysis further revealed that the ending time of E1 depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly depends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends differentially on the interaction of various currents. Thus it is likely that the interplay between PN intrinsic currents and feedforward synaptic currents are sufficient to generate the triphasic firing patterns observed in the noctuid moth A. ipsilon.
Collapse
|
12
|
Rospars JP, Grémiaux A, Jarriault D, Chaffiol A, Monsempes C, Deisig N, Anton S, Lucas P, Martinez D. Heterogeneity and convergence of olfactory first-order neurons account for the high speed and sensitivity of second-order neurons. PLoS Comput Biol 2014; 10:e1003975. [PMID: 25474026 PMCID: PMC4256018 DOI: 10.1371/journal.pcbi.1003975] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/09/2014] [Indexed: 11/29/2022] Open
Abstract
In the olfactory system of male moths, a specialized subset of neurons detects and processes the main component of the sex pheromone emitted by females. It is composed of several thousand first-order olfactory receptor neurons (ORNs), all expressing the same pheromone receptor, that contact synaptically a few tens of second-order projection neurons (PNs) within a single restricted brain area. The functional simplicity of this system makes it a favorable model for studying the factors that contribute to its exquisite sensitivity and speed. Sensory information—primarily the identity and intensity of the stimulus—is encoded as the firing rate of the action potentials, and possibly as the latency of the neuron response. We found that over all their dynamic range, PNs respond with a shorter latency and a higher firing rate than most ORNs. Modelling showed that the increased sensitivity of PNs can be explained by the ORN-to-PN convergent architecture alone, whereas their faster response also requires cell-to-cell heterogeneity of the ORN population. So, far from being detrimental to signal detection, the ORN heterogeneity is exploited by PNs, and results in two different schemes of population coding based either on the response of a few extreme neurons (latency) or on the average response of many (firing rate). Moreover, ORN-to-PN transformations are linear for latency and nonlinear for firing rate, suggesting that latency could be involved in concentration-invariant coding of the pheromone blend and that sensitivity at low concentrations is achieved at the expense of precise encoding at high concentrations. Understanding how sensory signals are optimally encoded by nervous systems is of strong interest to neuroscientists, and also to engineers as it may lead to more efficient artificial detection systems. This is particularly relevant to olfaction, because the current electronic noses are far outperformed by their biological counterparts in terms of speed and sensitivity. We here use the moth sex pheromone processing system as a relatively simple model to understand early olfactory coding. We found that performance increases when olfactory information passes from first- to second-order neurons. Second-order neurons respond on average with shorter latency and higher sensitivity than first-order neurons. We show that two critical factors, convergent architecture and neuronal heterogeneity, are needed to account for increased performance.
Collapse
Affiliation(s)
- Jean-Pierre Rospars
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, Versailles, France
- * E-mail:
| | - Alexandre Grémiaux
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, Versailles, France
| | - David Jarriault
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, Versailles, France
| | - Antoine Chaffiol
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, Versailles, France
| | - Christelle Monsempes
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, Versailles, France
| | - Nina Deisig
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, Versailles, France
| | - Sylvia Anton
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, Versailles, France
| | - Philippe Lucas
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, Versailles, France
| | - Dominique Martinez
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, Versailles, France
- Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Unité Mixte de Recherche 7503, Centre National de la Recherche Scientifique (CNRS), Vandœuvre-lès-Nancy, France
| |
Collapse
|
13
|
Voges N, Chaffiol A, Lucas P, Martinez D. Reactive searching and infotaxis in odor source localization. PLoS Comput Biol 2014; 10:e1003861. [PMID: 25330317 PMCID: PMC4211930 DOI: 10.1371/journal.pcbi.1003861] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022] Open
Abstract
Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.
Collapse
Affiliation(s)
- Nicole Voges
- CNRS, LORIA, UMR 7503, Vandoeuvre-les-Nancy, France
- * E-mail:
| | | | - Philippe Lucas
- INRA, UMR 1392, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | | |
Collapse
|
14
|
Martinez D, Arhidi L, Demondion E, Masson JB, Lucas P. Using insect electroantennogram sensors on autonomous robots for olfactory searches. J Vis Exp 2014:e51704. [PMID: 25145980 PMCID: PMC4692349 DOI: 10.3791/51704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Robots designed to track chemical leaks in hazardous industrial facilities or explosive traces in landmine fields face the same problem as insects foraging for food or searching for mates: the olfactory search is constrained by the physics of turbulent transport. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells or toxic and illicit substances. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration or using nanostructured gas sensors that mimic insect antennae.
Collapse
Affiliation(s)
- Dominique Martinez
- UMR 7503, Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS);
| | - Lotfi Arhidi
- UMR 7503, Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)
| | - Elodie Demondion
- UMR 1392 iEES-Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris
| | | | - Philippe Lucas
- UMR 1392 iEES-Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris
| |
Collapse
|
15
|
Chaffiol A, Dupuy F, Barrozo RB, Kropf J, Renou M, Rospars JP, Anton S. Pheromone modulates plant odor responses in the antennal lobe of a moth. Chem Senses 2014; 39:451-63. [PMID: 24798893 DOI: 10.1093/chemse/bju017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In nature, male moths are exposed to a complex plant odorant environment when they fly upwind to a sex pheromone source in their search for mates. Plant odors have been shown to affect responses to pheromone at various levels but how does pheromone affects plant odor perception? We recorded responses from neurons within the non-pheromonal "ordinary glome ruli" of the primary olfactory center, the antennal lobe (AL), to single and pulsed stimulations with the plant odorant heptanal, the pheromone, and their mixture in the male moth Agrotis ipsilon. We identified 3 physiological types of neurons according to their activity patterns combining excitatory and inhibitory phases. Both local and projection neurons were identified in each physiological type. Neurons with excitatory responses to heptanal responded also frequently to the pheromone and showed additive responses to the mixture. Moreover, the neuron's ability of resolving successive pulses generally improved with the mixture. Only some neurons with combined excitatory/inhibitory, or purely inhibitory responses to heptanal, also responded to the pheromone. Although individual mixture responses were not significantly different from heptanal responses in these neurons, pulse resolution was improved with the mixture as compared with heptanal alone. These results demonstrate that the pheromone and the general odorant subsystems interact more intensely in the moth AL than previously thought.
Collapse
Affiliation(s)
- Antoine Chaffiol
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and Present address: INSERM, U968, Paris, F-75012, France
| | - Fabienne Dupuy
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and Université d'Angers, Laboratoire Récepteurs et Canaux Ioniques Membranaires, UPRES-EA 2647, USC INRA 1330, SFR 4207 QUASAV, UFR Sciences, 2 Boulevard Lavoisier, 49045 Angers, France
| | - Romina B Barrozo
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and Present address: Laboratorio de Fisiología de Insectos, DBBE, FCEyN, Universidad de Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Jan Kropf
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and Present address: Behavioral Physiology and Sociobiology, University of Wuerzburg, D-97074 Wuerzburg, Germany
| | - Michel Renou
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and
| | - Jean-Pierre Rospars
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and
| | - Sylvia Anton
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and Université d'Angers, Laboratoire Récepteurs et Canaux Ioniques Membranaires, UPRES-EA 2647, USC INRA 1330, SFR 4207 QUASAV, UFR Sciences, 2 Boulevard Lavoisier, 49045 Angers, France,
| |
Collapse
|