1
|
Salehi F, Doustan M, Saemi E. The effect of transcranial random noise stimulation on the movement time and components of noise, co-variation, and tolerance in a perceptual-motor task. Sci Rep 2025; 15:4083. [PMID: 39901001 PMCID: PMC11790889 DOI: 10.1038/s41598-025-88396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
There exist numerous factors that contribute to the amplification of errors and complexity in motor processes, among which variability and noise are particularly noteworthy. Transcranial random noise stimulation (tRNS) has been proposed as a potential means of enhancing motor performance by modulating excitability in the motor cortex. This study aimed to examine the role of the concomitant administration of tRNS with training in enhancing the performance measures of movement time, noise, covariation, and tolerance in the acquisition of a perceptual-motor task. This study enlisted a cohort of 30 healthy male adults (mean age: 22.62 ± 3.83 years) who were randomly assigned to three distinct groups. The participants executed the specified motor task during three sequential phases, namely, the pre-test, intervention, and post-test phases. Statistical analyses showed that training with tRNS has a significant effect on noise cost, co-variation, and movement tolerance (p ≤ 0.05). In addition, tRNS improved the function of the sensorimotor wave (p ≤ 0.05). Moreover, the results indicate that tRNS elicited a significant reduction in both spatial error and movement execution time, (p ≤ 0.05). The study's findings indicate that a mere three training sessions leveraging tRNS may suffice in diminishing the spatial error; nevertheless, a higher number of training sessions is required to alleviate the temporal error.
Collapse
Affiliation(s)
- Fatemeh Salehi
- Department of Motor Behavior and Sport Psychology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammadreza Doustan
- Department of Motor Behavior and Sport Psychology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Esmaeel Saemi
- Department of Motor Behavior and Sport Psychology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
2
|
Caballero C, Barbado D, Peláez M, Moreno FJ. Applying different levels of practice variability for motor learning: More is not better. PeerJ 2024; 12:e17575. [PMID: 38948206 PMCID: PMC11212619 DOI: 10.7717/peerj.17575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Background Variable practice is a broadly used tool to improve motor learning processes. However, controversial results can be found in literature about the success of this type of practice compared to constant practice. This study explored one potential reason for this controversy: the manipulation of variable practice load applied during practice and its effects according to the initial performance level and the initial intrinsic variability of the learner. Method Sixty-five participants were grouped into four practice schedules to learn a serial throwing task, in which the training load of variable practice was manipulated: one constant practice group and three groups with different variable practice loads applied. After a pre-test, participants trained for 2 weeks. A post-test and three retests (96 h, 2 weeks and 1 month) were carried out after training. The participants' throwing accuracy was assessed through error parameters and their initial intrinsic motor variability was assessed by the autocorrelation coefficient of the error. Results The four groups improved their throwing performance. Pairwise comparisons and effect sizes showed larger error reduction in the low variability group. Different loads of variable practice seem to induce different performance improvements in a throwing task. The modulation of the variable practice load seems to be a step forward to clarify the controversy about its benefits, but it has to be guided by the individuals' features, mainly by the initial intrinsic variability of the learner.
Collapse
Affiliation(s)
- Carla Caballero
- Sport Sciences Department, Sport Research Centre, Universiad Miguel Hernández de Elche, Elche, Alicante, Spain
- Neurosciences Research Group, Alicante Institute for Health and Biomedical Research (ISABIAL), Spain, Alicante, Spain
| | - David Barbado
- Sport Sciences Department, Sport Research Centre, Universiad Miguel Hernández de Elche, Elche, Alicante, Spain
- Neurosciences Research Group, Alicante Institute for Health and Biomedical Research (ISABIAL), Spain, Alicante, Spain
| | - Manuel Peláez
- Sport Sciences Department, Sport Research Centre, Universiad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Francisco J. Moreno
- Sport Sciences Department, Sport Research Centre, Universiad Miguel Hernández de Elche, Elche, Alicante, Spain
| |
Collapse
|
3
|
Caballero C, Barbado D, Moreno FJ. Human Motor Noise Assessed by Electromagnetic Sensors and Its Relationship with the Degrees of Freedom Involved in Movement Control. SENSORS (BASEL, SWITZERLAND) 2023; 23:2256. [PMID: 36850854 PMCID: PMC9964564 DOI: 10.3390/s23042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Motor variability is a prominent feature of the human movement that, nowadays, can be easily measured through different sensors and analyzed using different types of variables, and it seems to be related to functional and adaptative motor behavior. It has been stated that motor variability is related to the system's flexibility needed to choose the right degrees of freedom (DoFs) to adapt to constant environmental changes. However, the potential relationship between motor variability and DoFs is unknown. The aim of this study was to analyze how motor variability, both the amount and structure, changes depending on the mechanical DoFs involved in the movement control. For this purpose, movement variability was assessed by a tracking sensor in five tasks with different DoFs, and the amount, using standard deviation, and the structure of variability, through fuzzy entropy and detrended fluctuation analysis, were also assessed. The results showed a higher amount of variability and a less predictable and more auto-correlated variability structure in the long-term when more mechanical DoFs are implied. The studies that analyze motor variability should consider the type of movement and the DoFs involved in the analyzed task since, as the findings have shown, both factors have a noticeable influence on the amount and the structure of motor variability.
Collapse
Affiliation(s)
- Carla Caballero
- Sport Sciences Department, Miguel Hernandez University of Elche, 03202 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - David Barbado
- Sport Sciences Department, Miguel Hernandez University of Elche, 03202 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Francisco J. Moreno
- Sport Sciences Department, Miguel Hernandez University of Elche, 03202 Alicante, Spain
| |
Collapse
|
4
|
Moreno FJ, Barbado D, Caballero C, Urbán T, Sabido R. Variations induced by the use of unstable surface do not facilitate motor adaptation to a throwing skill. PeerJ 2023; 11:e14434. [PMID: 36655049 PMCID: PMC9841905 DOI: 10.7717/peerj.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/31/2022] [Indexed: 01/15/2023] Open
Abstract
Induced variability by the use of unstable surfaces has been proposed to enhance proprioceptive control to deal with perturbations in the support base better. However, there is a lack of evidence about its benefits facilitating motor adaptions in upper body skills. In this experiment, practice on an unstable surface was applied to analyze the adaptations in an upper limb precision throwing skill. After a pretest, twenty-one participants were randomly allocated into two groups: one group practiced the throwing task on a stable surface and the other group practiced the same task on an unstable support base. Differences in throwing performance between pre- and post-practice were analyzed in accuracy, hand movement kinematics and variability of the throw in both surface conditions. Fuzzy entropy of the horizontal force was calculated to assess the complexity dynamics of postural sway. Participants improved their performance on the stable and the unstable surface. Induced variability using an unstable surface reduced participants' variability and the complexity of postural sway, but it did not facilitate a superior adaptation of the throwing task. The results suggest that the variations induced by unstable surfaces would fall far from the family of specific motor solutions and would not facilitate additional motor performance of the throwing task.
Collapse
Affiliation(s)
- Francisco J. Moreno
- Sports Research Centre/Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
| | - David Barbado
- Sports Research Centre/Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL Foundation), Miguel Hernández University of Elche, Alicante, Spain
| | - Carla Caballero
- Sports Research Centre/Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL Foundation), Miguel Hernández University of Elche, Alicante, Spain
| | - Tomás Urbán
- Sports Research Centre/Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
| | - Rafael Sabido
- Sports Research Centre/Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
| |
Collapse
|
5
|
Saraiva M, Vilas-Boas JP, Fernandes OJ, Castro MA. Effects of Motor Task Difficulty on Postural Control Complexity during Dual Tasks in Young Adults: A Nonlinear Approach. SENSORS (BASEL, SWITZERLAND) 2023; 23:628. [PMID: 36679423 PMCID: PMC9866022 DOI: 10.3390/s23020628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Few studies have evaluated the effect of a secondary motor task on the standing posture based on nonlinear analysis. However, it is helpful to extract information related to the complexity, stability, and adaptability to the environment of the human postural system. This study aimed to analyze the effect of two motor tasks with different difficulty levels in motor performance complexity on the static standing posture in healthy young adults. Thirty-five healthy participants (23.08 ± 3.92 years) performed a postural single task (ST: keep a quiet standing posture) and two motor dual tasks (DT). i.e., mot-DT(A)—perform the ST while performing simultaneously an easy motor task (taking a smartphone out of a bag, bringing it to the ear, and putting it back in the bag)—and mot-DT(T)—perform the ST while performing a concurrent difficult motor task (typing on the smartphone keyboard). The approximate entropy (ApEn), Lyapunov exponent (LyE), correlation dimension (CoDim), and fractal dimension (detrending fluctuation analysis, DFA) for the mediolateral (ML) and anterior-posterior (AP) center-of-pressure (CoP) displacement were measured with a force plate while performing the tasks. A significant difference was found between the two motor dual tasks in ApEn, DFA, and CoDim-AP (p < 0.05). For the ML CoP direction, all nonlinear variables in the study were significantly different (p < 0.05) between ST and mot-DT(T), showing impairment in postural control during mot-DT(T) compared to ST. Differences were found across ST and mot-DT(A) in ApEn-AP and DFA (p < 0.05). The mot-DT(T) was associated with less effectiveness in postural control, a lower number of degrees of freedom, less complexity and adaptability of the dynamic system than the postural single task and the mot-DT(A).
Collapse
Affiliation(s)
- Marina Saraiva
- RoboCorp Laboratory, i2A, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - João Paulo Vilas-Boas
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
- LABIOMEP-UP, Faculty of Sports and CIFI2D, University of Porto, 4200-450 Porto, Portugal
| | - Orlando J. Fernandes
- Sport and Health Department, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal
- Comprehensive Health Research Center (CHRC), University of Évora, 7000-671 Évora, Portugal
| | - Maria António Castro
- RoboCorp Laboratory, i2A, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- Department of Mechanical Engineering, University of Coimbra, CEMMPRE, 3030-788 Coimbra, Portugal
- Sector of Physiotherapy, School of Health Sciences, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| |
Collapse
|
6
|
Baughn M, Arellano V, Hawthorne-Crosby B, Lightner JS, Grimes A, King G. Physical activity, balance, and bicycling in older adults. PLoS One 2022; 17:e0273880. [PMID: 36480563 PMCID: PMC9731420 DOI: 10.1371/journal.pone.0273880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/15/2022] [Indexed: 12/13/2022] Open
Abstract
Falls are a critical public health issue among older adults. One notable factor contributing to falls in older adults is a deterioration of the structures supporting balance and overall balance control. Preliminary evidence suggests older adults who ride a bicycle have better balance than those who do not. Cycling may be an effective intervention to prevent falls among older adults. This study aims to objectively measure the relationship between bicycling, physical activity, and balance for older adults. Older adult cyclists (n = 19) and non-cyclists (n = 27) were recruited to (1) complete a survey that assessed demographics; (2) wear an accelerometer for 3 weeks to objectively assess physical activity; and (3) complete balance-related tasks on force platforms. Mann-Whitney U-tests were performed to detect differences in balance and physical activity metrics between cyclists and non-cyclists. Cyclists were significantly more physically active than non-cyclists. Cyclists, compared to non-cyclists, exhibited differences in balance-related temporospatial metrics and long-range temporal correlations that suggest a more tightly regulated postural control strategy that may relate to higher stability. Cycling was observed to correlate more strongly with balance outcomes than other physical activity. Taken together, these results demonstrate the possible implications for cycling as an effective intervention to improve balance and reduce fall risk.
Collapse
Affiliation(s)
- Maya Baughn
- School of Nursing and Health Studies, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Victor Arellano
- School of Nursing and Health Studies, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- * E-mail:
| | - Brieanna Hawthorne-Crosby
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Joseph S. Lightner
- School of Nursing and Health Studies, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Amanda Grimes
- School of Nursing and Health Studies, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Gregory King
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| |
Collapse
|
7
|
Usefulness of Surface Electromyography Complexity Analyses to Assess the Effects of Warm-Up and Stretching during Maximal and Sub-Maximal Hamstring Contractions: A Cross-Over, Randomized, Single-Blind Trial. BIOLOGY 2022; 11:biology11091337. [PMID: 36138816 PMCID: PMC9495372 DOI: 10.3390/biology11091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to apply different complexity-based methods to surface electromyography (EMG) in order to detect neuromuscular changes after realistic warm-up procedures that included stretching exercises. Sixteen volunteers conducted two experimental sessions. They were tested before, after a standardized warm-up, and after a stretching exercise (static or neuromuscular nerve gliding technique). Tests included measurements of the knee flexion torque and EMG of biceps femoris (BF) and semitendinosus (ST) muscles. EMG was analyzed using the root mean square (RMS), sample entropy (SampEn), percentage of recurrence and determinism following a recurrence quantification analysis (%Rec and %Det) and a scaling parameter from a detrended fluctuation analysis. Torque was significantly greater after warm-up as compared to baseline and after stretching. RMS was not affected by the experimental procedure. In contrast, SampEn was significantly greater after warm-up and stretching as compared to baseline values. %Rec was not modified but %Det for BF muscle was significantly greater after stretching as compared to baseline. The a scaling parameter was significantly lower after warm-up as compared to baseline for ST muscle. From the present results, complexity-based methods applied to the EMG give additional information than linear-based methods. They appeared sensitive to detect EMG complexity increases following warm-up.
Collapse
|
8
|
Wiesinger HP, Buchecker M, Müller E, Stöggl T, Birklbauer J. Decreased Postural Complexity in Overweight to Obese Children and Adolescents: A Cross-Sectional Study. Front Hum Neurosci 2022; 16:850548. [PMID: 35572009 PMCID: PMC9097216 DOI: 10.3389/fnhum.2022.850548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Although a few studies suggest that young overweight to obese children and adolescents (YO) may have impaired postural control compared to young normal-weight (YN) peers, little information exists about how these two groups differ in the quality of the underlying balance strategies employed. Hence, the aim of the present study was a first comprehensive examination of the structural complexity of postural sways in these two cohorts during quiet bilateral standing. Methods Nineteen YO secondary school students (13.0 ± 1.4 years; male = 10, female = 9) were carefully matched to YN controls (13.0 ± 1.5 years) for age, sex, height, and school. Mediolateral (ML) and anteriorposterior (AP) acceleration signals were recorded with an inertial measurement unit (IMU) positioned at the trunk while standing barefoot in two conditions: firm and foam support surface. The magnitude of postural fluctuations was obtained using the root mean square (RMS). The temporal structure of the signals was analyzed via sample entropy (SEn), largest Lyapunov exponent (LyE), and detrended fluctuation analysis (α-DFA) algorithm. Reliability was assessed using a test–retest design. Results In both groups, foam standing caused higher postural fluctuations (higher RMS values) and reduced structural complexity (lower SEn values, higher LyE values, higher α-DFA values). In comparison to YN, YO exhibited a higher RMSAP. Especially in ML direction, the acceleration signals of the YO had higher repeatability (smaller SEn values), greater long-range correlations (higher α-DFA values), and lower local stability (higher LyE values). However, these observations were largely independent of the task difficulty. Except for α-DFAAP, the IMU approach proved reliable to characterize posture control. Discussion Our outcomes confirm postural control deficits in YO compared to their YN peers and indicate impaired regulatory mechanisms reflected as rigidity. Such less complex patterns usually reflect diverse pathologies, are detrimental to compensate for internal or external perturbations, and are attributed to lower adaptability and task performance. Without targeted balance stimuli, YO likely end in a lifelong vicious circle of mutually dependent poor balance regulation and low physical activity.
Collapse
Affiliation(s)
- Hans-Peter Wiesinger
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
- *Correspondence: Hans-Peter Wiesinger,
| | - Michael Buchecker
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Erich Müller
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Thomas Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
- Red Bull Athlete Performance Center, Salzburg, Austria
| | - Jürgen Birklbauer
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| |
Collapse
|
9
|
Moreno FJ, Caballero C, Barbado D. Postural control strategies are revealed by the complexity of fractional components of COP. J Neurophysiol 2022; 127:1289-1297. [PMID: 35353616 DOI: 10.1152/jn.00426.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The complexity of the center of pressure (COP) provides important information regarding the underlying mechanisms of postural control. The relationships between COP complexity and balance performance are not fully established and might depend on the task constraints and the filtering decomposition of the COP signal. This study assessed COP complexity under different task constraints and it was assessed if emergent dynamics of COP fluctuations differ according to fractional components of COP related to peripheral or central adjustments. One hundred and sixty-two participants performed two sitting balance tasks. Accuracy was required by following a target that moved in the mediolateral (ML) or in the anteroposterior (AP) axis. Complexity dynamics of COP were addressed through Detrended Fluctuation Analysis (DFA) in the axis constrained by accuracy requirements and in the one non-constrained. Decomposition of COP components was applied by low-pass, band-pass and high-pass filters. DFA of low-pass and band-pass components of COP in the constrained axis were small-to-moderately related (r = .190 to .237) to balance performance. DFA of the high-pass component of the COP exhibited the opposite relationship (r = -.283 to -.453) in both axes (constrained and non-constrained). This study evidences that COP complexity is linked to better performance. This positive relationship complexity/performance is observed in the low- and mid-frequency components of the COP. These components might be related to central mechanisms of postural control. The lack of relationships between the different frequencies analyzed in the study suggests that they are capturing different components of postural control.
Collapse
Affiliation(s)
| | - Carla Caballero
- Sport Sciences Department, Miguel Hernandez University, Elche, Spain
| | - David Barbado
- Sport Sciences Department, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
10
|
Walsh GS, Low DC, Arkesteijn M. The Relationship between Postural Control and Muscle Quality in Older Adults. J Mot Behav 2021; 54:363-371. [PMID: 34558383 DOI: 10.1080/00222895.2021.1977602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to determine relationships between muscle quality, the ratio of muscle strength to muscle mass, and postural control and compare postural control of older adults with higher and lower muscle quality. Twenty-five older adults had leg muscle quality and postural control with eyes open and closed measured. Linear and non-linear postural control variables were calculated from center of pressure movements. There was a significant canonical correlation between muscle quality and sway complexity, but no relationship between muscle quality and sway magnitude. Higher muscle quality older adults had greater medio-lateral sway complexity than lower muscle quality older adults. These findings suggest that higher muscle quality relates to greater sway complexity in older adults, suggesting maintenance of muscle quality should be considered important to attenuate postural control declines.
Collapse
Affiliation(s)
- Gregory S Walsh
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, UK
| | - Daniel C Low
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK.,Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, London, UK
| | - Marco Arkesteijn
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
11
|
Caballero C, Barbado D, Hérnandez-Davó H, Hernández-Davó JL, Moreno FJ. Balance dynamics are related to age and levels of expertise. Application in young and adult tennis players. PLoS One 2021; 16:e0249941. [PMID: 33857225 PMCID: PMC8049250 DOI: 10.1371/journal.pone.0249941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/27/2021] [Indexed: 11/18/2022] Open
Abstract
In tennis, coaches consider balance fundamental for the acquisition of skilled motor performance. However, the potential relationship between balance and tennis expertise and performance has not been explored yet. Therefore, this study assessed the relationship between balance and tennis performance using linear and non-linear parameters through 1) the comparison of tennis players of different ages and levels of expertise, and 2) analyzing the relationship between balance and tennis serving speed and accuracy. One hundred and six recreational and expert male tennis players took part in the study (age range 10-35 years old). Temporal dynamics of postural control during a balance task on an unstable surface were analyzed through the mean velocity and the detrended fluctuation analysis (DFAV) of center of pressure (COP). Tennis serve performance was quantified by measuring accuracy and speed. Traditional variables measuring balance performance only showed differences according to age but not to sport performance. COP showed a reduction of auto-correlated variability (reflected by DFAV) with age but mainly in expert players. COP dynamics was the only balance parameter discriminating sport expertise and it was related to age. Balance dynamics exhibited by expert tennis players DFAV results support the idea that, along the years, sport experience induces balance adaptations characterized by a higher ability to perform postural adjustments. These results also reinforce the use of non-linear analysis to reveal subtle balance adaptations produced by sport practice. Finally, the lack of correlations suggests that balance, measured with scattering variables, in a non-specific task is not a main determinant of sport performance in tennis serve.
Collapse
Affiliation(s)
- Carla Caballero
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - David Barbado
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Héctor Hérnandez-Davó
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - José Luis Hernández-Davó
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Francisco J. Moreno
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Alicante, Spain
- * E-mail:
| |
Collapse
|
12
|
Examining modifications of execution strategies during a continuous task. Sci Rep 2021; 11:4829. [PMID: 33649464 PMCID: PMC7921105 DOI: 10.1038/s41598-021-84369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/10/2021] [Indexed: 11/08/2022] Open
Abstract
How strategies are formulated during a performance is an important aspect of motor control. Knowledge of the strategy employed in a task may help subjects achieve better performances, as it would help to evidence other possible strategies that could be used as well as help perfect a certain strategy. We sought to investigate how much of a performance is conditioned by the initial state and whether behavior throughout the performance is modified within a short timescale. In other words, we focus on the process of execution and not on the outcome. To this scope we used a repeated continuous circle tracing task. Performances were decomposed into different components (i.e., execution variables) whose combination is able to numerically determine movement outcome. By identifying execution variables of speed and duration, we created an execution space and a solution manifold (i.e., combinations of execution variables yielding zero discrepancy from the desired outcome) and divided the subjects according to their initial performance in that space into speed preference, duration preference, and no-preference groups. We demonstrated that specific strategies may be identified in a continuous task, and strategies remain relatively stable throughout the performance. Moreover, as performances remained stable, the initial location in the execution space can be used to determine the subject’s strategy. Finally, contrary to other studies, we demonstrated that, in a continuous task, performances were associated with reduced exploration of the execution space.
Collapse
|
13
|
Walsh GS, Low DC, Arkesteijn M. Stable and Unstable Load Carriage Effects on the Postural Control of Older Adults. J Appl Biomech 2020; 36:178-185. [PMID: 32369768 DOI: 10.1123/jab.2019-0366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the effects of backpack load carriage on quiet standing postural control and limits of stability (LOS) of older adults. Fourteen older adults (65 [6] y) performed quiet standing and a forward, right, and left LOS test in 3 conditions, unloaded, stable, and unstable backpack loads while activity of 4 leg muscles was recorded. Stable and unstable loads decreased postural sway (main effect ηp2=.84, stable P < .001, unstable P < .001), mediolateral (main effect ηp2=.49, stable P = .002, unstable P = .018) and anterior-posterior (main effect ηp2=.64, stable P < .001, unstable P = .001) fractal dimension, and LOS distance (main effect ηp2=.18, stable P = .011, unstable P = .046) compared with unloaded. Rectus femoris (main effect ηp2=.39, stable P = .001, unstable P = .010) and gastrocnemius (main effect ηp2=.30, unstable P = .027) activity increased in loaded conditions during LOS and quiet standing. Gastrocnemius-tibialis anterior coactivation was greater in unstable load than stable loaded quiet standing (main effect ηp2=.24, P = .040). These findings suggest older adults adopt conservative postural control strategies minimizing the need for postural corrections in loaded conditions. Reduced LOS may also increase fall risk when carrying a load. However, there was no difference between unstable and stable loads for postural control variables.
Collapse
|
14
|
Wang W, Xiao Y, Yue S, Wei N, Li K. Analysis of center of mass acceleration and muscle activation in hemiplegic paralysis during quiet standing. PLoS One 2019; 14:e0226944. [PMID: 31860694 PMCID: PMC6924687 DOI: 10.1371/journal.pone.0226944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
Hemiplegic paralysis after stroke may augment postural instability and decrease the balance control ability for standing. The center of mass acceleration (COMacc) is considered to be an effective indicator of postural stability for standing balance control. However, it is less studied how the COMacc could be affected by the muscle activities on lower-limbs in post-stroke hemiplegic patients. This study aimed to examine the effects of hemiplegic paralysis in post-stroke individuals on the amplitude and structural variabilities of COMacc and surface electromyography (sEMG) signals during quiet standing. Eleven post-stroke hemiplegic patients and the same number of gender- and age-matched healthy volunteers participated in the experiment. The sEMG signals of tibialis anterior (TA) and lateral gastrocnemius (LG) muscles of the both limbs, and the COMacc in the anterior-posterior direction with and without visual feedback (VF vs. NVF) were recorded simultaneously during quiet standing. The sEMG and COMacc were analyzed using root mean square (RMS) or standard deviation (SD), and a modified detrended fluctuation analysis based on empirical mode decomposition (EMD-DFA). Results showed that the SD and the scale exponent α of EMD-DFA of the COMacc from the patients were significantly higher than the values from the controls under both VF (p < 0.01) and NVF (p < 0.001) conditions. The RMSs of TA and LG on the non-paretic limbs were significantly higher than those on paretic limbs (p < 0.05) for both the patients and controls (p < 0.05). The TA of both the paretic and non-paretic limbs of the patients showed augmented α values than the TA of the controls (p < 0.05). The α of the TA and LG of non-paretic limbs, and the α of COMacc were significantly increased after removing visual feedback in patients (p < 0.05). These results suggested an increased amplitude variability but decreased structural variability of COMacc, associated with asymmetric muscle contraction between the paretic and the non-paretic limbs in hemiplegic paralysis, revealing a deficiency in integration of sensorimotor information and a loss of flexibility of postural control due to stroke.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Motor Control and Rehabilitation, Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China
- Department of Physical Medicine and Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| | - Yunling Xiao
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Shouwei Yue
- Department of Physical Medicine and Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
- * E-mail: (KL); (SY)
| | - Na Wei
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
- Suzhou Institute of Shandong University, Suzhou, China
| | - Ke Li
- Laboratory of Motor Control and Rehabilitation, Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China
- * E-mail: (KL); (SY)
| |
Collapse
|
15
|
Jelinek HF, Khalaf K, Poilvet J, Khandoker AH, Heale L, Donnan L. The Effect of Ankle Support on Lower Limb Kinematics During the Y-Balance Test Using Non-linear Dynamic Measures. Front Physiol 2019; 10:935. [PMID: 31402873 PMCID: PMC6669792 DOI: 10.3389/fphys.2019.00935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
Background: According to dynamical systems theory, an increase in movement variability leads to greater adaptability, which may be related to the number of feedforward and feedback mechanisms associated with movement and postural control. Using Higuchi dimension (HDf) to measure complexity of the signal and Singular Value Decomposition Entropy (SvdEn) to measure the number of attributes required to describe the biosignal, the purpose of this study was to determine the effect of kinesiology and strapping tape on center of pressure dynamics, myoelectric muscle activity, and joint angle during the Y balance test. Method: Forty-one participants between 18 and 34 years of age completed five trials of the Y balance test without tape, with strapping tape (ST), and with kinesiology tape (KT) in a cross-sectional study. The mean and standard errors were calculated for the center of pressure, joint angles, and muscle activities with no tape, ST, and KT. The results were analyzed with a repeated measures ANOVA model (PA < 0.05) fit and followed by Tukey post hoc analysis from the R package with probability set at P < 0.05. Results: SvdEn indicated significantly decreased complexity in the anterior-posterior (p < 0.05) and internal-external rotation (p < 0.001) direction of the ankle, whilst HDf for both ST and KT identified a significant increase in ankle dynamics when compared to no tape (p < 0.0001) in the mediolateral direction. Taping also resulted in a significant difference in gastrocnemius muscle myoelectric muscle activity between ST and KT (p = 0.047). Conclusion: Complexity of ankle joint dynamics increased in the sagittal plane of movement with no significant changes in the possible number of physiological attributes. In contrast, the number of possible physiological attributes contributing to ankle movement was significantly lower in the frontal and transverse planes. Simply adhering tape to the skin is sufficient to influence neurological control and adaptability of movement. In addition, adaptation of ankle joint dynamics to retain postural stability during a Y Balance test is achieved differently depending on the direction of movement.
Collapse
Affiliation(s)
- Herbert F Jelinek
- School of Community Health, Charles Sturt University, Albury, NSW, Australia
| | - Kinda Khalaf
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Julie Poilvet
- Department of Biology and Computer Science, University of Poitiers, Poitiers, France
| | - Ahsan H Khandoker
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Lainey Heale
- School of Community Health, Charles Sturt University, Albury, NSW, Australia
| | - Luke Donnan
- School of Community Health, Charles Sturt University, Albury, NSW, Australia
| |
Collapse
|
16
|
Do intentionality constraints shape the relationship between motor variability and performance? PLoS One 2019; 14:e0214237. [PMID: 30995243 PMCID: PMC6469761 DOI: 10.1371/journal.pone.0214237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022] Open
Abstract
The aim of this experiment was to assess if the previously supported relationship between the structure of motor variability and performance changes when the task or organismic constraints encourage individuals to adjust their movement to achieve a goal. Forty-two healthy volunteers (aged 26.05 ± 5.02 years) performed three sets of cyclic pointing movements, 600 cycles each. Every set was performed under different conditions: 1) without a target; 2) with a target; 3) with a target and a financial reward. The amount of performance variability was analysed using the standard deviation of the medial-lateral (ML) and anterior-posterior (AP) axes and the bivariate variable error. The structure of the variability was assessed by Detrended Fluctuation Analysis (DFA) of the following time series: the coordinate values of the endpoint in ML, AP axes and resultant distance (RD), the hand orientation and the movement time. The performance of the task constrained with a target, or a target and reward, required higher implication to adjust an individual’s movements to achieve the task goal, showing a decrease in dispersions and lower autocorrelation. Under the condition without a target, variability dispersion was positively related to autocorrelation of the movement values from ML axis and RD time series, and negatively related to the values from the hand orientation time series. There was a loss of the relationship between variability structure and performance when the task was constrained by the target and the reward. That could indicate different strategies of the participants to achieve the objective. Considering the results and previous studies, the relationship between variability structure and performance could depend on task constraints such as feedback, difficulty or the skill level of participants and it is mediated by individual constraints such as implication or intentionality.
Collapse
|
17
|
Wang Z, Khemani P, Schmitt LM, Lui S, Mosconi MW. Static and dynamic postural control deficits in aging fragile X mental retardation 1 (FMR1) gene premutation carriers. J Neurodev Disord 2019; 11:2. [PMID: 30665341 PMCID: PMC6341725 DOI: 10.1186/s11689-018-9261-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Individuals with premutation alleles of the fragile X mental retardation 1 (FMR1) gene are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS) during aging. Characterization of motor issues associated with aging in FMR1 premutation carriers is needed to determine neurodegenerative processes and establish new biobehavioral indicators to help identify individuals at greatest risk of developing FXTAS. METHODS We examined postural stability in 18 premutation carriers ages 46-77 years and 14 age-matched healthy controls. Participants completed a test of static stance and two tests of dynamic postural sway on a force platform to quantify postural variability and complexity. CGG repeat length was measured for each premutation carrier, and MRI and neurological evaluations were conducted to identify carriers who currently met criteria for FXTAS. Of the 18 premutation carriers, seven met criteria for definite/probable FXTAS (FXTAS+), seven showed no MRI or neurological signs of FXTAS (FXTAS-), and four were inconclusive due to insufficient data. RESULTS Compared to controls, premutation carriers showed increased center of pressure (COP) variability in the mediolateral (COPML) direction during static stance and reduced COP variability in the anterior-posterior (COPAP) direction during dynamic AP sway. They also showed reductions in COPML complexity during each postural condition. FXTAS+ individuals showed reduced COPAP variability compared to FXTAS- carriers and healthy controls during dynamic AP sway. Across all carriers, increased sway variability during static stance and decreased sway variability in target directions during dynamic sways were associated with greater CGG repeat length and more severe neurologically rated posture and gait abnormalities. CONCLUSION Our findings indicate that aging FMR1 premutation carriers show static and dynamic postural control deficits relative to healthy controls implicating degenerative processes of spinocerebellar and cerebellar-brainstem circuits that may be independent of or precede the onset of FXTAS. Our finding that FXTAS+ and FXTAS- premutation carriers differed on their level of intentional AP sway suggests that neural mechanisms of dynamic postural control may be differentially impacted in patients with FXTAS, and its measurement may be useful for rapidly and precisely identifying disease presence and onset.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, FL, 32611, USA. .,University of Florida, 1225 Center Drive, PO Box 100164, Gainesville, FL, 326100164, USA.
| | - Pravin Khemani
- Department of Neurology, Swedish Neuroscience Institute, Seattle, WA, 98121, USA
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Su Lui
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, 66045, USA.,Clinical Child Psychology Program, University of Kansas, Lawrence, KS, 66045, USA.,Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
18
|
Gilfriche P, Deschodt-Arsac V, Blons E, Arsac LM. Frequency-Specific Fractal Analysis of Postural Control Accounts for Control Strategies. Front Physiol 2018; 9:293. [PMID: 29643816 PMCID: PMC5883185 DOI: 10.3389/fphys.2018.00293] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/12/2018] [Indexed: 11/24/2022] Open
Abstract
Diverse indicators of postural control in Humans have been explored for decades, mostly based on the trajectory of the center-of-pressure. Classical approaches focus on variability, based on the notion that if a posture is too variable, the subject is not stable. Going deeper, an improved understanding of underlying physiology has been gained from studying variability in different frequency ranges, pointing to specific short-loops (proprioception), and long-loops (visuo-vestibular) in neural control. More recently, fractal analyses have proliferated and become useful additional metrics of postural control. They allowed identifying two scaling phenomena, respectively in short and long timescales. Here, we show that one of the most widely used methods for fractal analysis, Detrended Fluctuation Analysis, could be enhanced to account for scalings on specific frequency ranges. By computing and filtering a bank of synthetic fractal signals, we established how scaling analysis can be focused on specific frequency components. We called the obtained method Frequency-specific Fractal Analysis (FsFA) and used it to associate the two scaling phenomena of postural control to proprioceptive-based control loop and visuo-vestibular based control loop. After that, convincing arguments of method validity came from an application on the study of unaltered vs. altered postural control in athletes. Overall, the analysis suggests that at least two timescales contribute to postural control: a velocity-based control in short timescales relying on proprioceptive sensors, and a position-based control in longer timescales with visuo-vestibular sensors, which is a brand-new vision of postural control. Frequency-specific scaling exponents are promising markers of control strategies in Humans.
Collapse
Affiliation(s)
- Pierre Gilfriche
- CATIE - Centre Aquitain des Technologies de l'Information et Electroniques, Talence, France.,Univ. Bordeaux, CNRS, Laboratoire IMS, UMR 5218, Talence, France
| | | | - Estelle Blons
- Univ. Bordeaux, CNRS, Laboratoire IMS, UMR 5218, Talence, France
| | - Laurent M Arsac
- Univ. Bordeaux, CNRS, Laboratoire IMS, UMR 5218, Talence, France
| |
Collapse
|
19
|
Zhou J, Habtemariam D, Iloputaife I, Lipsitz LA, Manor B. The Complexity of Standing Postural Sway Associates with Future Falls in Community-Dwelling Older Adults: The MOBILIZE Boston Study. Sci Rep 2017; 7:2924. [PMID: 28592844 PMCID: PMC5462759 DOI: 10.1038/s41598-017-03422-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 04/28/2017] [Indexed: 11/14/2022] Open
Abstract
Standing postural control is complex, meaning that it is dependent upon numerous inputs interacting across multiple temporal-spatial scales. Diminished physiologic complexity of postural sway has been linked to reduced ability to adapt to stressors. We hypothesized that older adults with lower postural sway complexity would experience more falls in the future. 738 adults aged ≥70 years completed the Short Physical Performance Battery test (SPPB) test and assessments of single and dual-task standing postural control. Postural sway complexity was quantified using multiscale entropy. Falls were subsequently tracked for 48 months. Negative binomial regression demonstrated that older adults with lower postural sway complexity in both single and dual-task conditions had higher future fall rate (incident rate ratio (IRR) = 0.98, p = 0.02, 95% Confidence Limits (CL) = 0.96-0.99). Notably, participants in the lowest quintile of complexity during dual-task standing suffered 48% more falls during the four-year follow-up as compared to those in the highest quintile (IRR = 1.48, p = 0.01, 95% CL = 1.09-1.99). Conversely, traditional postural sway metrics or SPPB performance did not associate with future falls. As compared to traditional metrics, the degree of multi-scale complexity contained within standing postural sway-particularly during dual task conditions- appears to be a better predictor of future falls in older adults.
Collapse
Affiliation(s)
- Junhong Zhou
- Hebrew SeniorLife Institute for Aging Research, Roslindale, MA, USA.
- Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | | | | | - Lewis A Lipsitz
- Hebrew SeniorLife Institute for Aging Research, Roslindale, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brad Manor
- Hebrew SeniorLife Institute for Aging Research, Roslindale, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Zhou J, Lipsitz L, Habtemariam D, Manor B. Sub-sensory vibratory noise augments the physiologic complexity of postural control in older adults. J Neuroeng Rehabil 2016; 13:44. [PMID: 27142280 PMCID: PMC4855814 DOI: 10.1186/s12984-016-0152-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background Postural control requires numerous inputs interacting across multiple temporospatial scales. This organization, evidenced by the “complexity” contained within standing postural sway fluctuations, enables diverse system functionality. Age-related reduction of foot-sole somatosensation reduces standing postural sway complexity and diminishes the functionality of the postural control system. Sub-sensory vibrations applied to the foot soles reduce the speed and magnitude of sway and improve mobility in older adults. We thus hypothesized that these vibration-induced improvements to the functionality of the postural control system are associated with an increase in the standing postural sway complexity. Method Twelve healthy older adults aged 74 ± 8 years completed three visits to test the effects of foot sole vibrations at 0 % (i.e., no vibration), 70 and 85 % of the sensory threshold. Postural sway was assessed during eyes-open and eyes-closed standing. The complexity of sway time-series was quantified using multiscale entropy. The timed up-and-go (TUG) was completed to assess mobility. Results When standing without vibration, participants with lower foot sole vibratory thresholds (better sensation) had greater mediolateral (ML) sway complexity (r2 = 0.49, p < 0.001), and those with greater ML sway complexity had faster TUG times (better mobility) (r2 = 0.38, p < 0.001). Foot sole vibrations at 70 and 85 % of sensory threshold increased ML sway complexity during eyes-open and eyes-closed standing (p < 0.0001). Importantly, these vibration-induced increases in complexity correlated with improvements in the TUG test of mobility (r2 = 0.15 ~ 0.42, p < 0.001 ~ 0.03). Conclusions Sub-sensory foot sole vibrations augment the postural control system functionality and such beneficial effects are reflected in an increase in the physiologic complexity of standing postural sway dynamics.
Collapse
Affiliation(s)
- Junhong Zhou
- Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA. .,Beth Israel Deaconess Medical Center, Boston, MA, 02131, USA. .,Harvard Medical School, 1200 Centre Street, Boston, MA, 02131, USA.
| | - Lewis Lipsitz
- Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA.,Beth Israel Deaconess Medical Center, Boston, MA, 02131, USA.,Harvard Medical School, 1200 Centre Street, Boston, MA, 02131, USA
| | | | - Brad Manor
- Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA.,Beth Israel Deaconess Medical Center, Boston, MA, 02131, USA.,Harvard Medical School, 1200 Centre Street, Boston, MA, 02131, USA
| |
Collapse
|
21
|
Sotirakis H, Kyvelidou A, Mademli L, Stergiou N, Hatzitaki V. Aging affects postural tracking of complex visual motion cues. Exp Brain Res 2016; 234:2529-40. [PMID: 27126061 DOI: 10.1007/s00221-016-4657-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
Postural tracking of visual motion cues improves perception-action coupling in aging, yet the nature of the visual cues to be tracked is critical for the efficacy of such a paradigm. We investigated how well healthy older (72.45 ± 4.72 years) and young (22.98 ± 2.9 years) adults can follow with their gaze and posture horizontally moving visual target cues of different degree of complexity. Participants tracked continuously for 120 s the motion of a visual target (dot) that oscillated in three different patterns: a simple periodic (simulated by a sine), a more complex (simulated by the Lorenz attractor that is deterministic displaying mathematical chaos) and an ultra-complex random (simulated by surrogating the Lorenz attractor) pattern. The degree of coupling between performance (posture and gaze) and the target motion was quantified in the spectral coherence, gain, phase and cross-approximate entropy (cross-ApEn) between signals. Sway-target coherence decreased as a function of target complexity and was lower for the older compared to the young participants when tracking the chaotic target. On the other hand, gaze-target coherence was not affected by either target complexity or age. Yet, a lower cross-ApEn value when tracking the chaotic stimulus motion revealed a more synchronous gaze-target relationship for both age groups. Results suggest limitations in online visuo-motor processing of complex motion cues and a less efficient exploitation of the body sway dynamics with age. Complex visual motion cues may provide a suitable training stimulus to improve visuo-motor integration and restore sway variability in older adults.
Collapse
Affiliation(s)
- H Sotirakis
- Motor Control and Learning Laboratory, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, 546 24, Thessaloniki, Greece
| | - A Kyvelidou
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - L Mademli
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - N Stergiou
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.,Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - V Hatzitaki
- Motor Control and Learning Laboratory, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, 546 24, Thessaloniki, Greece.
| |
Collapse
|
22
|
Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults. Exp Brain Res 2015; 233:2401-9. [PMID: 25963755 DOI: 10.1007/s00221-015-4310-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
Abstract
Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex reduces the size and speed of standing postural sway in younger adults, particularly when performing a cognitive dual task. Here, we hypothesized that tDCS would alter the complex dynamics of postural sway as quantified by multiscale entropy (MSE). Twenty healthy older adults completed two study visits. Center-of-pressure (COP) fluctuations were recorded during single-task (i.e., quiet standing) and dual-task (i.e., standing while performing serial subtractions) conditions, both before and after a 20-min session of real or sham tDCS. MSE was used to estimate COP complexity within each condition. The percentage change in complexity from single- to dual-task conditions (i.e., dual-task cost) was also calculated. Before tDCS, COP complexity was lower (p = 0.04) in the dual-task condition as compared to the single-task condition. Neither real nor sham tDCS altered complexity in the single-task condition. As compared to sham tDCS, real tDCS increased complexity in the dual-task condition (p = 0.02) and induced a trend toward improved serial subtraction performance (p = 0.09). Moreover, those subjects with lower dual-task COP complexity at baseline exhibited greater percentage increases in complexity following real tDCS (R = -0.39, p = 0.05). Real tDCS also reduced the dual-task cost to complexity (p = 0.02), while sham stimulation had no effect. A single session of tDCS targeting the prefrontal cortex increased standing postural sway complexity with concurrent non-postural cognitive task. This form of noninvasive brain stimulation may be a safe strategy to acutely improve postural control by enhancing the system's capacity to adapt to stressors.
Collapse
|