1
|
Singh P, Raj R, Savithri H. Five questions on the cell-to-cell movement of Orthotospoviruses. BBA ADVANCES 2024; 6:100124. [PMID: 39498475 PMCID: PMC11533504 DOI: 10.1016/j.bbadva.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Plant viruses employ Movement proteins (MP) for their cell to cell spread through plasmodesmata (PD). MP modifies the PD and increases its size exclusion limit (SEL). However, the mechanism by which MPs are targeted to the PD is still unresolved and there is a lack of consensus owing to limited studies on their biochemical and structural characters. The non structural protein m (NSm) functions as the MP in Orthotospoviruses. Tospoviral NSm associate with ER membrane. They also form tubules in protoplasts. Groundnut bud necrosis virus (GBNV), a tospovirus, infects several crop plants throughout India and is economically very important. GBNV NSm associates with the membrane strongly via the C-terminal coiled-coil domain, modifies the membrane and causes vesicle fusion in vitro and remodels the ER network into vesicles in vivo. These vesicles are in contrast to the tubules formed by other related tospovirus in cells lacking cell wall. In this review, five important questions on the cell-to-cell movement of tospoviruses have been addressed and based on the various reports, a plausible model on the cell-to-cell movement of Orthotospoviruses is presented.
Collapse
Affiliation(s)
- Pratibha Singh
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Rishi Raj
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - H.S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Shi X, Sheng Y, Fei H, Wei B, Zhang Z, Xia X, Mao C, Si X. Combined transcriptome and proteome analysis reveals MSN and ARFIP2 as biomarkers for trastuzumab resistance of breast cancer. Breast Cancer Res Treat 2024; 207:187-201. [PMID: 38750271 DOI: 10.1007/s10549-024-07355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE HER2-positive breast cancer (BC) accounts for 20-30% of all BC subtypes and is linked to poor prognosis. Trastuzumab (Tz), a humanized anti-HER2 monoclonal antibody, is a first-line treatment for HER2-positive breast cancer which faces resistance challenges. This study aimed to identify the biomarkers driving trastuzumab resistance. METHODS Differential expression analysis of genes and proteins between trastuzumab-sensitive (TS) and trastuzumab-resistant (TR) cells was conducted using RNA-seq and iTRAQ. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were used to study their functions. The prognostic significance and protein levels of ARFIP2 and MSN were evaluated using online tools and immunohistochemistry. Sensitivity of MSN and ARFIP2 to other therapies was assessed using public pharmacogenomics databases and the R language. RESULTS Five genes were up-regulated, and nine genes were down-regulated in TR cells at both transcriptional and protein levels. Low ARFIP2 and high MSN expression linked to poor BC prognosis. MSN increased and ARFIP2 decreased in TR patients, correlating with shorter OS. MSN negatively impacted fulvestrant and immunotherapy sensitivity, while ARFIP2 had a positive impact. CONCLUSION Our findings suggest that MSN and ARFIP2 could serve as promising biomarkers for predicting response to Tz, offering valuable insights for future research in the identification of diagnostic and therapeutic targets for BC patients with Tz resistance.
Collapse
Affiliation(s)
- Xiao Shi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuan Sheng
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211116, China
| | - Haoran Fei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Bangbang Wei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhenyu Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyu Xia
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Changfei Mao
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
3
|
Guo H, Rogg M, Keller J, Scherzinger AK, Jäckel J, Meyer C, Sammarco A, Helmstädter M, Gorka O, Groß O, Schell C, Bechtel-Walz W. ADP-Ribosylation Factor-Interacting Protein 2 Acts as a Novel Regulator of Mitophagy and Autophagy in Podocytes in Diabetic Nephropathy. Antioxidants (Basel) 2024; 13:81. [PMID: 38247505 PMCID: PMC10812550 DOI: 10.3390/antiox13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: Differentiated podocytes are particularly vulnerable to oxidative stress and cellular waste products. The disease-related loss of postmitotic podocytes is a direct indicator of renal disease progression and aging. Podocytes use highly specific regulated networks of autophagy and endocytosis that counteract the increasing number of damaged protein aggregates and help maintain cellular homeostasis. Here, we demonstrate that ARFIP2 is a regulator of autophagy and mitophagy in podocytes both in vitro and in vivo. (2) Methods: In a recent molecular regulatory network analysis of mouse glomeruli, we identified ADP-ribosylation factor-interacting protein 2 (Arfip2), a cytoskeletal regulator and cofactor of ATG9-mediated autophagosome formation, to be differentially expressed with age. We generated an Arfip2-deficient immortalized podocyte cell line using the CRISPR/Cas technique to investigate the significance of Arfip2 for renal homeostasis in vitro. For the in vivo analyses of Arfip2 deficiency, we used a mouse model of Streptozotozin-induced type I diabetes and investigated physiological data and (patho)histological (ultra)structural modifications. (3) Results: ARFIP2 deficiency in immortalized human podocytes impedes autophagy. Beyond this, ARFIP2 deficiency in human podocytes interferes with ATG9A trafficking and the PINK1-Parkin pathway, leading to the compromised fission of mitochondria and short-term increase in mitochondrial respiration and induction of mitophagy. In diabetic mice, Arfip2 deficiency deteriorates autophagy and leads to foot process effacement, histopathological changes, and early albuminuria. (4) Conclusions: In summary, we show that ARFIP2 is a novel regulator of autophagy and mitochondrial homeostasis in podocytes by facilitating ATG9A trafficking during PINK1/Parkin-regulated mitophagy.
Collapse
Affiliation(s)
- Haihua Guo
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Manuel Rogg
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Keller
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Ann-Kathrin Scherzinger
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Jäckel
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Charlotte Meyer
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- EMcore, Renal Division, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Experimental Neuropathology, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Experimental Neuropathology, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| | - Wibke Bechtel-Walz
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Berta-Ottenstein Program, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
4
|
Xie P, Zhang H, Qin Y, Xiong H, Shi C, Zhou Z. Membrane Proteins and Membrane Curvature: Mutual Interactions and a Perspective on Disease Treatments. Biomolecules 2023; 13:1772. [PMID: 38136643 PMCID: PMC10741411 DOI: 10.3390/biom13121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of various diseases often involves an intricate interplay between membrane proteins and membrane curvature. Understanding the underlying mechanisms of this interaction could offer novel perspectives on disease treatment. In this review, we provide an introduction to membrane curvature and its association with membrane proteins. Furthermore, we delve into the impact and potential implications of this interaction in the context of disease treatment. Lastly, we discuss the prospects and challenges associated with harnessing these interactions for effective disease management, aiming to provide fresh insights into therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China; (P.X.); (H.Z.); (Y.Q.); (H.X.); (C.S.)
| |
Collapse
|
5
|
van Bommel DM, Toonen RF, Verhage M. Mapping localization of 21 endogenous proteins in the Golgi apparatus of rodent neurons. Sci Rep 2023; 13:2871. [PMID: 36806293 PMCID: PMC9938882 DOI: 10.1038/s41598-023-29998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The Golgi apparatus is the major sorting hub in the secretory pathway and particularly important for protein sorting in neurons. Knowledge about protein localization in Golgi compartments is largely based on work in cell lines. Here, we systematically compared protein localization of 21 endogenous proteins in the Golgi apparatus of mouse neurons using confocal microscopy and line scan analysis. We localized these proteins by measuring the distance relative to the canonical TGN marker TGN38. Based on this, proteins fell into three groups: upstream of, overlapping with or downstream of TGN38. Seven proteins showed complete overlap with TGN38, while proteins downstream of TGN38 were located at varying distances from TGN38. Proteins upstream of TGN38 were localized in between TGN38 and the cis-/medial Golgi markers Giantin and GM130. This localization was consistent with protein function. Our data provide an overview of the relative localization of endogenous proteins in the Golgi of primary mouse neurons.
Collapse
Affiliation(s)
- Danique M. van Bommel
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Ruud F. Toonen
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands. .,Functional Genomics, Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), UMC Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Huang K, Lin Y, Wang K, Shen J, Wei D. ARFIP2 Regulates EMT and Autophagy in Hepatocellular Carcinoma in Part Through the PI3K/Akt Signalling Pathway. J Hepatocell Carcinoma 2022; 9:1323-1339. [PMID: 36573219 PMCID: PMC9789708 DOI: 10.2147/jhc.s392056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose ARFIP2, a canonical BAR domain-containing protein, is closely associated with regulating cargo exit from the Golgi. However, the potential biological functions of ARFIP2 in hepatocellular carcinoma (HCC) have not been well investigated. This study aimed to explore the critical role of ARFIP2 in HCC cells. Methods The expression of proteins related to epithelial to mesenchymal transition (EMT) and cell autophagy in HCC cells and tissues was assayed by quantitative real-time PCR, Western blotting, immunohistochemistry and immunofluorescence staining. The ability of cells to proliferate, migrate and invade was detected by Cell Counting Kit-8, Transwell migration and invasion assays. In addition, the function of ARFIP2 in vivo was assessed using a tumour xenograft model. Results ARFIP2 expression is significantly upregulated in early recurrent and metastatic HCC patients and was positively correlated with a poor prognosis. ARFIP2 overexpression promoted cell proliferation, migration, and invasion by inducing EMT and inhibiting autophagy in vitro. Furthermore, the regulatory effects of ARFIP2 on autophagy and EMT were partially attributed to its regulation of the PI3K/AKT signalling pathway. The in vivo results also showed that ARFIP2 modulates HCC progression. Conclusion Our results substantiate a novel mechanism by which ARFIP2 can regulate the activity/phosphorylation of Akt to promote EMT and inhibit autophagy in part via the PI3K/Akt signalling pathway. The ARFIP2/PI3K/Akt axis may be a potential diagnostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Kaida Huang
- Department of Oncology, Xiamen Haicang Hospital, Xiamen, People’s Republic of China
| | - Yubiao Lin
- Department of Oncology, Xiamen Haicang Hospital, Xiamen, People’s Republic of China
| | - Keyin Wang
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Jianfen Shen
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Dahai Wei
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China,Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China,Institute of Hepatology, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China,Correspondence: Dahai Wei, Institute of Hepatology, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China, Tel/Fax +86-573-89975669, Email
| |
Collapse
|
7
|
Nepal B, Leveritt J, Lazaridis T. Membrane Curvature Sensing by Amphipathic Helices: Insights from Implicit Membrane Modeling. Biophys J 2019; 114:2128-2141. [PMID: 29742406 DOI: 10.1016/j.bpj.2018.03.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/24/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023] Open
Abstract
Sensing and generation of lipid membrane curvature, mediated by the binding of specific proteins onto the membrane surface, play crucial roles in cell biology. A number of mechanisms have been proposed, but the molecular understanding of these processes is incomplete. All-atom molecular dynamics simulations have offered valuable insights but are extremely demanding computationally. Implicit membrane simulations could provide a viable alternative, but current models apply only to planar membranes. In this work, the implicit membrane model 1 is extended to spherical and tubular membranes. The geometric change from planar to curved shapes is straightforward but insufficient for capturing the full curvature effect, which includes changes in lipid packing. Here, these packing effects are taken into account via the lateral pressure profile. The extended implicit membrane model 1 is tested on the wild-types and mutants of the antimicrobial peptide magainin, the ALPS motif of arfgap1, α-synuclein, and an ENTH domain. In these systems, the model is in qualitative agreement with experiments. We confirm that favorable electrostatic interactions tend to weaken curvature sensitivity in the presence of strong hydrophobic interactions but may actually have a positive effect when those are weak. We also find that binding to vesicles is more favorable than binding to tubes of the same diameter and that the long helix of α-synuclein tends to orient along the axis of tubes, whereas shorter helices tend to orient perpendicular to it. Adoption of a specific orientation could provide a mechanism for coupling protein oligomerization to tubule formation.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Chemistry, City College of New York, New York, New York
| | - John Leveritt
- Department of Chemistry, Newman University, Wichita, Kansas
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York.
| |
Collapse
|
8
|
Judith D, Jefferies HBJ, Boeing S, Frith D, Snijders AP, Tooze SA. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J Cell Biol 2019; 218:1634-1652. [PMID: 30917996 PMCID: PMC6504893 DOI: 10.1083/jcb.201901115] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/28/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
ATG9A is a multispanning membrane protein essential for autophagy. Normally resident in Golgi membranes and endosomes, during amino acid starvation, ATG9A traffics to sites of autophagosome formation. ATG9A is not incorporated into autophagosomes but is proposed to supply so-far-unidentified proteins and lipids to the autophagosome. To address this function of ATG9A, a quantitative analysis of ATG9A-positive compartments immunoisolated from amino acid-starved cells was performed. These ATG9A vesicles are depleted of Golgi proteins and enriched in BAR-domain containing proteins, Arfaptins, and phosphoinositide-metabolizing enzymes. Arfaptin2 regulates the starvation-dependent distribution of ATG9A vesicles, and these ATG9A vesicles deliver the PI4-kinase, PI4KIIIβ, to the autophagosome initiation site. PI4KIIIβ interacts with ATG9A and ATG13 to control PI4P production at the initiation membrane site and the autophagic response. PI4KIIIβ and PI4P likely function by recruiting the ULK1/2 initiation kinase complex subunit ATG13 to nascent autophagosomes.
Collapse
Affiliation(s)
- Delphine Judith
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | | | - Stefan Boeing
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - David Frith
- Proteomics, The Francis Crick Institute, London, UK
| | | | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| |
Collapse
|
9
|
Quartino PY, Fidelio GD, Manneville JB, Goud B, Ambroggio EE. Detecting phospholipase activity with the amphipathic lipid packing sensor motif of ArfGAP1. Biochem Biophys Res Commun 2018; 505:290-294. [DOI: 10.1016/j.bbrc.2018.09.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022]
|
10
|
Zhang Y, Zhang Q, Gui L, Cai Y, Deng X, Li C, Guo Q, He X, Huang J. Let-7e inhibits TNF-α expression by targeting the methyl transferase EZH2 in DENV2-infected THP-1 cells. J Cell Physiol 2018; 233:8605-8616. [PMID: 29768655 DOI: 10.1002/jcp.26576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/26/2018] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor α (TNFα), an important inflammatory cytokine, is associated with dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), a severe pathological manifestation of dengue virus (DENV) infection. However, the regulatory mechanism of microRNA on TNFα is currently unknown. Our study showed that the TNFα expression increased immediately and then later decreased, while a marked increase for the miRNA let-7e was detected in dengue virus type 2 (DENV2)-infected peripheral blood mononuclear cells (PBMCs). From this study, we found that let-7e was able to inhibit TNFα expression, but bioinformatics analysis showed that the enhancer of zeste homolog 2 (EZH2) was the potential direct target of let-7e instead of TNFα. EZH2 methyl transferase can produce H3K27me3 and has a negative regulatory role. Using a dual-luciferase reporter assay and Western blotting, we confirmed that EZH2 was a direct target of let-7e and found that siEZH2 could inhibit TNFα expression. In the further study of the regulatory mechanism of EZH2 on TNFα expression, we showed that siEZH2 promoted EZH1 and H3K4me3 expression and inhibited H3K27me3 expression. More importantly, we revealed that siEZH2 down-regulated NF-κB p65 within the nucleus. These findings indicate that the let-7e/EZH2/H3K27me3/NF-κB p65 pathway is a novel regulatory axis of TNFα expression. In addition, we determined the protein differences between siEZH2 and siEZH2-NC by iTRAQ and found a number of proteins that might be associated with TNFα.
Collapse
Affiliation(s)
- Yingke Zhang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qianqian Zhang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lian Gui
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Cai
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaohong Deng
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cheukfai Li
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi Guo
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoshun He
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junqi Huang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Salzer U, Kostan J, Djinović-Carugo K. Deciphering the BAR code of membrane modulators. Cell Mol Life Sci 2017; 74:2413-2438. [PMID: 28243699 PMCID: PMC5487894 DOI: 10.1007/s00018-017-2478-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 01/06/2023]
Abstract
The BAR domain is the eponymous domain of the “BAR-domain protein superfamily”, a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
Collapse
Affiliation(s)
- Ulrich Salzer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Julius Kostan
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Kristina Djinović-Carugo
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 119, 1000, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Higgins AM, Banik BL, Brown JL. Geometry sensing through POR1 regulates Rac1 activity controlling early osteoblast differentiation in response to nanofiber diameter. Integr Biol (Camb) 2015; 7:229-36. [PMID: 25539497 DOI: 10.1039/c4ib00225c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bone grafting procedures in the United States rely heavily upon autografts and allografts, which are donor-dependent, cause donor site pain, and can transmit disease. Synthetic bone grafts can reduce these risks; however, synthetics lack the bone differentiating (osteoinductive) abilities of auto- and allografts. Achieving innate osteoinductive properties of synthetics through surface modifications is currently under investigation. This study focuses on nanofibers, with emphasis on how fiber diameter and the potential curvature sensor POR1 affect the activation of the signaling molecules Rac1 and Arf1, and leading to expression of alkaline phosphatase (ALP), an osteoinductive marker. Diameters of 0.1, 0.3, and 1.0 μm were compared against a flat control. The highest level of Rac1 activation was achieved on the smallest fibers (0.1 μm), a trend that was lost in POR1 knockdowns. This supports the hypothesis that on small nanofibers, POR1 favorably binds to highly curved cell membranes, which allows Rac1 to subsequently dissociate and activate. When the curvature is insufficient to bind POR1, POR1 binds to inactive Rac1 and competitively inhibits its activation. Arf1 activation followed an opposite trend, with the largest nanofibers exhibiting the highest activity. This trend reinforces the known interaction between Rac1 and Arf1 through the GIT-PIX complex, an Arf1 GAP and Rac1 GEF, respectively. Large, (1.0 μm), nanofibers demonstrated the highest ALP activity, indicating that ALP expression is inversely dependent on Rac1 activation. Knockdown of POR1 resulted in increased ALP activity across the substrates but without regard to the curvature sensing trend seen previously. Thus, POR1 senses curvature and increases Rac1 activity, which negatively regulates bone differentiation.
Collapse
Affiliation(s)
- A M Higgins
- Department of Biomedical Engineering, The Pennsylvania State University, 205 Hallowell Building, University Park, PA 16802, USA.
| | | | | |
Collapse
|
13
|
Eiseler T, Wille C, Koehler C, Illing A, Seufferlein T. Protein Kinase D2 Assembles a Multiprotein Complex at the Trans-Golgi Network to Regulate Matrix Metalloproteinase Secretion. J Biol Chem 2015; 291:462-77. [PMID: 26507660 DOI: 10.1074/jbc.m115.673582] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
Vesicle formation and fission are tightly regulated at the trans-Golgi network (TGN) during constitutive secretion. Two major protein families regulate these processes: members of the adenosyl-ribosylation factor family of small G-proteins (ARFs) and the protein kinase D (PKD) family of serine/threonine kinases. The functional relationship between these two key regulators of protein transport from the TGN so far is elusive. We here demonstrate the assembly of a novel functional protein complex at the TGN and its key members: cytosolic PKD2 binds ARF-like GTPase (ARL1) and shuttles ARL1 to the TGN. ARL1, in turn, localizes Arfaptin2 to the TGN. At the TGN, where PKD2 interacts with active ARF1, PKD2, and ARL1 are required for the assembly of a complex comprising of ARF1 and Arfaptin2 leading to secretion of matrix metalloproteinase-2 and -7. In conclusion, our data indicate that PKD2 is a core factor in the formation of this multiprotein complex at the TGN that controls constitutive secretion of matrix metalloproteinase cargo.
Collapse
Affiliation(s)
- Tim Eiseler
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| | - Christoph Wille
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| | - Conny Koehler
- the Department of Internal Medicine I, Martin-Luther University Halle-Wittenberg, Ernst-Grube, Strasse 40, D-06120 Halle (Saale), Germany
| | - Anett Illing
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| | - Thomas Seufferlein
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| |
Collapse
|
14
|
Arf GTPases and their effectors: assembling multivalent membrane-binding platforms. Curr Opin Struct Biol 2014; 29:67-76. [PMID: 25460270 DOI: 10.1016/j.sbi.2014.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 11/20/2022]
Abstract
Arf GTPases are major regulators of membrane traffic and organelle structure in eukaryotes where they recruit many different effectors, including components of vesicular coats, proteins that tether membranes, sort lipids or have diverse other functions in vesicular traffic, and bacterial proteins that divert Arf functions in host cells. A dozen of structures of unrelated effectors bound to Arf1, Arf6 or their close relative Arl1 are available, revealing that Arf GTPases do not recognize preferred structures in their effectors. In contrast, a trait common to many Arf/effector complexes is that they are juxtaposed to membranes by multiple protein/membrane contacts, yet of diverse sizes, shapes and physicochemistry. The common function of Arf GTPases thus appears to be their ability to assemble versatile, multivalent membrane-binding platforms, resulting in optimal orientation and allosteric regulation of their effectors leading to a plethora of membrane-localized functions.
Collapse
|
15
|
Liu Y, Kahn RA, Prestegard JH. Interaction of Fapp1 with Arf1 and PI4P at a membrane surface: an example of coincidence detection. Structure 2014; 22:421-30. [PMID: 24462251 PMCID: PMC3951685 DOI: 10.1016/j.str.2013.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/23/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
Abstract
Interactions among ADP-ribosylation factors (ARFs), various adaptor proteins, and membrane lipids are essential for intracellular vesicle transport of a variety of cellular materials. Here, we present nuclear magnetic resonance (NMR)-based information on the nature of the interaction of yeast Arf1 (yArf1) and the pleckstrin homology (PH) domain of four-phosphate-adaptor protein 1 (Fapp1) as it occurs at a model membrane surface. Interactions favor a model in which Fapp1 is partially embedded in the membrane and interacts with a membrane-associated Arf1 molecule primarily through contacts between residues in switch I of Arf1 and regions near and under the solution exposed C-terminal extension of the PH domain. The Arf1 binding site on Fapp1-PH is distinct from a positively charged phosphatidylinositol-4-phosphate (PI4P) binding site. A structural model is constructed that supports coincidence detection of both activated ARF and PI4P as a mechanism facilitating Fapp1 recruitment to membranes.
Collapse
Affiliation(s)
- Yizhou Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|