1
|
Tkalec KI, Hayes AJ, Lim KS, Lewis JM, Davies MR, Scott NE. Glycan-Tailored Glycoproteomic Analysis Reveals Serine is the Sole Residue Subjected to O-Linked Glycosylation in Acinetobacter baumannii. J Proteome Res 2024; 23:2474-2494. [PMID: 38850255 DOI: 10.1021/acs.jproteome.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Protein glycosylation is a ubiquitous process observed across all domains of life. Within the human pathogen Acinetobacter baumannii, O-linked glycosylation is required for virulence; however, the targets and conservation of glycosylation events remain poorly defined. In this work, we expand our understanding of the breadth and site specificity of glycosylation within A. baumannii by demonstrating the value of strain specific glycan electron-transfer/higher-energy collision dissociation (EThcD) triggering for bacterial glycoproteomics. By coupling tailored EThcD-triggering regimes to complementary glycopeptide enrichment approaches, we assessed the observable glycoproteome of three A. baumannii strains (ATCC19606, BAL062, and D1279779). Combining glycopeptide enrichment techniques including ion mobility (FAIMS), metal oxide affinity chromatography (titanium dioxide), and hydrophilic interaction liquid chromatography (ZIC-HILIC), as well as the use of multiple proteases (trypsin, GluC, pepsin, and thermolysis), we expand the known A. baumannii glycoproteome to 33 unique glycoproteins containing 42 glycosylation sites. We demonstrate that serine is the sole residue subjected to glycosylation with the substitution of serine for threonine abolishing glycosylation in model glycoproteins. An A. baumannii pan-genome built from 576 reference genomes identified that serine glycosylation sites are highly conserved. Combined this work expands our knowledge of the conservation and site specificity of A. baumannii O-linked glycosylation.
Collapse
Affiliation(s)
- Kristian I Tkalec
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Kataleen S Lim
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| |
Collapse
|
2
|
Hadjineophytou C, Loh E, Koomey M, Scott NE. Combining FAIMS based glycoproteomics and DIA proteomics reveals widespread proteome alterations in response to glycosylation occupancy changes in Neisseria gonorrhoeae. Proteomics 2024; 24:e2300496. [PMID: 38361220 DOI: 10.1002/pmic.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Protein glycosylation is increasingly recognized as a common protein modification across bacterial species. Within the Neisseria genus O-linked protein glycosylation is conserved yet closely related Neisseria species express O-oligosaccharyltransferases (PglOs) with distinct targeting activities. Within this work, we explore the targeting capacity of different PglOs using Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) fractionation and Data-Independent Acquisition (DIA) to allow the characterization of the impact of changes in glycosylation on the proteome of Neisseria gonorrhoeae. We demonstrate FAIMS expands the known glycoproteome of wild type N. gonorrhoeae MS11 and enables differences in glycosylation to be assessed across strains expressing different pglO allelic chimeras with unique substrate targeting activities. Combining glycoproteomic insights with DIA proteomics, we demonstrate that alterations within pglO alleles have widespread impacts on the proteome of N. gonorrhoeae. Examination of peptides known to be targeted by glycosylation using DIA analysis supports alterations in glycosylation occupancy occurs independently of changes in protein levels and that the occupancy of glycosylation is generally low on most glycoproteins. This work thus expands our understanding of the N. gonorrhoeae glycoproteome and the roles that pglO allelic variation may play in governing genus-level protein glycosylation.
Collapse
Affiliation(s)
- Chris Hadjineophytou
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Clinical Microbiology, BioClinicum, Karolinska University Hospital, Solna, Sweden
| | - Edmund Loh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Clinical Microbiology, BioClinicum, Karolinska University Hospital, Solna, Sweden
| | - Michael Koomey
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
3
|
Lewis J, Scott NE. CRISPRi-Mediated Silencing of Burkholderia O-Linked Glycosylation Systems Enables the Depletion of Glycosylation Yet Results in Modest Proteome Impacts. J Proteome Res 2023; 22:1762-1778. [PMID: 36995114 PMCID: PMC10243306 DOI: 10.1021/acs.jproteome.2c00790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Indexed: 03/31/2023]
Abstract
The process of O-linked protein glycosylation is highly conserved across the Burkholderia genus and mediated by the oligosaccharyltransferase PglL. While our understanding of Burkholderia glycoproteomes has increased in recent years, little is known about how Burkholderia species respond to modulations in glycosylation. Utilizing CRISPR interference (CRISPRi), we explored the impact of silencing of O-linked glycosylation across four species of Burkholderia; Burkholderia cenocepacia K56-2, Burkholderia diffusa MSMB375, Burkholderia multivorans ATCC17616, and Burkholderia thailandensis E264. Proteomic and glycoproteomic analyses revealed that while CRISPRi enabled inducible silencing of PglL, this did not abolish glycosylation, nor recapitulate phenotypes such as proteome changes or alterations in motility that are associated with glycosylation null strains, despite inhibition of glycosylation by nearly 90%. Importantly, this work also demonstrated that CRISPRi induction with high levels of rhamnose leads to extensive impacts on the Burkholderia proteomes, which without appropriate controls mask the impacts specifically driven by CRISPRi guides. Combined, this work revealed that while CRISPRi allows the modulation of O-linked glycosylation with reductions up to 90% at a phenotypic and proteome levels, Burkholderia appears to demonstrate a robust tolerance to fluctuations in glycosylation capacity.
Collapse
Affiliation(s)
- Jessica
M. Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute
for Infection and Immunity, Melbourne 3000, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute
for Infection and Immunity, Melbourne 3000, Australia
| |
Collapse
|
4
|
Hayes AJ, Lewis JM, Davies MR, Scott NE. Burkholderia PglL enzymes are Serine preferring oligosaccharyltransferases which target conserved proteins across the Burkholderia genus. Commun Biol 2021; 4:1045. [PMID: 34493791 PMCID: PMC8423747 DOI: 10.1038/s42003-021-02588-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Glycosylation is increasingly recognised as a common protein modification within bacterial proteomes. While great strides have been made in identifying species that contain glycosylation systems, our understanding of the proteins and sites targeted by these systems is far more limited. Within this work we explore the conservation of glycoproteins and glycosylation sites across the pan-Burkholderia glycoproteome. Using a multi-protease glycoproteomic approach, we generate high-confidence glycoproteomes in two widely utilized B. cenocepacia strains, K56-2 and H111. This resource reveals glycosylation occurs exclusively at Serine residues and that glycoproteins/glycosylation sites are highly conserved across B. cenocepacia isolates. This preference for glycosylation at Serine residues is observed across at least 9 Burkholderia glycoproteomes, supporting that Serine is the dominant residue targeted by PglL-mediated glycosylation across the Burkholderia genus. Combined, this work demonstrates that PglL enzymes of the Burkholderia genus are Serine-preferring oligosaccharyltransferases that target conserved and shared protein substrates. Hayes et al provide a glycosylation site focused analysis of the glycoproteome of two widely utilized B. cenocepacia strains, K56-2 and H111. This team demonstrates that within these glycoproteomes Serine is the sole residue targeted for protein glycosylation and that glycoproteins/glycosylation sites are highly conserved across B. cenocepacia isolates.
Collapse
Affiliation(s)
- Andrew J Hayes
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
5
|
Liu W, Triplett L, Chen XL. Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:99-124. [PMID: 33909479 DOI: 10.1146/annurev-phyto-021320-010948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Posttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen-plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Lindsay Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA;
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
6
|
Ahmad Izaham AR, Ang CS, Nie S, Bird LE, Williamson NA, Scott NE. What Are We Missing by Using Hydrophilic Enrichment? Improving Bacterial Glycoproteome Coverage Using Total Proteome and FAIMS Analyses. J Proteome Res 2020; 20:599-612. [PMID: 33125241 DOI: 10.1021/acs.jproteome.0c00565] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) glycopeptide enrichment is an indispensable tool for the high-throughput characterization of glycoproteomes. Despite its utility, HILIC enrichment is associated with a number of shortcomings, including requiring large amounts of starting materials, potentially introducing chemical artifacts such as formylation when high concentrations of formic acid are used, and biasing/undersampling specific classes of glycopeptides. Here, we investigate HILIC enrichment-independent approaches for the study of bacterial glycoproteomes. Using three Burkholderia species (Burkholderia cenocepacia, Burkholderia Dolosa, and Burkholderia ubonensis), we demonstrate that short aliphatic O-linked glycopeptides are typically absent from HILIC enrichments, yet are readily identified in whole proteome samples. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS) fractionation, we show that at high compensation voltages (CVs), short aliphatic glycopeptides can be enriched from complex samples, providing an alternative means to identify glycopeptide recalcitrant to hydrophilic-based enrichment. Combining whole proteome and FAIMS analyses, we show that the observable glycoproteome of these Burkholderia species is at least 25% larger than what was initially thought. Excitingly, the ability to enrich glycopeptides using FAIMS appears generally applicable, with the N-linked glycopeptides of Campylobacter fetus subsp. fetus also being enrichable at high FAIMS CVs. Taken together, these results demonstrate that FAIMS provides an alternative means to access glycopeptides and is a valuable tool for glycoproteomic analysis.
Collapse
Affiliation(s)
- Ameera Raudah Ahmad Izaham
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lauren E Bird
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| |
Collapse
|
7
|
Natarajan A, Jaroentomeechai T, Cabrera-Sánchez M, Mohammed JC, Cox EC, Young O, Shajahan A, Vilkhovoy M, Vadhin S, Varner JD, Azadi P, DeLisa MP. Engineering orthogonal human O-linked glycoprotein biosynthesis in bacteria. Nat Chem Biol 2020; 16:1062-1070. [PMID: 32719555 DOI: 10.1038/s41589-020-0595-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022]
Abstract
A major objective of synthetic glycobiology is to re-engineer existing cellular glycosylation pathways from the top down or construct non-natural ones from the bottom up for new and useful purposes. Here, we have developed a set of orthogonal pathways for eukaryotic O-linked protein glycosylation in Escherichia coli that installed the cancer-associated mucin-type glycans Tn, T, sialyl-Tn and sialyl-T onto serine residues in acceptor motifs derived from different human O-glycoproteins. These same glycoengineered bacteria were used to supply crude cell extracts enriched with glycosylation machinery that permitted cell-free construction of O-glycoproteins in a one-pot reaction. In addition, O-glycosylation-competent bacteria were able to generate an antigenically authentic Tn-MUC1 glycoform that exhibited reactivity with antibody 5E5, which specifically recognizes cancer-associated glycoforms of MUC1. We anticipate that the orthogonal glycoprotein biosynthesis pathways developed here will provide facile access to structurally diverse O-glycoforms for a range of important scientific and therapeutic applications.
Collapse
Affiliation(s)
| | - Thapakorn Jaroentomeechai
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Jody C Mohammed
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Emily C Cox
- Biomedical and Biological Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Olivia Young
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Michael Vilkhovoy
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Sandra Vadhin
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Jeffrey D Varner
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Matthew P DeLisa
- Department of Microbiology, Cornell University, Ithaca, NY, USA. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA. .,Biomedical and Biological Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
8
|
Whitfield C, Wear SS, Sande C. Assembly of Bacterial Capsular Polysaccharides and Exopolysaccharides. Annu Rev Microbiol 2020; 74:521-543. [PMID: 32680453 DOI: 10.1146/annurev-micro-011420-075607] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polysaccharides are dominant features of most bacterial surfaces and are displayed in different formats. Many bacteria produce abundant long-chain capsular polysaccharides, which can maintain a strong association and form a capsule structure enveloping the cell and/or take the form of exopolysaccharides that are mostly secreted into the immediate environment. These polymers afford the producing bacteria protection from a wide range of physical, chemical, and biological stresses, support biofilms, and play critical roles in interactions between bacteria and their immediate environments. Their biological and physical properties also drive a variety of industrial and biomedical applications. Despite the immense variation in capsular polysaccharide and exopolysaccharide structures, patterns are evident in strategies used for their assembly and export. This review describes recent advances in understanding those strategies, based on a wealth of biochemical investigations of select prototypes, supported by complementary insight from expanding structural biology initiatives. This provides a framework to identify and distinguish new systems emanating from genomic studies.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | - Samantha S Wear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | - Caitlin Sande
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
9
|
Whitfield C, Williams DM, Kelly SD. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J Biol Chem 2020; 295:10593-10609. [PMID: 32424042 DOI: 10.1074/jbc.rev120.009402] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Indexed: 01/05/2023] Open
Abstract
Lipopolysaccharides are critical components of bacterial outer membranes. The more conserved lipid A part of the lipopolysaccharide molecule is a major element in the permeability barrier imposed by the outer membrane and offers a pathogen-associated molecular pattern recognized by innate immune systems. In contrast, the long-chain O-antigen polysaccharide (O-PS) shows remarkable structural diversity and fulfills a range of functions, depending on bacterial lifestyles. O-PS production is vital for the success of clinically important Gram-negative pathogens. The biological properties and functions of O-PSs are mostly independent of specific structures, but the size distribution of O-PS chains is particularly important in many contexts. Despite the vast O-PS chemical diversity, most are produced in bacterial cells by two assembly strategies, and the different mechanisms employed in these pathways to regulate chain-length distribution are emerging. Here, we review our current understanding of the mechanisms involved in regulating O-PS chain-length distribution and discuss their impact on microbial cell biology.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Danielle M Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Harding CM, Feldman MF. Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology 2020; 29:519-529. [PMID: 30989179 DOI: 10.1093/glycob/cwz031] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The first, general glycosylation pathway in bacteria, the N-linked glycosylation system of Campylobacter jejuni, was discovered two decades ago. Since then, many diverse prokaryotic glycosylation systems have been characterized, including O-linked glycosylation systems that have no homologous counterparts in eukaryotic organisms. Shortly after these discoveries, glycosylation pathways were recombinantly introduced into E. coli creating the field of bacterial glycoengineering. Bacterial glycoengineering is an emerging biotechnological tool that harnesses prokaryotic glycosylation systems for the generation of recombinantly glycosylated proteins using E. coli as a host. Over the last decade, as our understanding of prokaryotic glycosylation systems has advanced, so too has the glycoengineering toolbox. Currently, glycoengineering utilizes two broad approaches to recombinantly glycosylate proteins, both of which can generate N- or O-linkages: oligosaccharyltransferase (OTase)-dependent and OTase-independent. This review discusses the applications of these bacterial glycoengineering techniques as they relate to the development of glycoconjugate vaccines, therapeutic proteins, and diagnostics.
Collapse
Affiliation(s)
| | - Mario F Feldman
- VaxNewMo, St. Louis, MO, USA.,Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Koomey M. O-linked protein glycosylation in bacteria: snapshots and current perspectives. Curr Opin Struct Biol 2019; 56:198-203. [DOI: 10.1016/j.sbi.2019.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
|
12
|
Abstract
Mass spectrometry (MS) proteomics allows systematic identification, characterization, and relative quantification of the full suite of proteins in a biological sample, and is a powerful analytical approach for investigation of many aspects of the biology of Neisseria meningitidis. Here, we describe methods for robust and efficient sample preparation of the proteome of N. meningitidis suitable for diverse MS proteomics workflows.
Collapse
Affiliation(s)
- Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
13
|
Richie DL, Wang L, Chan H, De Pascale G, Six DA, Wei JR, Dean CR. A pathway-directed positive growth restoration assay to facilitate the discovery of lipid A and fatty acid biosynthesis inhibitors in Acinetobacter baumannii. PLoS One 2018; 13:e0193851. [PMID: 29505586 PMCID: PMC5837183 DOI: 10.1371/journal.pone.0193851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/19/2018] [Indexed: 11/19/2022] Open
Abstract
Acinetobacter baumannii ATCC 19606 can grow without lipooligosaccharide (LOS). Lack of LOS can result from disruption of the early lipid A biosynthetic pathway genes lpxA, lpxC or lpxD. Although LOS itself is not essential for growth of A. baumannii ATCC 19606, it was previously shown that depletion of the lipid A biosynthetic enzyme LpxK in cells inhibited growth due to the toxic accumulation of lipid A pathway intermediates. Growth of LpxK-depleted cells was restored by chemical inhibition of LOS biosynthesis using CHIR-090 (LpxC) and fatty acid biosynthesis using cerulenin (FabB/F) and pyridopyrimidine (acetyl-CoA-carboxylase). Here, we expand on this by showing that inhibition of enoyl-acyl carrier protein reductase (FabI), responsible for converting trans-2-enoyl-ACP into acyl-ACP during the fatty acid elongation cycle also restored growth during LpxK depletion. Inhibition of fatty acid biosynthesis during LpxK depletion rescued growth at 37°C, but not at 30°C, whereas rescue by LpxC inhibition was temperature independent. We exploited these observations to demonstrate proof of concept for a targeted medium-throughput growth restoration screening assay to identify small molecule inhibitors of LOS and fatty acid biosynthesis. The differential temperature dependence of fatty acid and LpxC inhibition provides a simple means by which to separate growth stimulating compounds by pathway. Targeted cell-based screening platforms such as this are important for faster identification of compounds inhibiting pathways of interest in antibacterial discovery for clinically relevant Gram-negative pathogens.
Collapse
Affiliation(s)
- Daryl L. Richie
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Lisha Wang
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Helen Chan
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Gianfranco De Pascale
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - David A. Six
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Jun-Rong Wei
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| | - Charles R. Dean
- Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America
| |
Collapse
|
14
|
Fulton KM, Li J, Tomas JM, Smith JC, Twine SM. Characterizing bacterial glycoproteins with LC-MS. Expert Rev Proteomics 2018; 15:203-216. [PMID: 29400572 DOI: 10.1080/14789450.2018.1435276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Though eukaryotic glycoproteins have been studied since their discovery in the 1930s, the first bacterial glycoprotein was not identified until the 1970s. As a result, their role in bacterial pathogenesis is still not well understood and they remain an understudied component of bacterial virulence. In recent years, mass spectrometry has emerged as a leading technology for the study of bacterial glycoproteins, largely due to its sensitivity and versatility. Areas covered: Identification and comprehensive characterization of bacterial glycoproteins usually requires multiple complementary mass spectrometry approaches, including intact protein analysis, top-down analysis, and bottom-up methods used in combination with specialized liquid chromatography. This review provides an overview of liquid chromatography separation technologies, as well as current and emerging mass spectrometry approaches used specifically for bacterial glycoprotein identification and characterization. Expert commentary: Bacterial glycoproteins may have significant clinical utility as a result of their unique structures and exposure on the surface of the cells. Better understanding of these glycoconjugates is an essential first step towards that goal. These often unique structures, and by extension the key enzymes involved in their synthesis, represent promising targets for novel antimicrobials, while unique carbohydrate structures may be used as antigens in vaccines or as biomarkers.
Collapse
Affiliation(s)
- Kelly M Fulton
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Jianjun Li
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Juan M Tomas
- b Departament de Microbiologia, Facultat de Biologia , Universitat de Barcelona , Barcelona , Spain
| | - Jeffrey C Smith
- c Department of Chemistry , Carleton University , Ottawa , Canada
| | - Susan M Twine
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| |
Collapse
|
15
|
|
16
|
Mubaiwa TD, Semchenko EA, Hartley-Tassell LE, Day CJ, Jennings MP, Seib KL. The sweet side of the pathogenic Neisseria: the role of glycan interactions in colonisation and disease. Pathog Dis 2017; 75:3867065. [PMID: 28633281 PMCID: PMC5808653 DOI: 10.1093/femspd/ftx063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Glycomics is a rapidly growing field that focuses on the structure and function of carbohydrates (glycans) in biological systems. Glycan interactions play a major role in infectious disease, at all stages of colonisation and disease progression. Neisseria meningitidis, the cause of meningococcal sepsis and meningitis, and Neisseria gonorrhoeae, which causes the sexually transmitted infection gonorrhoea, are responsible for significant morbidity and mortality worldwide. Neisseria meningitidis displays a range of surface glycosylations including capsule polysaccharide, lipooligosaccharide and O-linked glycoproteins. While N. gonorrhoeae does not have a capsule, it does express both lipooligosaccharide and O-linked glycoproteins. Neisseria gonorrhoeae also has the ability to scavenge host sialic acids, while several N. meningitidis serogroups can synthesise sialic acid. Surface expressed sialic acid is key in serum resistance and survival in the host. On the host side, the pathogenic Neisseria protein adhesins such as Opc and NHBA bind to host glycans for adherence and colonisation of host cells. Essentially, from both the bacterial and host perspective, glycan interactions are fundamental in colonisation and disease of pathogenic Neisseria. The key aspects of glycobiology of the pathogenic Neisseria are reviewed herein.
Collapse
Affiliation(s)
- Tsitsi D. Mubaiwa
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Evgeny A. Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
17
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
18
|
Abstract
UNLABELLED Conjugate vaccines are known to be one of the most effective and safest types of vaccines against bacterial pathogens. Previously, vaccine biosynthesis has been performed by using N-linked glycosylation systems. However, the structural specificity of these systems for sugar substrates has hindered their application. Here, we report a novel protein glycosylation system (O-linked glycosylation via Neisseria meningitidis) that can transfer virtually any glycan to produce a conjugate vaccine. We successfully established this system in Shigella spp., avoiding the construction of an expression vector for polysaccharide synthesis. We further found that different protein substrates can be glycosylated using this system and that the O-linked glycosylation system can also effectively function in other Gram-negative bacteria, including some strains whose polysaccharide structure was not suitable for conjugation using the N-linked glycosylation system. The results from a series of animal experiments show that the conjugate vaccine produced by this O-linked glycosylation system offered a potentially protective antibody response. Furthermore, we elucidated and optimized the recognition motif, named MOOR, for the O-glycosyltransferase PglL. Finally, we demonstrated that the fusion of other peptides recognized by major histocompatibility complex class II around MOOR had no adverse effects on substrate glycosylation, suggesting that this optimized system will be useful for future vaccine development. Our results expand the glycoengineering toolbox and provide a simpler and more robust strategy for producing bioconjugate vaccines against a variety of pathogens. IMPORTANCE Recently, the rapid development of synthetic biology has allowed bioconjugate vaccines with N-linked protein glycosylation to become a reality. However, the difficulty of reestablishing the exogenous polysaccharide synthetic pathway in Escherichia coli hinders their application. Here, we show that an O-linked protein glycosylation system from Neisseria meningitidis, which has a lower structure specificity for sugar substrates, could be engineered directly in attenuated pathogens to produce effective conjugate vaccines. To facilitate the further design of next-generation bioconjugate vaccines, we optimized a novel short motif consisting of 8 amino acids that is sufficient for glycosylation. Our results expand the application potential of O-linked protein glycosylation and demonstrate a simpler and more robust strategy for producing bioconjugate vaccines against different pathogens. In the future, bacterial antigenic polysaccharides could be attached to major histocompatibility complex binding peptides to improve immunological memory or attached to protein subunit vaccine candidates to provide double immune stimulation.
Collapse
|
19
|
Anonsen JH, Vik Å, Børud B, Viburiene R, Aas FE, Kidd SWA, Aspholm M, Koomey M. Characterization of a Unique Tetrasaccharide and Distinct Glycoproteome in the O-Linked Protein Glycosylation System of Neisseria elongata subsp. glycolytica. J Bacteriol 2016; 198:256-67. [PMID: 26483525 PMCID: PMC4751800 DOI: 10.1128/jb.00620-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Broad-spectrum O-linked protein glycosylation is well characterized in the major Neisseria species of importance to human health and disease. Within strains of Neisseria gonorrhoeae, N. meningitidis, and N. lactamica, protein glycosylation (pgl) gene content and the corresponding oligosaccharide structure are fairly well conserved, although intra- and interstrain variability occurs. The status of such systems in distantly related commensal species, however, remains largely unexplored. Using a strain of deeply branching Neisseria elongata subsp. glycolytica, a heretofore unrecognized tetrasaccharide glycoform consisting of di-N-acetylbacillosamine-glucose-di-N-acetyl hexuronic acid-N-acetylhexosamine (diNAcBac-Glc-diNAcHexA-HexNAc) was identified. Directed mutagenesis, mass spectrometric analysis, and glycan serotyping confirmed that the oligosaccharide is an extended version of the diNAcBac-Glc-based structure seen in N. gonorrhoeae and N. meningitidis generated by the successive actions of PglB, PglC, and PglD and glucosyltransferase PglH orthologues. In addition, a null mutation in the orthologue of the broadly conserved but enigmatic pglG gene precluded expression of the extended glycoform, providing the first evidence that its product is a functional glycosyltransferase. Despite clear evidence for a substantial number of glycoprotein substrates, the major pilin subunit of the endogenous type IV pilus was not glycosylated. The latter finding raises obvious questions as to the relative distribution of pilin glycosylation within the genus, how protein glycosylation substrates are selected, and the overall structure-function relationships of broad-spectrum protein glycosylation. Together, the results of this study provide a foundation upon which to assess neisserial O-linked protein glycosylation diversity at the genus level. IMPORTANCE Broad-spectrum protein glycosylation systems are well characterized in the pathogenic Neisseria species N. gonorrhoeae and N. meningitidis. A number of lines of evidence indicate that the glycan components in these systems are subject to diversifying selection and suggest that glycan variation may be driven in the context of glycosylation of the abundant and surface-localized pilin protein PilE, the major subunit of type IV pili. Here, we examined protein glycosylation in a distantly related, nonpathogenic neisserial species, Neisseria elongata subsp. glycolytica. This system has clear similarities to the systems found in pathogenic species but makes novel glycoforms utilizing a glycosyltransferase that is widely conserved at the genus level but whose function until now remained unknown. Remarkably, PilE pilin is not glycosylated in this species, a finding that raises important questions about the evolutionary trajectories and overall structure-function relationships of broad-spectrum protein glycosylation systems in bacteria.
Collapse
Affiliation(s)
| | - Åshild Vik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bente Børud
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Finn Erik Aas
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Shani W A Kidd
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marina Aspholm
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Michael Koomey
- Department of Biosciences, University of Oslo, Oslo, Norway Center for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Abstract
The genus Acinetobacter encompasses multiple nosocomial opportunistic pathogens that are of increasing worldwide relevance because of their ability to survive exposure to various antimicrobial and sterilization agents. Among these, Acinetobacter baumannii, Acinetobacter nosocomialis, and Acinetobacter pittii are the most frequently isolated in hospitals around the world. Despite the growing incidence of multidrug-resistant Acinetobacter spp., little is known about the factors that contribute to pathogenesis. New strategies for treating and managing infections caused by multidrug-resistant Acinetobacter strains are urgently needed, and this requires a detailed understanding of the pathobiology of these organisms. In recent years, some virulence factors important for Acinetobacter colonization have started to emerge. In this review, we focus on several recently described virulence factors that act at the bacterial surface level, such as the capsule, O-linked protein glycosylation, and adhesins. Furthermore, we describe the current knowledge regarding the type II and type VI secretion systems present in these strains.
Collapse
|
21
|
Elhenawy W, Scott NE, Tondo ML, Orellano EG, Foster LJ, Feldman MF. Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum. Glycobiology 2015; 26:301-11. [PMID: 26531228 DOI: 10.1093/glycob/cwv098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022] Open
Abstract
Ralstonia solanacearum is one of the most lethal phytopathogens in the world. Due to its broad host range, it can cause wilting disease in many plant species of economic interest. In this work, we identified the O-oligosaccharyltransferase (O-OTase) responsible for protein O-glycosylation in R. solanacearum. An analysis of the glycoproteome revealed that 20 proteins, including type IV pilins are substrates of this general glycosylation system. Although multiple glycan forms were identified, the majority of the glycopeptides were modified with a pentasaccharide composed of HexNAc-(Pen)-dHex(3), similar to the O antigen subunit present in the lipopolysaccharide of multiple R. solanacearum strains. Disruption of the O-OTase led to the total loss of protein glycosylation, together with a defect in biofilm formation and reduced pathogenicity towards tomato plants. Comparative proteomic analysis revealed that the loss of glycosylation is not associated with widespread proteome changes. Only the levels of a single glycoprotein, the type IV pilin, were diminished in the absence of glycosylation. In parallel, disruption of glycosylation triggered an increase in the levels of a surface lectin homologous to Pseudomonas PA-IIL. These results reveal the important role of glycosylation in the pathogenesis of R. solanacearum.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Nichollas E Scott
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - M Laura Tondo
- Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF-UNR), Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Santa Fe, Argentina
| | - Elena G Orellano
- Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF-UNR), Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Santa Fe, Argentina
| | - Leonard J Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Mario F Feldman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada Department of Molecular Microbiology, Washington University School of Medicine St. Louis, St. Louis, MO, USA
| |
Collapse
|
22
|
Tan FY, Tang CM, Exley RM. Sugar coating: bacterial protein glycosylation and host–microbe interactions. Trends Biochem Sci 2015; 40:342-50. [DOI: 10.1016/j.tibs.2015.03.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/11/2015] [Accepted: 03/31/2015] [Indexed: 01/29/2023]
|
23
|
Putker F, Bos MP, Tommassen J. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol Rev 2015; 39:985-1002. [DOI: 10.1093/femsre/fuv026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/15/2022] Open
|
24
|
Xu Y, Bailey UM, Schulz BL. Automated measurement of site-specific N
-glycosylation occupancy with SWATH-MS. Proteomics 2015; 15:2177-86. [DOI: 10.1002/pmic.201400465] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/08/2015] [Accepted: 02/27/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Ying Xu
- School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane Queensland Australia
| | - Ulla-Maja Bailey
- School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane Queensland Australia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
25
|
Harding CM, Nasr MA, Kinsella RL, Scott NE, Foster LJ, Weber BS, Fiester SE, Actis LA, Tracy EN, Munson RS, Feldman MF. Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins. Mol Microbiol 2015; 96:1023-41. [PMID: 25727908 DOI: 10.1111/mmi.12986] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2015] [Indexed: 12/18/2022]
Abstract
Multiple species within the Acinetobacter genus are nosocomial opportunistic pathogens of increasing relevance worldwide. Among the virulence factors utilized by these bacteria are the type IV pili and a protein O-glycosylation system. Glycosylation is mediated by O-oligosaccharyltransferases (O-OTases), enzymes that transfer the glycan from a lipid carrier to target proteins. O-oligosaccharyltransferases are difficult to identify due to similarities with the WaaL ligases that catalyze the last step in lipopolysaccharide synthesis. A bioinformatics analysis revealed the presence of two genes encoding putative O-OTases or WaaL ligases in most of the strains within the genus Acinetobacter. Employing A. nosocomialis M2 and A. baylyi ADP1 as model systems, we show that these genes encode two O-OTases, one devoted uniquely to type IV pilin, and the other one responsible for glycosylation of multiple proteins. With the exception of ADP1, the pilin-specific OTases in Acinetobacter resemble the TfpO/PilO O-OTase from Pseudomonas aeruginosa. In ADP1 instead, the two O-OTases are closely related to PglL, the general O-OTase first discovered in Neisseria. However, one of them is exclusively dedicated to the glycosylation of the pilin-like protein ComP. Our data reveal an intricate and remarkable evolutionary pathway for bacterial O-OTases and provide novel tools for glycoengineering.
Collapse
Affiliation(s)
- Christian M Harding
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.,Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Mohamed A Nasr
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Rachel L Kinsella
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Nichollas E Scott
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Brent S Weber
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Steve E Fiester
- Department of Microbiology, Miami University, Oxford, OH, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, OH, USA
| | - Erin N Tracy
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Robert S Munson
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mario F Feldman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| |
Collapse
|
26
|
Vozza NF, Feldman MF. Glyco-engineering O-Antigen-Based Vaccines and Diagnostics in E. coli. Methods Mol Biol 2015; 1321:57-70. [PMID: 26082215 DOI: 10.1007/978-1-4939-2760-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biotechnological relevance of protein glycosylation has exponentially grown in recent years. With the advances in protein glycosylation research, new possibilities for glyco-engineering have arisen, and a wide array of glycans can be designed and potentially transferred to target proteins in the biotechnologically relevant host Escherichia coli. Here we provide insight on how to select the best strains and plasmids. We also describe methods for determination of glycan expression and assembly, protein glycosylation using western blot, and preparation of samples for mass spectrometry.
Collapse
Affiliation(s)
- Nicolas F Vozza
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
27
|
Kinsella RL, Scott NE, Feldman MF. Clinical implications of glycoproteomics for Acinetobacter baumannii. Expert Rev Proteomics 2014; 12:1-3. [PMID: 25496064 DOI: 10.1586/14789450.2015.987756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The opportunistic human pathogen Acinetobacter baumannii persists in the healthcare setting because of its ability to survive exposure to various antimicrobial and sterilization agents. A. baumannii's ability to cause multiple infection types complicates diagnosis and treatment. Rapid detection of A. baumannii infections would likely improve treatment outcomes. Recently published Acinetobacter glycoproteomic data show the prevalence of O-linked glycoproteins, suggesting the possibility for an O-glycan-based detection technology. O-glycan biosynthesis is required for protein glycosylation and capsular polysaccharide production in A. baumannii. Recent publications demonstrate key roles for protein glycosylation and capsular polysaccharide in the pathogenicity of A. baumannii. Targeted antimicrobial development against O-glycan biosynthesis may produce new effective treatment options for A. baumannii infections. Here, we discuss how the data gathered through Acinetobacter glycoproteomics can be used to develop technologies for rapid diagnosis and reveal potential antimicrobial targets. In addition, we consider the efficacy of glycoconjugate vaccine development against A. baumannii.
Collapse
|
28
|
Eijkelkamp BA, Stroeher UH, Hassan KA, Paulsen IT, Brown MH. Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics 2014; 15:1020. [PMID: 25422040 PMCID: PMC4256060 DOI: 10.1186/1471-2164-15-1020] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 01/19/2023] Open
Abstract
Background Acinetobacter baumannii is a significant hospital pathogen, particularly due to the dissemination of highly multidrug resistant isolates. Genome data have revealed that A. baumannii is highly genetically diverse, which correlates with major variations seen at the phenotypic level. Thus far, comparative genomic studies have been aimed at identifying resistance determinants in A. baumannii. In this study, we extend and expand on these analyses to gain greater insight into the virulence factors across eight A. baumannii strains which are clonally, temporally and geographically distinct, and includes an isolate considered non-pathogenic and a community-acquired A. baumannii. Results We have identified a large number of genes in the A. baumannii genomes that are known to play a role in virulence in other pathogens, such as the recently studied proline-alanine-alanine-arginine (PAAR)-repeat domains of the type VI secretion systems. Not surprising, many virulence candidates appear to be part of the A. baumannii core genome of virulent isolates but were often found to be insertionally disrupted in the avirulent A. baumannii strain SDF. Our study also reveals that many known or putative virulence determinants are restricted to specific clonal lineages, which suggests that these virulence determinants may be crucial for the success of these widespread common clones. It has previously been suggested that the high level of intrinsic and adaptive resistance has enabled the widespread presence of A. baumannii in the hospital environment. This appears to have facilitated the expansion of its repertoire of virulence traits, as in general, the nosocomial strains in this study possess more virulence genes compared to the community-acquired isolate. Conclusions Major genetic variation in known or putative virulence factors was seen across the eight strains included in this study, suggesting that virulence mechanisms are complex and multifaceted in A. baumannii. Overall, these analyses increase our understanding of A. baumannii pathogenicity and will assist in future studies determining the significance of virulence factors within clonal lineages and/or across the species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1020) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Melissa H Brown
- School of Biological Sciences, Flinders University, Adelaide, Australia.
| |
Collapse
|
29
|
Scott NE, Kinsella RL, Edwards AVG, Larsen MR, Dutta S, Saba J, Foster LJ, Feldman MF. Diversity within the O-linked protein glycosylation systems of acinetobacter species. Mol Cell Proteomics 2014; 13:2354-70. [PMID: 24917611 DOI: 10.1074/mcp.m114.038315] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated with disease and environmental persistence of A. baumannii. Recently, it was shown that a single biosynthetic pathway was responsible for the generation of capsule polysaccharide and O-linked protein glycosylation. Because of the requirement of these carbohydrates for virulence and the non-template driven nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison of the 26 glycoproteins identified revealed that different A. baumannii strains target similar protein substrates, both in characteristics of the sites of O-glycosylation and protein identity. Surprisingly, glycan micro-heterogeneity was also observed within nearly all isolates examined demonstrating glycan heterogeneity is a widespread phenomena in Acinetobacter O-linked glycosylation. By comparing the 11 main glycoforms and over 20 alternative glycoforms characterized within the 15 strains, trends within the glycan utilized for O-linked glycosylation could be observed. These trends reveal Acinetobacter O-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans with similar characteristics across all A. baumannii.
Collapse
Affiliation(s)
- Nichollas E Scott
- From the ‡Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rachel L Kinsella
- §Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Alistair V G Edwards
- ¶Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, 5000, Denmark
| | - Martin R Larsen
- ¶Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, 5000, Denmark
| | | | - Julian Saba
- ‖Thermo Fisher Scientific, San Jose, California 95134
| | - Leonard J Foster
- From the ‡Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mario F Feldman
- §Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada;
| |
Collapse
|
30
|
Lithgow KV, Scott NE, Iwashkiw JA, Thomson ELS, Foster LJ, Feldman MF, Dennis JJ. A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol 2014; 92:116-37. [PMID: 24673753 DOI: 10.1111/mmi.12540] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 01/25/2023]
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) are pathogens of humans, plants, and animals. Burkholderia cenocepacia is one of the most common Bcc species infecting cystic fibrosis (CF) patients and its carriage is associated with poor prognosis. In this study, we characterized a general O-linked protein glycosylation system in B. cenocepacia K56-2. The PglLBc O-oligosaccharyltransferase (O-OTase), encoded by the cloned gene bcal0960, was shown to be capable of transferring a heptasaccharide from the Campylobacter jejuni N-glycosylation system to a Neisseria meningitides-derived acceptor protein in an Escherichia coli background, indicating that the enzyme has relaxed specificities for both the sugar donor and protein acceptor. In B cenocepacia K56-2, PglLBc is responsible for the glycosylation of 23 proteins involved in diverse cellular processes. Mass spectrometry analysis revealed that these proteins are modified with a trisaccharide HexNAc-HexNAc-Hex, which is unrelated to the O-antigen biosynthetic process. The glycosylation sites that were identified existed within regions of low complexity, rich in serine, alanine, and proline. Disruption of bcal0960 abolished glycosylation and resulted in reduced swimming motility and attenuated virulence towards both plant and insect model organisms. This study demonstrates the first example of post-translational modification in Bcc with implications for pathogenesis.
Collapse
Affiliation(s)
- Karen V Lithgow
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | | | | | | | | | | |
Collapse
|
31
|
Gawthorne JA, Tan NY, Bailey UM, Davis MR, Wong LW, Naidu R, Fox KL, Jennings MP, Schulz BL. Selection against glycosylation sites in potential target proteins of the general HMWC N-glycosyltransferase in Haemophilus influenzae. Biochem Biophys Res Commun 2014; 445:633-8. [DOI: 10.1016/j.bbrc.2014.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 01/11/2023]
|
32
|
New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. mBio 2014; 5:e00963-13. [PMID: 24449752 PMCID: PMC3903280 DOI: 10.1128/mbio.00963-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is a globally important nosocomial pathogen characterized by an increasing incidence of multidrug resistance. Routes of dissemination and gene flow among health care facilities are poorly resolved and are important for understanding the epidemiology of A. baumannii, minimizing disease transmission, and improving patient outcomes. We used whole-genome sequencing to assess diversity and genome dynamics in 49 isolates from one United States hospital system during one year from 2007 to 2008. Core single-nucleotide-variant-based phylogenetic analysis revealed multiple founder strains and multiple independent strains recovered from the same patient yet was insufficient to fully resolve strain relationships, where gene content and insertion sequence patterns added additional discriminatory power. Gene content comparisons illustrated extensive and redundant antibiotic resistance gene carriage and direct evidence of gene transfer, recombination, gene loss, and mutation. Evidence of barriers to gene flow among hospital components was not found, suggesting complex mixing of strains and a large reservoir of A. baumannii strains capable of colonizing patients. Genome sequencing was used to characterize multidrug-resistant Acinetobacter baumannii strains from one United States hospital system during a 1-year period to better understand how A. baumannii strains that cause infection are related to one another. Extensive variation in gene content was found, even among strains that were very closely related phylogenetically and epidemiologically. Several mechanisms contributed to this diversity, including transfer of mobile genetic elements, mobilization of insertion sequences, insertion sequence-mediated deletions, and genome-wide homologous recombination. Variation in gene content, however, lacked clear spatial or temporal patterns, suggesting a diverse pool of circulating strains with considerable interaction between strains and hospital locations. Widespread genetic variation among strains from the same hospital and even the same patient, particularly involving antibiotic resistance genes, reinforces the need for molecular diagnostic testing and genomic analysis to determine resistance profiles, rather than a reliance primarily on strain typing and antimicrobial resistance phenotypes for epidemiological studies.
Collapse
|
33
|
Musumeci MA, Faridmoayer A, Watanabe Y, Feldman MF. Evaluating the role of conserved amino acids in bacterial O-oligosaccharyltransferases by in vivo, in vitro and limited proteolysis assays. Glycobiology 2013; 24:39-50. [DOI: 10.1093/glycob/cwt087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
34
|
Abstract
Protein glycosylation and capsular polysaccharide formation are increasingly recognized as playing central roles in the survival and virulence of bacterial pathogens. In this issue of Molecular Microbiology, structural analysis in Acinetobacter baumannii 17978 revealed that a pentasaccharide that decorates glycoproteins is formed of the same building blocks used for capsule biosynthesis demonstrating split roles for this glycan. Disruption of PglC, the initiating glycosyltransferase responsible for attachment of the first sugar to undecaprenylphosphate abolished glycoprotein production and capsule biosynthesis. Both pathways are demonstrated to be important in biofilm formation and pathogenesis, and disabling their synthesis should provide a useful route for antimicrobial design. Shared polysaccharide usage reduces the genetic and metabolic burden in a bacterial cell and is an emerging theme among bacterial pathogens that need to be energy efficient for their streamlined lifestyle.
Collapse
Affiliation(s)
- Jon Cuccui
- Department of Pathogen Molecular Biology, The London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | |
Collapse
|
35
|
Iwashkiw JA, Vozza NF, Kinsella RL, Feldman MF. Pour some sugar on it: the expanding world of bacterial proteinO-linked glycosylation. Mol Microbiol 2013; 89:14-28. [DOI: 10.1111/mmi.12265] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Jeremy A. Iwashkiw
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Nicolas F. Vozza
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Rachel L. Kinsella
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Mario F. Feldman
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| |
Collapse
|