1
|
Murga-Moreno J, Coronado-Zamora M, Hervas S, Casillas S, Barbadilla A. iMKT: the integrative McDonald and Kreitman test. Nucleic Acids Res 2020; 47:W283-W288. [PMID: 31081014 PMCID: PMC6602517 DOI: 10.1093/nar/gkz372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 01/07/2023] Open
Abstract
The McDonald and Kreitman test (MKT) is one of the most powerful and widely used methods to detect and quantify recurrent natural selection using DNA sequence data. Here we present iMKT (acronym for integrative McDonald and Kreitman test), a novel web-based service performing four distinct MKT types. It allows the detection and estimation of four different selection regimes −adaptive, neutral, strongly deleterious and weakly deleterious− acting on any genomic sequence. iMKT can analyze both user's own population genomic data and pre-loaded Drosophila melanogaster and human sequences of protein-coding genes obtained from the largest population genomic datasets to date. Advanced options in the website allow testing complex hypotheses such as the application example showed here: do genes located in high recombination regions undergo higher rates of adaptation? We aim that iMKT will become a reference site tool for the study of evolutionary adaptation in massive population genomics datasets, especially in Drosophila and humans. iMKT is a free resource online at https://imkt.uab.cat.
Collapse
Affiliation(s)
- Jesús Murga-Moreno
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marta Coronado-Zamora
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sergi Hervas
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sònia Casillas
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Antonio Barbadilla
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Gibson B, Eyre-Walker A. Investigating Evolutionary Rate Variation in Bacteria. J Mol Evol 2019; 87:317-326. [PMID: 31570957 PMCID: PMC6858405 DOI: 10.1007/s00239-019-09912-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
Abstract
Rates of molecular evolution are known to vary between species and across all kingdoms of life. Here, we explore variation in the rate at which bacteria accumulate mutations (accumulation rates) in their natural environments over short periods of time. We have compiled estimates of the accumulation rate for over 34 species of bacteria, the majority of which are pathogens evolving either within an individual host or during outbreaks. Across species, we find that accumulation rates vary by over 3700-fold. We investigate whether accumulation rates are associated to a number potential correlates including genome size, GC content, measures of the natural selection and the time frame over which the accumulation rates were estimated. After controlling for phylogenetic non-independence, we find that the accumulation rate is not significantly correlated to any factor. Furthermore, contrary to previous results, we find that it is not impacted by the time frame of which the estimate was made. However, our study, with only 34 species, is likely to lack power to detect anything but large effects. We suggest that much of the rate variation may be explained by differences between species in the generation time in the wild.
Collapse
Affiliation(s)
- Beth Gibson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
3
|
Freese HM, Sikorski J, Bunk B, Scheuner C, Meier-Kolthoff JP, Spröer C, Gram L, Overmann J. Trajectories and Drivers of Genome Evolution in Surface-Associated Marine Phaeobacter. Genome Biol Evol 2018; 9:3297-3311. [PMID: 29194520 PMCID: PMC5730936 DOI: 10.1093/gbe/evx249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2017] [Indexed: 12/19/2022] Open
Abstract
The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. Our study reveals that the evolutionary trajectories of surface-associated marine bacteria can differ significantly from free-living marine bacteria or marine generalists.
Collapse
Affiliation(s)
- Heike M Freese
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Carmen Scheuner
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jan P Meier-Kolthoff
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Lone Gram
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Institute of Microbiology, University Braunschweig, Germany
| |
Collapse
|
4
|
Abstract
The McDonald-Kreitman (MK) test is a widely used method for quantifying the role of positive selection in molecular evolution. One key shortcoming of this test lies in its sensitivity to the presence of slightly deleterious mutations, which can severely bias its estimates. An asymptotic version of the MK test was recently introduced that addresses this problem by evaluating polymorphism levels for different mutation frequencies separately, and then extrapolating a function fitted to that data. Here, we present asymptoticMK, a web-based implementation of this asymptotic MK test. Our web service provides a simple R-based interface into which the user can upload the required data (polymorphism and divergence data for the genomic test region and a neutrally evolving reference region). The web service then analyzes the data and provides plots of the test results. This service is free to use, open-source, and available at http://benhaller.com/messerlab/asymptoticMK.html We provide results from simulations to illustrate the performance and robustness of the asymptoticMK test under a wide range of model parameters.
Collapse
|
5
|
A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus. ISME JOURNAL 2016; 10:2468-77. [PMID: 27046334 PMCID: PMC5030687 DOI: 10.1038/ismej.2016.34] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 01/05/2016] [Accepted: 02/02/2016] [Indexed: 12/12/2022]
Abstract
The bacterium Myxococcus xanthus glides through soil in search of prey microbes, but when food sources run out, cells cooperatively construct and sporulate within multicellular fruiting bodies. M. xanthus strains isolated from a 16 × 16-cm-scale patch of soil were previously shown to have diversified into many distinct compatibility types that are distinguished by the failure of swarming colonies to merge upon encounter. We sequenced the genomes of 22 isolates from this population belonging to the two most frequently occurring multilocus sequence type (MLST) clades to trace patterns of incipient genomic divergence, specifically related to social divergence. Although homologous recombination occurs frequently within the two MLST clades, we find an almost complete absence of recombination events between them. As the two clades are very closely related and live in sympatry, either ecological or genetic barriers must reduce genetic exchange between them. We find that the rate of change in the accessory genome is greater than the rate of amino-acid substitution in the core genome. We identify a large genomic tract that consistently differs between isolates that do not freely merge and therefore is a candidate region for harbouring gene(s) responsible for self/non-self discrimination.
Collapse
|
6
|
Orsini M, Cuccuru G, Uva P, Fotia G. Bacterial Genomic Data Analysis in the Next-Generation Sequencing Era. Methods Mol Biol 2016; 1415:407-422. [PMID: 27115645 DOI: 10.1007/978-1-4939-3572-7_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacterial genome sequencing is now an affordable choice for many laboratories for applications in research, diagnostic, and clinical microbiology. Nowadays, an overabundance of tools is available for genomic data analysis. However, tools differ for algorithms, languages, hardware requirements, and user interface, and combining them as it is necessary for sequence data interpretation often requires (bio)informatics skills which can be difficult to find in many laboratories. In addition, multiple data sources, as well as exceedingly large dataset sizes, and increasingly computational complexity further challenge the accessibility, reproducibility, and transparency of the entire process. In this chapter we will cover the main bioinformatics steps required for a complete bacterial genome analysis using next-generation sequencing data, from the raw sequence data to assembled and annotated genomes. All the tools described are available in the Orione framework ( http://orione.crs4.it ), which uniquely combines in a transparent way the most used open source bioinformatics tools for microbiology, allowing microbiologist without any specific hardware or informatics skill to conduct data-intensive computational analyses from quality control to microbial gene annotation.
Collapse
Affiliation(s)
- Massimiliano Orsini
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010, Pula, CA, Italy
| | - Gianmauro Cuccuru
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010, Pula, CA, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010, Pula, CA, Italy
| | - Giorgio Fotia
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010, Pula, CA, Italy.
| |
Collapse
|
7
|
Lassalle F, Muller D, Nesme X. Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis. Res Microbiol 2015; 166:729-41. [DOI: 10.1016/j.resmic.2015.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/28/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
|
8
|
Evolutionary genomics of Borrelia burgdorferi sensu lato: findings, hypotheses, and the rise of hybrids. INFECTION GENETICS AND EVOLUTION 2014; 27:576-93. [PMID: 24704760 DOI: 10.1016/j.meegid.2014.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/14/2023]
Abstract
Borrelia burgdorferi sensu lato (B. burgdorferi s.l.), the group of bacterial species represented by Lyme disease pathogens, has one of the most complex and variable genomic architectures among prokaryotes. Showing frequent recombination within and limited gene flow among geographic populations, the B. burgdorferi s.l. genomes provide an excellent window into the processes of bacterial evolution at both within- and between-population levels. Comparative analyses of B. burgdorferi s.l. genomes revealed a highly dynamic plasmid composition but a conservative gene repertoire. Gene duplication and loss as well as sequence variations at loci encoding surface-localized lipoproteins (e.g., the PF54 genes) are strongly associated with adaptive differences between species. There are a great many conserved intergenic spacer sequences that are candidates for cis-regulatory elements and non-coding RNAs. Recombination among coexisting strains occurs at a rate approximately three times the mutation rate. The coexistence of a large number of genomic groups within local B. burgdorferi s.l. populations may be driven by immune-mediated diversifying selection targeting major antigen loci as well as by adaptation to multiple host species. Questions remain regarding the ecological causes (e.g., climate change, host movements, or new adaptations) of the ongoing range expansion of B. burgdorferi s.l. and on the genomic variations associated with its ecological and clinical variability. Anticipating an explosive growth of the number of B. burgdorferi s.l. genomes sampled from both within and among species, we propose genome-based methods to test adaptive mechanisms and to identify molecular bases of phenotypic variations. Genome sequencing is also necessary for monitoring a likely increase of genetic admixture of previously isolated species and populations in North America and elsewhere.
Collapse
|