1
|
Ding YC, Lee SS, Peng SK, Yang WK, Lee TH. Salinity-dependent changes in branchial morphometry and Na + , K + -ATPase responses of euryhaline Asian sea bass, Lates calcarifer. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:451-463. [PMID: 36878859 DOI: 10.1002/jez.2691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Asian sea bass (Lates calcarifer Bloch, 1790) is a euryhaline fish widely cultured in Asia and Australia. Although it is common to culture Asian sea bass at different salinities, osmoregulatory responses of Asian sea bass during acclimation to various salinities have not been fully observed. In this study, we used scanning electron microscopy to observe the morphology of the ionocyte apical membrane of Asian sea bass acclimated to fresh water (FW), 10‰ brackish water (BW10), 20‰ brackish water (BW20), and seawater (SW; 35‰). Three types of ionocytes were identified in FW and BW fish: (I) flat type with microvilli, (II) basin type with microvilli, and (III) small- hole type. Flat type I ionocytes were also observed in the lamellae of the FW fish. In contrast, two types of ionocytes were identified in SW fish: (III) small-hole type and (IV) big-hole type. Furthermore, we observed Na+ , K+ -ATPase (NKA) immunoreactive cells in the gills, which represent the localization of ionocytes. The highest protein abundance was observed in the SW and FW groups, whereas the highest activity was observed in the SW group. In contrast, the BW10 group had the lowest protein abundance and activity. This study demonstrates the effects of osmoregulatory responses on the morphology and density of ionocytes, as well as protein abundance and activity of NKA. In this study, we found that Asian sea bass had the lowest osmoregulatory response in BW10, because the lowest amounts of ionocytes and NKA were required to maintain osmolality at this salinity.
Collapse
Affiliation(s)
- Yu-Chen Ding
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Sih-Shien Lee
- Department of Biotechnology and Bioindustry, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Kai Peng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Kai Yang
- Water Resources Development Center, Feng Chia University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Chuang HJ, Chang CY, Ho HP, Chou MY. Oxytocin Signaling Acts as a Marker for Environmental Stressors in Zebrafish. Int J Mol Sci 2021; 22:7459. [PMID: 34299078 PMCID: PMC8303627 DOI: 10.3390/ijms22147459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
The oxytocin system plays a role in stress responses and behavior modulation. However, the effects of oxytocin signaling on stress adaptation remain unclear. Here, we demonstrated the roles of oxytocin signaling as a biomarker under stress conditions in the peripheral tissues (the gills) and central nervous system (the brain). All the environmental stressors downregulated the expression of oxytocin receptors in the gills, and the alteration of the expression of oxytocin receptors was also found in the brain after the acidic (AC) and high-ammonia (HA) treatments. The number of oxytocin neurons was increased after double-deionized (DI) treatment. By transgenic line, Tg(oxtl:EGFP), we also investigated the projections of oxytocin neurons and found oxytocin axon innervations in various nuclei that might regulate the anxiety levels and aggressiveness of adult zebrafish under different environmental stresses. The oxytocin system integrates physiological responses and behavioral outcomes to ensure environmental adaptation in adult zebrafish. Our study provides insight into oxytocin signaling as a stress indicator upon environmental stressors.
Collapse
Affiliation(s)
| | | | | | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (H.-J.C.); (C.-Y.C.); (H.-P.H.)
| |
Collapse
|
3
|
Vargas-Chacoff L, Arjona FJ, Ruiz-Jarabo I, García-Lopez A, Flik G, Mancera JM. Water temperature affects osmoregulatory responses in gilthead sea bream (Sparus aurata L.). J Therm Biol 2020; 88:102526. [PMID: 32126001 DOI: 10.1016/j.jtherbio.2020.102526] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 11/26/2022]
Abstract
Sea bream (Sparus aurata Linneaus) was acclimated to three salinity concentrations, viz. 5 (LSW), 38 (SW) and 55psμ (HSW) and three water temperatures regimes (12, 19 and 26 °C) for five weeks. Osmoregulatory capacity parameters (plasma osmolality, sodium, chloride, cortisol, and branchial and renal Na+,K+-ATPase activities) were also assessed. Salinity and temperature affected all of the parameters tested. Our results indicate that environmental temperature modulates capacity in sea bream, independent of environmental salinity, and set points of plasma osmolality and ion concentrations depend on both ambient salinity and temperature. Acclimation to extreme salinity resulted in stress, indicated by elevated basal plasma cortisol levels. Response to salinity was affected by ambient temperature. A comparison between branchial and renal Na+,K+-ATPase activities appears instrumental in explaining salinity and temperature responses. Sea bream regulate branchial enzyme copy numbers (Vmax) in hyperosmotic media (SW and HSW) to deal with ambient temperature effects on activity; combinations of high temperatures and salinity may exceed the adaptive capacity of sea bream. Salinity compromises the branchial enzyme capacity (compared to basal activity at a set salinity) when temperature is elevated and the scope for temperature adaptation becomes smaller at increasing salinity. Renal Na+,K+-ATPase capacity appears fixed and activity appears to be determined by temperature.
Collapse
Affiliation(s)
- Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| | - Francisco J Arjona
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain; Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - Ignacio Ruiz-Jarabo
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Angel García-Lopez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, 11510, Puerto Real, Cádiz, Spain
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - Juan M Mancera
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
4
|
Vargas-Chacoff L, Regish AM, Weinstock A, McCormick SD. Effects of elevated temperature on osmoregulation and stress responses in Atlantic salmon Salmo salar smolts in fresh water and seawater. JOURNAL OF FISH BIOLOGY 2018; 93:550-559. [PMID: 29956316 DOI: 10.1111/jfb.13683] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Smolting in Atlantic salmon Salmo salar is a critical life-history stage that is preparatory for downstream migration and entry to seawater that is regulated by abiotic variables including photoperiod and temperature. The present study was undertaken to determine the interaction of temperature and salinity on salinity tolerance, gill osmoregulatory proteins and cellular and endocrine stress in S. salar smolts. Fish were exposed to rapid changes in temperature (from 14 to 17, 20 and 24°C) in fresh water (FW) and seawater (SW), with and without prior acclimation and sampled after 2 and 8 days. Fish exposed simultaneously to SW and 24°C experienced 100% mortality, whereas no mortality occurred in any of the other groups. The highest temperature also resulted in poor ion regulation in SW with or without prior SW acclimation, whereas no substantial effect was observed in FW. Gill Na+ -K+ -ATPase (NKA) activity increased in SW fish compared to FW fish and decreased with high temperature in both FW and SW. Gill Nkaα1a abundance was high in FW and Nkaα1b and Na+ -K+ -2Cl- cotransporter high in SW, but all three were lower at the highest temperature. Gill Hsp70 levels were elevated in FW and SW at the highest temperature and increased with increasing temperature 2 days following direct transfer to SW. Plasma cortisol levels were elevated in SW at the highest temperature. Our results indicate that there is an important interaction of salinity and elevated temperature on osmoregulatory performance and the cellular stress response in S. salar, with an apparent threshold for osmoregulatory failure in SW above 20°C.
Collapse
Affiliation(s)
- Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
- Centro Fondap-IDEAL, Universidad Austral de Chile, Valdivia, Chile
| | - Amy M Regish
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
| | - Andrew Weinstock
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
| | - Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
5
|
Tsai JW, Liew HJ, Jhang JJ, Hung SH, Meng PJ, Leu MY, Lim C, Tang CH. A field and laboratory study of the responses of cytoprotection and osmoregulation to salinity stress in mosquitofish (Gambusia affinis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:489-502. [PMID: 29192359 DOI: 10.1007/s10695-017-0448-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
The mosquitofish (Gambusia affinis) naturally inhabits freshwater (FW; 1-3‰) and seawater (SW; 28-33‰) ponds in constructed wetland. To explore the physiological status and molecular mechanisms for salinity adaptation of the mosquitofish, cytoprotective responses and osmoregulation were examined. In the field study, activation of protein quality control (PQC) mechanism through upregulation of the abundance of heat shock protein (HSP) 90 and 70 and ubiquitin-conjugated proteins was found in the mosquitofish gills from SW pond compared to the individuals of FW pond. The levels of aggregated proteins in mosquitofish gills had no significant difference between FW and SW ponds. Furthermore, the osmoregulatory responses revealed that the body fluid osmolality and muscle water contents of the mosquitofish from two ponds were maintained within a physiological range while branchial Na+/K+-ATPase (NKA) expression was higher in the individuals from SW than FW ponds. Subsequently, to further clarify whether the cellular stress responses and osmoregulation were mainly induced by hypertonicity, a laboratory salinity acclimation experiment was conducted. The results from the laboratory experiment were similar to the field study. Branchial PQC as well as NKA responses were induced by SW acclimation compared to FW-acclimated individuals. Taken together, induction of gill PQC and NKA responses implied that SW represents an osmotic stress for mosquitofish. Activation of PQC was suggested to provide an osmoprotection to prevent the accumulation of aggregated proteins. Moreover, an increase in branchial NKA responses for osmoregulatory adjustment was required for the physiological homeostasis of body fluid osmolality and muscle water content.
Collapse
Affiliation(s)
- Jeng-Wei Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, 402, Taiwan
| | - Hon-Jung Liew
- Institute of Tropical Aquaculture, University Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Jyun-Jiang Jhang
- Department of Oceanography, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung, 804, Taiwan
| | - Shiou-Han Hung
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Pei-Jie Meng
- National Museum of Marine Biology and Aquarium, Checheng Township, Pingtung, 944, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Checheng Township, Pingtung, 944, Taiwan
| | - Ming-Yih Leu
- National Museum of Marine Biology and Aquarium, Checheng Township, Pingtung, 944, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Checheng Township, Pingtung, 944, Taiwan
| | - Christopher Lim
- School of Environmental and Natural Resource Sciences, University of Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Cheng-Hao Tang
- Department of Oceanography, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung, 804, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National SunYat-sen University, Kaohsiung, 804, Taiwan.
| |
Collapse
|
6
|
Attard CRM, Brauer CJ, Sandoval-Castillo J, Faulks LK, Unmack PJ, Gilligan DM, Beheregaray LB. Ecological disturbance influences adaptive divergence despite high gene flow in golden perch (Macquaria ambigua): Implications for management and resilience to climate change. Mol Ecol 2017; 27:196-215. [PMID: 29165848 DOI: 10.1111/mec.14438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 01/01/2023]
Abstract
Populations that are adaptively divergent but maintain high gene flow may have greater resilience to environmental change as gene flow allows the spread of alleles that have already been tested elsewhere. In addition, populations naturally subjected to ecological disturbance may already hold resilience to future environmental change. Confirming this necessitates ecological genomic studies of high dispersal, generalist species. Here we perform one such study on golden perch (Macquaria ambigua) in the Murray-Darling Basin (MDB), Australia, using a genome-wide SNP data set. The MDB spans across arid to wet and temperate to subtropical environments, with low to high ecological disturbance in the form of low to high hydrological variability. We found high gene flow across the basin and three populations with low neutral differentiation. Genotype-environment association analyses detected adaptive divergence predominantly linked to an arid region with highly variable riverine flow, and candidate loci included functions related to fat storage, stress and molecular or tissue repair. The high connectivity of golden perch in the MDB will likely allow locally adaptive traits in its most arid and hydrologically variable environment to spread and be selected in localities that are predicted to become arid and hydrologically variable in future climates. High connectivity in golden perch is likely due to their generalist life history and efforts of fisheries management. Our study adds to growing evidence of adaptation in the face of gene flow and highlights the importance of considering ecological disturbance and adaptive divergence in biodiversity management.
Collapse
Affiliation(s)
- Catherine R M Attard
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Leanne K Faulks
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Nagano, Japan
| | - Peter J Unmack
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Dean M Gilligan
- New South Wales Department of Primary Industries, Batemans Bay Fisheries Centre, Batemans Bay, NSW, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
7
|
Tunnah L, Mackellar SRC, Barnett DA, Maccormack TJ, Stehfest KM, Morash AJ, Semmens JM, Currie S. Physiological responses to hypersalinity correspond to nursery ground usage in two inshore shark species (Mustelus antarcticus & Galeorhinus galeus). J Exp Biol 2016; 219:2028-38. [DOI: 10.1242/jeb.139964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/14/2016] [Indexed: 01/01/2023]
Abstract
Shark nurseries are susceptible to environmental fluctuations in salinity because of their shallow, coastal nature; however, the physiological impacts on resident elasmobranchs are largely unknown. Gummy (Mustelus antarcticus) and school sharks (Galeorhinus galeus) use the same Tasmanian estuary as a nursery ground; however, each species has distinct distribution patterns that are coincident with changes in local environmental conditions, such as increases in salinity. We hypothesized that these differences were directly related to differential physiological tolerances to high salinity. To test this hypothesis, we exposed wild, juvenile school and gummy sharks to an environmentally-relevant hypersaline (120% SW) event for 48 h. Metabolic rate decreased 20-35% in both species, and gill Na+/K+ ATPase activity was maintained in gummy sharks but decreased 37% in school sharks. We measured plasma ions (Na+, K+, Cl−), and osmolytes (urea and trimethylamine oxide (TMAO)), and observed a 33% increase in plasma Na+ in gummy sharks with hyperosmotic exposure, while school sharks displayed a typical ureosmotic increase in plasma urea (∼20%). With elevated salinity, gill TMAO concentration increased by 42% in school sharks and by 30% in gummy sharks. Indicators of cellular stress (heat shock proteins HSP70, 90, 110, and ubiquitin) significantly increased in gill, and white muscle in both a species- and tissue- specific manner. Overall, gummy sharks exhibited greater osmotic perturbation and ionic dysregulation and a larger cellular stress response compared to school sharks. Our findings provide physiological correlates to the observed distribution, and movement of these shark species in their critical nursery grounds.
Collapse
Affiliation(s)
- Louise Tunnah
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | | | | | - Tyson J. Maccormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Kilian M. Stehfest
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia
| | - Andrea J. Morash
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Jayson M. Semmens
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia
| | - Suzanne Currie
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| |
Collapse
|
8
|
Tang CH, Leu MY, Yang WK, Tsai SC. Exploration of the mechanisms of protein quality control and osmoregulation in gills of Chromis viridis in response to reduced salinity. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1533-1546. [PMID: 24805086 DOI: 10.1007/s10695-014-9946-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Fish gills are the vital multifunctional organ in direct contact with external environment. Therefore, activation of the cytoprotective mechanisms to maintain branchial cell viability is important for fish upon stresses. Salinity is one of the major factors strongly affecting cellular and organismal functions. Reduction of ambient salinity may occur in coral reef and leads to osmotic stress for reef-associated stenohaline fish. However, the physiological responses to salinity stress in reef-associated fish were not examined substantially. With this regard, the physiological parameters and the responses of protein quality control (PQC) and osmoregulatory mechanisms in gills of seawater (SW; 33-35 ‰)- and brackish water (BW; 20 ‰)-acclimated blue-green damselfish (Chromis viridis) were explored. The results showed that the examined physiological parameters were maintained within certain physiological ranges in C. viridis acclimated to different salinities. In PQC mechanism, expression of heat-shock protein (HSP) 90, 70, and 60 elevated in response to BW acclimation while the levels of ubiquitin-conjugated proteins were similar between the two groups. Thus, it was presumed that upregulation of HSPs was sufficient to prevent the accumulation of aggregated proteins for maintaining the protein quality and viability of gill cells when C. viridis were acclimated to BW. Moreover, gill Na(+)/K(+)-ATPase expression and protein amounts of basolaterally located Na(+)/K(+)/2Cl(-) cotransporter were higher in SW fish than in BW fish. Taken together, this study showed that the cytoprotective and osmoregulatory mechanisms of blue-green damselfish were functionally activated and modulated to withstand the challenge of reduction in salinity for maintaining physiological homeostasis.
Collapse
Affiliation(s)
- Cheng-Hao Tang
- Institute of Marine Biotechnology, National Dong Hwa University, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan,
| | | | | | | |
Collapse
|
9
|
Thanh NM, Jung H, Lyons RE, Chand V, Tuan NV, Thu VTM, Mather P. A transcriptomic analysis of striped catfish (Pangasianodon hypophthalmus) in response to salinity adaptation: De novo assembly, gene annotation and marker discovery. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 10:52-63. [PMID: 24841517 DOI: 10.1016/j.cbd.2014.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/16/2014] [Accepted: 04/28/2014] [Indexed: 01/25/2023]
Abstract
The striped catfish (Pangasianodon hypophthalmus) culture industry in the Mekong Delta in Vietnam has developed rapidly over the past decade. The culture industry now however, faces some significant challenges, especially related to climate change impacts notably from predicted extensive saltwater intrusion into many low topographical coastal provinces across the Mekong Delta. This problem highlights a need for development of culture stocks that can tolerate more saline culture environments as a response to expansion of saline water-intruded land. While a traditional artificial selection program can potentially address this need, understanding the genomic basis of salinity tolerance can assist development of more productive culture lines. The current study applied a transcriptomic approach using Ion PGM technology to generate expressed sequence tag (EST) resources from the intestine and swim bladder from striped catfish reared at a salinity level of 9ppt which showed best growth performance. Total sequence data generated was 467.8Mbp, consisting of 4,116,424 reads with an average length of 112bp. De novo assembly was employed that generated 51,188 contigs, and allowed identification of 16,116 putative genes based on the GenBank non-redundant database. GO annotation, KEGG pathway mapping, and functional annotation of the EST sequences recovered with a wide diversity of biological functions and processes. In addition, more than 11,600 simple sequence repeats were also detected. This is the first comprehensive analysis of a striped catfish transcriptome, and provides a valuable genomic resource for future selective breeding programs and functional or evolutionary studies of genes that influence salinity tolerance in this important culture species.
Collapse
Affiliation(s)
- Nguyen Minh Thanh
- International University, VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Hyungtaek Jung
- Institute for Future Environment, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia; Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Russell E Lyons
- CSIRO Livestock Industries, Queensland Biosciences Precinct, QLD 4057, Australia.
| | - Vincent Chand
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Nguyen Viet Tuan
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Vo Thi Minh Thu
- International University, VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Peter Mather
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|
10
|
Tang CH, Leu MY, Shao K, Hwang LY, Chang WB. Short-term effects of thermal stress on the responses of branchial protein quality control and osmoregulation in a reef-associated fish, Chromis viridis. Zool Stud 2014. [DOI: 10.1186/s40555-014-0021-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|