1
|
Price ER, Brun A, Caviedes-Vidal E, Karasov WH. Digestive adaptations of aerial lifestyles. Physiology (Bethesda) 2015; 30:69-78. [PMID: 25559157 DOI: 10.1152/physiol.00020.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Flying vertebrates (birds and bats) are under selective pressure to reduce the size of the gut and the mass of the digesta it carries. Compared with similar-sized nonflying mammals, birds and bats have smaller intestines and shorter retention times. We review evidence that birds and bats have lower spare digestive capacity and partially compensate for smaller intestines with increased paracellular nutrient absorption.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin;
| | - Antonio Brun
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, San Luis, Argentina; and
| | - Enrique Caviedes-Vidal
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, San Luis, Argentina; and Departamento de Bioquímica y Ciencias Biológicas y Laboratorio de Biología "Professor E. Caviedes Codelia," Universidad Nacional de San Luis, San Luis, Argentina
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
2
|
Tracy CR, McWhorter TJ, Gienger CM, Starck JM, Medley P, Manolis SC, Webb GJW, Christian KA. Alligators and Crocodiles Have High Paracellular Absorption of Nutrients, But Differ in Digestive Morphology and Physiology. Integr Comp Biol 2015; 55:986-1004. [PMID: 26060211 DOI: 10.1093/icb/icv060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Much of what is known about crocodilian nutrition and growth has come from animals propagated in captivity, but captive animals from the families Crocodilidae and Alligatoridae respond differently to similar diets. Since there are few comparative studies of crocodilian digestive physiology to help explain these differences, we investigated young Alligator mississippiensis and Crocodylus porosus in terms of (1) gross and microscopic morphology of the intestine, (2) activity of the membrane-bound digestive enzymes aminopeptidase-N, maltase, and sucrase, and (3) nutrient absorption by carrier-mediated and paracellular pathways. We also measured gut morphology of animals over a larger range of body sizes. The two species showed different allometry of length and mass of the gut, with A. mississippiensis having a steeper increase in intestinal mass with body size, and C. porosus having a steeper increase in intestinal length with body size. Both species showed similar patterns of magnification of the intestinal surface area, with decreasing magnification from the proximal to distal ends of the intestine. Although A. mississippiensis had significantly greater surface-area magnification overall, a compensating significant difference in gut length between species meant that total surface area of the intestine was not significantly different from that of C. porosus. The species differed in enzyme activities, with A. mississippiensis having significantly greater ability to digest carbohydrates relative to protein than did C. porosus. These differences in enzyme activity may help explain the differences in performance between the crocodilian families when on artificial diets. Both A. mississippiensis and C. porosus showed high absorption of 3-O methyl d-glucose (absorbed via both carrier-mediated and paracellular transport), as expected. Both species also showed surprisingly high levels of l-glucose-uptake (absorbed paracellularly), with fractional absorptions as high as those previously seen only in small birds and bats. Analyses of absorption rates suggested a relatively high proportional contribution of paracellular (i.e., non-mediated) uptake to total uptake of nutrients in both species. Because we measured juveniles, and most paracellular studies to date have been on adults, it is unclear whether high paracellular absorption is generally high within crocodilians or whether these high values are specific to juveniles.
Collapse
Affiliation(s)
- Christopher R Tracy
- *Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia; Department of Zoology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Todd J McWhorter
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Adelaide, SA 5371, Australia
| | - C M Gienger
- *Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia; Department of Biology and Center of Excellence for Field Biology, Austin Peay State University, Clarksville, TN 37044, USA
| | | | - Peter Medley
- Department of the Environment, Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin, NT 0801, Australia
| | - S Charlie Manolis
- **Wildlife Management International Pty. Limited, Berrimah, NT 0828, Australia
| | - Grahame J W Webb
- *Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia; **Wildlife Management International Pty. Limited, Berrimah, NT 0828, Australia
| | - Keith A Christian
- *Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| |
Collapse
|
3
|
Price ER, Rott KH, Caviedes-Vidal E, Karasov WH. Paracellular nutrient absorption is higher in bats than rodents: integrating from intact animals to the molecular level. ACTA ACUST UNITED AC 2014; 217:3483-92. [PMID: 25063860 DOI: 10.1242/jeb.105619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Flying vertebrates have been hypothesized to rely heavily on paracellular absorption of nutrients to compensate for having smaller intestines than non-flyers. We tested this hypothesis in an insectivorous bat (Myotis lucifugus) and two insect-eating rodents (Onychomys leucogaster and Peromyscus leucopus). In intact animals, the fractional absorption of orally dosed l-arabinose (Mr 150) was 82% in M. lucifugus, which was more than twice that of the rodents. Absorption of creatinine (Mr 113) was greater than 50% for all species and did not differ between M. lucifugus and the rodents. We also conducted intestinal luminal perfusions on anesthetized animals. Absorption of l-arabinose per nominal surface area in M. lucifugus was nearly double that of the rodents, while absorption of creatinine was not different among species. Using an everted sleeve preparation, we demonstrated that high concentrations of l-arabinose and creatinine did not inhibit their own uptake, validating their use as passive, paracellular probes. Histological measurements indicated that M. lucifugus has more cells, and presumably more tight junctions, per nominal surface area than P. leucopus. This seems unlikely to explain entirely the higher absorption of l-arabinose in M. lucifugus during perfusions, because l-arabinose absorption normalized to the number of enterocytes was still double that of P. leucopus. As an alternative, we investigated tight junction gene expression. M. lucifugus had higher expression of claudin-1 and claudin-15, and lower expression of claudin-2 relative to P. leucopus. Expression of claudin-7 and occludin did not differ among species. Taken together, our results support the hypothesis that bats have evolved higher paracellular nutrient absorption than non-flying animals, and that this phenomenon might be driven by both histological characteristics and differences in tight junction gene expression.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine H Rott
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Enrique Caviedes-Vidal
- Departamento de Bioquímica y Ciencias Biológicas y Laboratorio de Biología 'Professor E. Caviedes Codelia', Universidad Nacional de San Luis, 5700 San Luis, Argentina Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, 5700 San Luis, Argentina
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|