1
|
Turunen O, Saleem T, Kurkela J, Kallio P, Tyystjärvi T. Engineering RNA polymerase to construct biotechnological host strains of cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14263. [PMID: 38528669 DOI: 10.1111/ppl.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Application of cyanobacteria for bioproduction, bioremediation and biotransformation is being increasingly explored. Photoautotrophs are carbon-negative by default, offering a direct pathway to reducing emissions in production systems. More robust and versatile host strains are needed for constructing production strains that would function as efficient and carbon-neutral cyanofactories. We have tested if the engineering of sigma factors, regulatory units of the bacterial RNA polymerase, could be used to generate better host strains of the model cyanobacterium Synechocystis sp. PCC 6803. Overexpressing the stress-responsive sigB gene under the strong psbA2 promoter (SigB-oe) led to improved tolerance against heat, oxidative stress and toxic end-products. By targeting transcription initiation in the SigB-oe strain, we could simultaneously activate a wide spectrum of cellular protective mechanisms, including carotenoids, the HspA heat shock protein, and highly activated non-photochemical quenching. Yellow fluorescent protein was used to test the capacity of the SigB-oe strain to produce heterologous proteins. In standard conditions, the SigB-oe strain reached a similar production as the control strain, but when cultures were challenged with oxidative stress, the production capacity of SigB-oe surpassed the control strain. We also tested the production of growth-rate-controlled host strains via manipulation of RNA polymerase, but post-transcriptional regulation prevented excessive overexpression of the primary sigma factor SigA, and overproduction of the growth-restricting SigC factor was lethal. Thus, more research is needed before cyanobacteria growth can be manipulated by engineering RNA polymerase.
Collapse
Affiliation(s)
- Otso Turunen
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Tayyab Saleem
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Juha Kurkela
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Pauli Kallio
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Taina Tyystjärvi
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Zhou D, Qiu S, Li M, Shan W, Chen Z, Wu Z, Ge S. Physiological responses and molecular mechanism of Chlorella sorokiniana to surgical mask exudates in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132891. [PMID: 37939560 DOI: 10.1016/j.jhazmat.2023.132891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Microalgae-based bioremediation is likely to be challenged by the microplastics (MPs) in wastewater induced by the widely use of surgical masks (SMs) during COVID-19. However, such toxic impact was generally evaluated under high exposure concentrations of MPs, which was not in agreement with the actual wastewater environments. Therefore, this study investigated the microalgal cellular responses to the surgical mask exudates (SMEs) in wastewater and explored the underlying inhibitory mechanism from the molecular perspective. Specifically, 390 items/L SMEs (including 200 items/L MPs which was the actual MP level in wastewater) significantly inhibited nutrient uptake and photosynthetic activities interrupted peroxisome biogenesis and induced oxidative stress which destroyed the structure of cell membrane. Moreover, the SMEs exposure also affected carbon fixation pathways, suppressed ABC transporters while promoted oxidative phosphorylation processes for the ATP accumulation These comprehensive processes led to an 8.5% reduced microalgae growth and variations of cellular biocomponents including lipid, carbohydrate, and protein. The increased carotenoids and consumed unsaturated fatty acid were considered to alleviate the SMEs-induced stress, and the enhanced EPS secretion facilitated the homogeneous aggregation. These findings will enhance current understandings of the SMEs effects in wastewater on microalgae and further improve the practical relevance of microalgae wastewater bioremediation technology.
Collapse
Affiliation(s)
- Di Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Wenju Shan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhengshuai Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
3
|
Roles of Close Homologues SigB and SigD in Heat and High Light Acclimation of the Cyanobacterium Synechocystis sp. PCC 6803. Life (Basel) 2022; 12:life12020162. [PMID: 35207450 PMCID: PMC8875361 DOI: 10.3390/life12020162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Acclimation of cyanobacterium Synechocystis sp. PCC6803 to suboptimal conditions is largely dependent on adjustments of gene expression, which is highly controlled by the σ factor subunits of RNA polymerase (RNAP). The SigB and SigD σ factors are close homologues. Here we show that the sigB and sigD genes are both induced in high light and heat stresses. Comparison of transcriptomes of the control strain (CS), ΔsigB, ΔsigD, ΔsigBCE (containing SigD as the only functional group 2 σ factor), and ΔsigCDE (SigB as the only functional group 2 σ factor) strains in standard, high light, and high temperature conditions revealed that the SigB and SigD factors regulate different sets of genes and SigB and SigD regulons are highly dependent on stress conditions. The SigB regulon is bigger than the SigD regulon at high temperature, whereas, in high light, the SigD regulon is bigger than the SigB regulon. Furthermore, our results show that favoring the SigB or SigD factor by deleting other group 2 σ factors does not lead to superior acclimation to high light or high temperature, indicating that all group 2 σ factors play roles in the acclimation processes.
Collapse
|
4
|
Klähn S, Mikkat S, Riediger M, Georg J, Hess WR, Hagemann M. Integrative analysis of the salt stress response in cyanobacteria. Biol Direct 2021; 16:26. [PMID: 34906211 PMCID: PMC8670252 DOI: 10.1186/s13062-021-00316-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Microorganisms evolved specific acclimation strategies to thrive in environments of high or fluctuating salinities. Here, salt acclimation in the model cyanobacterium Synechocystis sp. PCC 6803 was analyzed by integrating transcriptomic, proteomic and metabolomic data. A dynamic reorganization of the transcriptome occurred during the first hours after salt shock, e.g. involving the upregulation of genes to activate compatible solute biochemistry balancing osmotic pressure. The massive accumulation of glucosylglycerol then had a measurable impact on the overall carbon and nitrogen metabolism. In addition, we observed the coordinated induction of putative regulatory RNAs and of several proteins known for their involvement in other stress responses. Overall, salt-induced changes in the proteome and transcriptome showed good correlations, especially among the stably up-regulated proteins and their transcripts. We define an extended salt stimulon comprising proteins directly or indirectly related to compatible solute metabolism, ion and water movements, and a distinct set of regulatory RNAs involved in post-transcriptional regulation. Our comprehensive data set provides the basis for engineering cyanobacterial salt tolerance and to further understand its regulation.
Collapse
Affiliation(s)
- Stephan Klähn
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Matthias Riediger
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Jens Georg
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, A.-Einstein-Str. 3, 18059 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Cyanobacterial sigma factors: Current and future applications for biotechnological advances. Biotechnol Adv 2020; 40:107517. [DOI: 10.1016/j.biotechadv.2020.107517] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/15/2022]
|
6
|
Valev D, Kurkela J, Tyystjärvi E, Tyystjärvi T. Testing the Potential of Regulatory Sigma Factor Mutants for Wastewater Purification or Bioreactor Run in High Light. Curr Microbiol 2020; 77:1590-1599. [PMID: 32266454 PMCID: PMC7334282 DOI: 10.1007/s00284-020-01973-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 03/27/2020] [Indexed: 11/25/2022]
Abstract
It is shown that a freshly inoculated culture of the model cyanobacterium Synechocystis sp. PCC 6803 consumed almost all phosphate and 50% of nitrate within 6 days from the nutrient-rich BG-11 growth medium, indicating potential of cyanobacteria to purify wastewaters. Synechocystis sp. PCC 6803 control strain also collected nutrients efficiently from a landfill leachate wastewater KA2 (5.9-6.9 mM ammonium and 0.073-0.077 mM phosphate). Wastewaters might induce oxidative stress to microalgae, which prompted us to test growth of sigma factor inactivation strains, as ΔsigBCE and ΔsigCDE strains show superior growth in chemically induced oxidative stress. All cyanobacterial strains, including a stress-sensitive strain ΔsigBCDE, grew well in KA2 for four days, indicating that KA2 did not cause immediate oxidative stress. Completely arrested growth and bleaching of ΔsigBCDE cells after one week in KA2 wastewater point to the importance of group 2 sigma factor-mediated changes in gene expression during wastewater treatment. The growth of ΔsigBCD was arrested early in un-buffered and Hepes buffered (pH 7.5) KA2. In ΔsigBCD, all phosphate transporter genes are upregulated in standard conditions, and ΔsigBCD cells showed growth defects in low-phosphate BG-11 medium. ΔsigBCD cells removed phosphate slower from KA2 than the control strain, but phosphate supplementation of KA2 did not improve growth of ΔsigBCD. The ΔsigBCE strain showed superior growth in a laboratory-scale bioreactor in bright light and removed phosphate even slightly more efficiently than the control strain if KA2 was Hepes buffered although ΔsigBCE grew slowly in un-buffered KA2 and in low-phosphate BG-11 medium. The results indicate that engineering expression of regulatory group 2 sigma factor(s) might be useful for practical applications.
Collapse
Affiliation(s)
- Dimitar Valev
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Juha Kurkela
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Taina Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
7
|
Hakkila K, Valev D, Antal T, Tyystjï Rvi E, Tyystjï Rvi T. Group 2 Sigma Factors are Central Regulators of Oxidative Stress Acclimation in Cyanobacteria. PLANT & CELL PHYSIOLOGY 2019; 60:436-447. [PMID: 30407607 DOI: 10.1093/pcp/pcy221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/04/2018] [Indexed: 06/08/2023]
Abstract
Regulatory σ factors of the RNA polymerase (RNAP) adjust gene expression according to environmental cues when the cyanobacterium Synechocystis sp. PCC 6803 acclimates to suboptimal conditions. Here we show central roles of the non-essential group 2 σ factors in oxidative stress responses. Cells missing all group 2 σ factors fail to acclimate to chemically induced singlet oxygen, superoxide or H2O2 stresses, and lose pigments in high light. SigB and SigD are the major σ factors in oxidative stress, whereas SigC and SigE play only minor roles. The SigD factor is up-regulated in high light, singlet oxygen and H2O2 stresses, and overproduction of the SigD factor in the ΔsigBCE strain leads to superior growth of ΔsigBCE cells in those stress conditions. Superoxide does not induce the production of the SigD factor but instead SigB and SigC factors are moderately induced. The SigB factor alone in ΔsigCDE can support almost as fast growth in superoxide stress as the full complement of σ factors in the control strain, but an overdose of the stationary phase-related SigC factor causes growth arrest of ΔsigBDE in superoxide stress. A drastic decrease of the functional RNAP limits the transcription capacity of the cells in H2O2 stress, which explains why cyanobacteria are sensitive to H2O2. Formation of RNAP-SigB and RNAP-SigD holoenzymes is highly enhanced in H2O2 stress, and cells containing only SigB (ΔsigCDE) or SigD (ΔsigBCE) show superior growth in H2O2 stress.
Collapse
Affiliation(s)
- Kaisa Hakkila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Dimitar Valev
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Taras Antal
- Biological Faculty, Moscow State University, Vorobyevi Gory, Moscow, Russia
| | - Esa Tyystjï Rvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Taina Tyystjï Rvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Koskinen S, Hakkila K, Kurkela J, Tyystjärvi E, Tyystjärvi T. Inactivation of group 2 σ factors upregulates production of transcription and translation machineries in the cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 2018; 8:10305. [PMID: 29985458 PMCID: PMC6037674 DOI: 10.1038/s41598-018-28736-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/26/2018] [Indexed: 11/17/2022] Open
Abstract
We show that the formation of the RNAP holoenzyme with the primary σ factor SigA increases in the ΔsigBCDE strain of the cyanobacterium Synechocystis sp. PCC 6803 lacking all group 2 σ factors. The high RNAP-SigA holoenzyme content directly induces transcription of a particular set of housekeeping genes, including ones encoding transcription and translation machineries. In accordance with upregulated transcripts, ΔsigBCDE contain more RNAPs and ribosomal subunits than the control strain. Extra RNAPs are fully active, and the RNA content of ΔsigBCDE cells is almost tripled compared to that in the control strain. Although ΔsigBCDE cells produce extra rRNAs and ribosomal proteins, functional extra ribosomes are not formed, and translation activity and protein content remained similar in ΔsigBCDE as in the control strain. The arrangement of the RNA polymerase core genes together with the ribosomal protein genes might play a role in the co-regulation of transcription and translation machineries. Sequence logos were constructed to compare promoters of those housekeeping genes that directly react to the RNAP-SigA holoenzyme content and those ones that do not. Cyanobacterial strains with engineered transcription and translation machineries might provide solutions for construction of highly efficient production platforms for biotechnical applications in the future.
Collapse
Affiliation(s)
- Satu Koskinen
- Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Kaisa Hakkila
- Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Juha Kurkela
- Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Taina Tyystjärvi
- Department of Biochemistry, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
9
|
Antal T, Kurkela J, Parikainen M, Kårlund A, Hakkila K, Tyystjärvi E, Tyystjärvi T. Roles of Group 2 Sigma Factors in Acclimation of the Cyanobacterium Synechocystis sp. PCC 6803 to Nitrogen Deficiency. PLANT & CELL PHYSIOLOGY 2016; 57:1309-1318. [PMID: 27095737 DOI: 10.1093/pcp/pcw079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Acclimation of cyanobacteria to environmental conditions is mainly controlled at the transcriptional level, and σ factors of the RNA polymerase have a central role in this process. The model cyanobacterium Synechocystis sp. PCC 6803 has four non-essential group 2 σ factors (SigB, SigC, SigD and SigE) that regulate global metabolic responses to various adverse environmental conditions. Here we show that although none of the group 2 σ factors is essential for the major metabolic realignments induced by a short period of nitrogen starvation, the quadruple mutant without any group 2 σ factors and triple mutants missing both SigB and SigD grow slowly in BG-11 medium containing only 5% of the nitrate present in standard BG-11. These ΔsigBCDE, ΔsigBCD and ΔsigBDE strains lost PSII activity rapidly in low nitrogen and accumulated less glycogen than the control strain. An abnormally high glycogen content was detected in ΔsigBCE (SigD is active), while the carotenoid content became high in ΔsigCDE (SigB is active), indicating that SigB and SigD regulate the partitioning of carbon skeletons in low nitrogen. Long-term survival and recovery of the cells after nitrogen deficiency was strongly dependent on group 2 σ factors. The quadruple mutant and the ΔsigBDE strain (only SigC is active) recovered more slowly from nitrogen deficiency than the control strain, and ΔsigBCDE in particular lost viability during nitrogen starvation. Nitrogen deficiency-induced changes in the pigment content of the control strain recovered essentially in 1 d in nitrogen-replete medium, but little recovery occurred in ΔsigBCDE and ΔsigBDE.
Collapse
Affiliation(s)
- Taras Antal
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland Biological Faculty, Moscow State University, Vorobyevi Gory 119992, Moscow, Russia
| | - Juha Kurkela
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | | | - Anna Kårlund
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Kaisa Hakkila
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Taina Tyystjärvi
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
10
|
Koskinen S, Hakkila K, Gunnelius L, Kurkela J, Wada H, Tyystjärvi T. In vivorecruitment analysis and a mutant strain without any group 2 σ factor reveal roles of different σ factors in cyanobacteria. Mol Microbiol 2015; 99:43-54. [DOI: 10.1111/mmi.13214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Satu Koskinen
- Department of Biochemistry; University of Turku; FIN-20014 Turku Finland
| | - Kaisa Hakkila
- Department of Biochemistry; University of Turku; FIN-20014 Turku Finland
| | - Liisa Gunnelius
- Department of Biochemistry; University of Turku; FIN-20014 Turku Finland
| | - Juha Kurkela
- Department of Biochemistry; University of Turku; FIN-20014 Turku Finland
| | - Hajime Wada
- Department of Life Sciences; University of Tokyo; Komaba 3-8-1, Meguro-ku Tokyo 153-8902 Japan
| | - Taina Tyystjärvi
- Department of Biochemistry; University of Turku; FIN-20014 Turku Finland
| |
Collapse
|
11
|
Salt acclimation of cyanobacteria and their application in biotechnology. Life (Basel) 2014; 5:25-49. [PMID: 25551682 PMCID: PMC4390839 DOI: 10.3390/life5010025] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/19/2014] [Indexed: 12/25/2022] Open
Abstract
The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants.
Collapse
|
12
|
Wang Y, Shi M, Niu X, Zhang X, Gao L, Chen L, Wang J, Zhang W. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Microb Cell Fact 2014; 13:151. [PMID: 25366096 PMCID: PMC4234862 DOI: 10.1186/s12934-014-0151-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent efforts demonstrated the potential application of cyanobacteria as a "microbial cell factory" to produce butanol directly from CO2. However, cyanobacteria have very low tolerance to the toxic butanol, which limits the economic viability of this renewable system. RESULTS Through a long-term experimental evolution process, we achieved a 150% increase of the butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803 after a continuous 94 passages for 395 days in BG11 media amended with gradually increased butanol concentration from 0.2% to 0.5% (v/v). To decipher the molecular mechanism responsible for the tolerance increase, we employed an integrated GC-MS and LC-MS approach to determine metabolomic profiles of the butanol-tolerant Synechocystis strains isolated from several stages of the evolution, and then applied PCA and WGCNA network analyses to identify the key metabolites and metabolic modules related to the increased tolerance. The results showed that unstable metabolites of 3-phosphoglyceric acid (3PG), D-fructose 6-phosphate (F6P), D-glucose 6-phosphate (G6P), NADPH, phosphoenolpyruvic acid (PEP), D-ribose 5-phosphate (R5P), and stable metabolites of glycerol, L-serine and stearic acid were differentially regulated during the evolution process, which could be related to tolerance increase to butanol in Synechocystis. CONCLUSIONS The study provided the first time-series description of the metabolomic changes related to the gradual increase of butanol tolerance, and revealed a metabolomic basis important for rational tolerance engineering in Synechocystis.
Collapse
Affiliation(s)
- Yaxing Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Xiangfeng Niu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Lianju Gao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| |
Collapse
|
13
|
Osanai T, Oikawa A, Iijima H, Kuwahara A, Asayama M, Tanaka K, Ikeuchi M, Saito K, Hirai MY. Metabolomic analysis reveals rewiring of Synechocystis sp. PCC 6803 primary metabolism by ntcA overexpression. Environ Microbiol 2014; 16:3304-17. [PMID: 25039649 DOI: 10.1111/1462-2920.12554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022]
Abstract
NtcA is a cAMP receptor protein-type transcription factor conserved among cyanobacteria and is essential for gene expression in response to nitrogen status. NtcA has been widely studied; however, no metabolomic analysis has been conducted using the ntcA mutant. Here, we generated a strain that overexpresses ntcA in Synechocystis sp. PCC 6803, named NOX10, and performed physiological, transcriptomic and metabolomic analyses. NOX10 grew faster than the wild-type strain under photoautotrophic conditions, but slower under light-activated heterotrophic conditions. Transcriptome analysis revealed that the expression of genes related to primary metabolism was altered by ntcA overexpression particularly under nitrogen-depleted conditions. Metabolomic analysis revealed that metabolite levels in sugar, purine/pyrimidine nucleotide, organic acid and amino acid metabolism were widely altered by ntcA overexpression. The protein levels of nitrogen-regulated transcriptional regulators were altered by ntcA overexpression during nitrogen starvation. These results demonstrate the alteration of primary metabolism by genetic engineering of NtcA, and they contribute to the current understanding of metabolic regulation of unicellular cyanobacteria.
Collapse
Affiliation(s)
- Takashi Osanai
- RIKEN, Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Montgomery BL. The Regulation of Light Sensing and Light-Harvesting Impacts the Use of Cyanobacteria as Biotechnology Platforms. Front Bioeng Biotechnol 2014; 2:22. [PMID: 25023122 PMCID: PMC4090899 DOI: 10.3389/fbioe.2014.00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/13/2014] [Indexed: 12/22/2022] Open
Abstract
Light is harvested in cyanobacteria by chlorophyll-containing photosystems embedded in the thylakoid membranes and phycobilisomes (PBSs), photosystem-associated light-harvesting antennae. Light absorbed by the PBSs and photosystems can be converted to chemical energy through photosynthesis. Photosynthetically fixed carbon pools, which are constrained by photosynthetic light capture versus the dissipation of excess light absorbed, determine the available organismal energy budget. The molecular bases of the environmental regulation of photosynthesis, photoprotection, and photomorphogenesis are still being elucidated in cyanobacteria. Thus, the potential impacts of these phenomena on the efficacy of developing cyanobacteria as robust biotechnological platforms require additional attention. Current advances and persisting needs for developing cyanobacterial production platforms that are related to light sensing and harvesting include the development of tools to balance the utilization of absorbed photons for conversion to chemical energy and biomass versus light dissipation in photoprotective mechanisms. Such tools can be used to direct energy to more effectively support the production of desired bioproducts from sunlight.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Plant Research Laboratory, Department of Energy, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Hakkila K, Antal T, Rehman AU, Kurkela J, Wada H, Vass I, Tyystjärvi E, Tyystjärvi T. Oxidative stress and photoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:217-25. [DOI: 10.1016/j.bbabio.2013.11.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/09/2013] [Accepted: 11/15/2013] [Indexed: 01/15/2023]
|
16
|
Chen L, Wu L, Zhu Y, Song Z, Wang J, Zhang W. An orphan two-component response regulator Slr1588 involves salt tolerance by directly regulating synthesis of compatible solutes in photosynthetic Synechocystis sp. PCC 6803. ACTA ACUST UNITED AC 2014; 10:1765-74. [DOI: 10.1039/c4mb00095a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the characterization of a novel orphan response regulator Slr1588 directly involved in the synthesis and transport of compatible solutes against salt stress.
Collapse
Affiliation(s)
- Lei Chen
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Lina Wu
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Ye Zhu
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Zhongdi Song
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering
| |
Collapse
|