1
|
Sato S. Plasmodium-a brief introduction to the parasites causing human malaria and their basic biology. J Physiol Anthropol 2021; 40:1. [PMID: 33413683 PMCID: PMC7792015 DOI: 10.1186/s40101-020-00251-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Malaria is one of the most devastating infectious diseases of humans. It is problematic clinically and economically as it prevails in poorer countries and regions, strongly hindering socioeconomic development. The causative agents of malaria are unicellular protozoan parasites belonging to the genus Plasmodium. These parasites infect not only humans but also other vertebrates, from reptiles and birds to mammals. To date, over 200 species of Plasmodium have been formally described, and each species infects a certain range of hosts. Plasmodium species that naturally infect humans and cause malaria in large areas of the world are limited to five-P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi. The first four are specific for humans, while P. knowlesi is naturally maintained in macaque monkeys and causes zoonotic malaria widely in South East Asia. Transmission of Plasmodium species between vertebrate hosts depends on an insect vector, which is usually the mosquito. The vector is not just a carrier but the definitive host, where sexual reproduction of Plasmodium species occurs, and the parasite's development in the insect is essential for transmission to the next vertebrate host. The range of insect species that can support the critical development of Plasmodium depends on the individual parasite species, but all five Plasmodium species causing malaria in humans are transmitted exclusively by anopheline mosquitoes. Plasmodium species have remarkable genetic flexibility which lets them adapt to alterations in the environment, giving them the potential to quickly develop resistance to therapeutics such as antimalarials and to change host specificity. In this article, selected topics involving the Plasmodium species that cause malaria in humans are reviewed.
Collapse
Affiliation(s)
- Shigeharu Sato
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
2
|
Wang X, Wang J, Liu J, Liu A, He X, Xu J, Li Z, Zhao S, Li Y, Yin H, Luo J, Guan G. Comparative analysis of apicoplast genomes of Babesia infective to small ruminants in China. Parasit Vectors 2019; 12:312. [PMID: 31234937 PMCID: PMC6591869 DOI: 10.1186/s13071-019-3581-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background Babesiosis is an economically important disease caused by tick-borne apicomplexan protists of the genus Babesia. Most apicomplexan parasites, including Babesia, have a plastid-derived organelle termed an apicoplast, which is involved in critical metabolic pathways such as fatty acid, iron-sulphur, haem and isoprenoid biosynthesis. Apicoplast genomic data can provide significant information for understanding and exploring the biological features, taxonomic and evolutionary relationships of apicomplexan parasites, and identify targets for anti-parasitic drugs. However, there are limited data on the apicoplast genomes of Babesia species infective to small ruminants. Methods PCR primers were designed based on the previously reported apicoplast genome sequences of Babesia motasi Lintan and Babesia sp. Xinjiang using Illumina technology. The overlapped apicoplast genomic fragments of six ovine Babesia isolates were amplified and sequenced using the Sanger dideoxy chain-termination method. The full-length sequences of the apicoplast genomes were assembled and annotated using bioinformatics software. The gene contents and order of apicoplast genomes obtained in this study were defined and compared with those of other apicomplexan parasites. Phylogenetic trees were constructed on the concatenated amino acid sequences of 13 gene products using MEGA v.6.06. Results The results showed that the six ovine Babesia apicoplast genomes consisted of circular DNA. The genome sizes were 29,916–30,846 bp with 78.7–81.0% A + T content, 29–31 open reading frames (ORF) and 23–24 transport RNAs. The ORFs encoded four DNA-directed RNA polymerase subunits (rpoB, rpoCl, rpoC2a and rpoC2b), 13 ribosomal proteins, one elongation factor TU (tufA), two ATP-dependent Clp proteases (ClpC) and 7–11 hypothetical proteins. Babesia sp. has three more genes than Babesia motasi (rpl5, rps8 and rpoB). Phylogenetic analysis showed that Babesia sp. is located in a separate clade. Babesia motasi Lintan/Tianzhu and B. motasi Ningxian/Hebei were divided into two subclades. Conclusions To our knowledge, this study is the first to elucidate the whole apicoplast genomic structural features of six Babesia isolates infective to small ruminants in China using Sanger sequencing. The data provide useful information confirming the taxonomic relationships of these parasites and identifying targets for anti-apicomplexan parasite drugs. Electronic supplementary material The online version of this article (10.1186/s13071-019-3581-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoxing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xin He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jianlin Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Zhi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
3
|
Wang T, Guan G, Korhonen PK, Koehler AV, Hall RS, Young ND, Yin H, Gasser RB. The apicoplast genomes of two taxonomic units of Babesia from sheep. Vet Parasitol 2016; 233:123-128. [PMID: 27916258 DOI: 10.1016/j.vetpar.2016.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/31/2016] [Accepted: 11/05/2016] [Indexed: 02/07/2023]
Abstract
The apicoplast (ap) is a unique, non-photosynthetic organelle found in most apicomplexan parasites. Due to the essential roles that this organelle has, it has been widely considered as target for drugs against diseases caused by apicomplexans. Exploring the ap genomes of such parasites would provide a better understanding of their systematics and their basic molecular biology for therapeutics. However, there is limited information available on the ap genomes of apicomplexan parasites. In the present study, the ap genomes of two operational taxonomic units of Babesia (known as Babesia sp. Lintan [Bl] and Babesia sp. Xinjiang [Bx]) from sheep were sequenced, assembled and annotated using a massive parallel sequencing-based approach. Then, the gene content and gene order in these ap genomes (∼30.7kb in size) were defined and compared, and the genetic differences were assessed. In addition, a phylogenetic analysis of ap genomic data sets was carried out to assess the relationships of these taxonomic units with other apicomplexan parasites for which complete ap genomic data sets were publicly available. The results showed that the ap genomes of Bl and Bx encode 59 and 57 genes, respectively, including 2 ribosomal RNA genes, 25 transfer RNA genes and 30-32 protein-encoding genes, being similar in content to those of Babesia bovis and B. orientalis. Ap gene regions that might serve as markers for future epidemiological and population genetic studies of Babesia species were identified. Using sequence data for a subset of six protein-encoding genes, a close relationship of Bl and Bx with Babesia bovis from cattle and B. orientalis from water buffalo was inferred. Although the focus of the present study was on Babesia, we propose that the present sequencing-bioinformatic approach should be applicable to organellar genomes of a wide range of apicomplexans of veterinary importance.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China; Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Anson V Koehler
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ross S Hall
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China.
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Zverkov OA, Seliverstov AV, Lyubetsky VA. Regulation of Expression and Evolution of Genes in Plastids of Rhodophytic Branch. Life (Basel) 2016; 6:E7. [PMID: 26840333 PMCID: PMC4810238 DOI: 10.3390/life6010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
A novel algorithm and original software were used to cluster all proteins encoded in plastids of 72 species of the rhodophytic branch. The results are publicly available at http://lab6.iitp.ru/ppc/redline72/ in a database that allows fast identification of clusters (protein families) both by a fragment of an amino acid sequence and by a phylogenetic profile of a protein. No such integral clustering with the corresponding functions can be found in the public domain. The putative regulons of the transcription factors Ycf28 and Ycf29 encoded in the plastids were identified using the clustering and the database. A regulation of translation initiation was proposed for the ycf24 gene in plastids of certain red algae and apicomplexans as well as a regulation of a putative gene in apicoplasts of Babesia spp. and Theileria parva. The conserved regulation of the ycf24 gene expression and specificity alternation of the transcription factor Ycf28 were shown in the plastids. A phylogenetic tree of plastids was generated for the rhodophytic branch. The hypothesis of the origin of apicoplasts from the common ancestor of all apicomplexans from plastids of red algae was confirmed.
Collapse
Affiliation(s)
- Oleg Anatolyevich Zverkov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, Build. 1, Moscow 127051, Russia.
| | - Alexandr Vladislavovich Seliverstov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, Build. 1, Moscow 127051, Russia.
| | - Vassily Alexandrovich Lyubetsky
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, Build. 1, Moscow 127051, Russia.
| |
Collapse
|
6
|
Goodman CD, McFadden GI. Ycf93 (Orf105), a small apicoplast-encoded membrane protein in the relict plastid of the malaria parasite Plasmodium falciparum that is conserved in Apicomplexa. PLoS One 2014; 9:e91178. [PMID: 24705170 PMCID: PMC3976246 DOI: 10.1371/journal.pone.0091178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/10/2014] [Indexed: 11/27/2022] Open
Abstract
Malaria parasites retain a relict plastid (apicoplast) from a photosynthetic ancestor shared with dinoflagellate algae. The apicoplast is a useful drug target; blocking housekeeping pathways such as genome replication and translation in the organelle kills parasites and protects against malaria. The apicoplast of Plasmodium falciparum encodes 30 proteins and a suite of rRNAs and tRNAs that facilitate their expression. orf105 is a hypothetical apicoplast gene that would encode a small protein (PfOrf105) with a predicted C-terminal transmembrane domain. We produced antisera to a predicted peptide within PfOrf105. Western blot analysis confirmed expression of orf105 and immunofluorescence localised the gene product to the apicoplast. Pforf105 encodes a membrane protein that has an apparent mass of 17.5 kDa and undergoes substantial turnover during the 48-hour asexual life cycle of the parasite in blood stages. The effect of actinonin, an antimalarial with a putative impact on post-translational modification of apicoplast proteins like PfOrf105, was examined. Unlike other drugs perturbing apicoplast housekeeping that induce delayed death, actinonin kills parasites immediately and has an identical drug exposure phenotype to the isopentenyl diphosphate synthesis blocker fosmidomycin. Open reading frames of similar size to PfOrf105, which also have predicted C-terminal trans membrane domains, occur in syntenic positions in all sequenced apicoplast genomes from Phylum Apicomplexa. We therefore propose to name these genes ycf93 (hypothetical chloroplast reading frame 93) according to plastid gene nomenclature convention for conserved proteins of unknown function.
Collapse
Affiliation(s)
| | - Geoffrey I. McFadden
- School of Botany, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
7
|
Imura T, Sato S, Sato Y, Sakamoto D, Isobe T, Murata K, Holder AA, Yukawa M. The apicoplast genome of Leucocytozoon caulleryi, a pathogenic apicomplexan parasite of the chicken. Parasitol Res 2013; 113:823-8. [PMID: 24301182 PMCID: PMC3932168 DOI: 10.1007/s00436-013-3712-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/18/2013] [Indexed: 11/24/2022]
Abstract
Leucocytozoon caulleryi, a haemosporidian parasite of the chicken (Gallus gallus domesticus), can be highly pathogenic and often fatal. Although this parasite is extremely relevant to veterinary science, knowledge of its genomic features is limited. To gain information applicable to developing novel control methods for the parasite, we analyzed the apicoplast genome of L. caulleryi. This extranuclear organellar DNA of 85.1 % A + T and a unit of 34,779 bp was found to encode almost the same set of genes as the plastid genome of Plasmodium falciparum, including 16 tRNA and 30 protein coding genes, and except for one open reading frame, ORF91 absent in L. caulleryi. As in P. falciparum, the L. caulleryi apicoplast DNA contains two sets of a unique inverted repeat (IR), each one 5,253 bp and encoding genes specifying one large and one small rRNA subunit and nine tRNAs but no protein, and separated by a unique 13 bp sequence. Studies of several haemosporidian apicoplast DNA sequences have identified a corresponding IR region; however, none of these studies has looked at the complete sequence, even for well-studied species such as P. falciparum. Phylogenetic studies using a concatenated amino acid sequence based on the open reading frames confirmed the close relationship between L. caulleryi and Plasmodium spp. In this study, we determined the nucleotide sequence of the entire L. caulleryi apicoplast genome, including the region connecting the two IR units. This is the first report of the complete nucleotide sequence of a haemosporidian apicoplast DNA with a canonical IR.
Collapse
Affiliation(s)
- Takayuki Imura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | | | | | | | | | | | | | | |
Collapse
|