1
|
Linn KZ, Huan X, Hon PY, Husen SFS, Thevasagayam NM, Ng OT, Vasoo S, Ling ML, Fisher D, Marimuthu K. Impact of standard precautions and unrestricted movements of carbapenemase-producing Enterobacterales (CPE) carriers on CPE transmission in a nursing home in Singapore: a prospective cohort study. Antimicrob Resist Infect Control 2025; 14:38. [PMID: 40296112 PMCID: PMC12039280 DOI: 10.1186/s13756-025-01554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND In 2018, Singapore's National Infection Prevention & Control Committee (NIPC) recommended standard precautions and unrestricted movements for CPE carriers in nursing homes. OBJECTIVE This study investigates the short-term impact of this intervention on CPE transmission in a nursing home in Singapore. METHODS We conducted a prospective cohort study between 1st April and 11th July 2019 in a 255-bedded nursing home in Singapore. Stool samples from residents and environmental samples from sink strainers in the residents' bedrooms, bathrooms, and lavatories, and shower drain traps in bathrooms were collected at baseline, week 2, week 8, and week 12 and tested for CPE. We performed whole genomic sequencing (WGS) to find out if there was any bacterial or plasmid linkage among the residents and between the residents and environment. RESULTS A total of 32 residents, including six known CPE carriers, were recruited and completed the three-month follow-up visits. Of the six known CPE carriers, five tested negative for CPE, while one consistently tested positive for CPE throughout the study. Of the 28 sink strainers, six (21.43%) were positive for CPE. CPE was not detected in any shower drain trap throughout the study. Only one resident acquired CPE at week 12. WGS analysis of available CPE isolates showed no bacterial or plasmid linkage between residents or between residents and the environment. CONCLUSIONS Standard precautions and unrestricted movement of CPE carriers may be sufficient to control CPE transmission in the nursing home setting. Larger studies with more extensive environmental sampling and longer follow-up periods are needed to confirm this.
Collapse
Affiliation(s)
- Kyaw Zaw Linn
- Communicable Diseases Agency, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Xiaowei Huan
- Communicable Diseases Agency, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Pei Yun Hon
- National Centre for Infectious Diseases, Singapore, Singapore
| | | | | | - Oon Tek Ng
- Communicable Diseases Agency, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shawn Vasoo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, The National Centre for Infectious Diseases and Tan Tock Seng Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, The National University of Singapore, Singapore, Singapore
| | - Moi Lin Ling
- Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore
| | - Dale Fisher
- Yong Loo Lin School of Medicine, The National University of Singapore, Singapore, Singapore
- Department of Medicine, National University Hospital, Singapore, Singapore, Singapore
| | - Kalisvar Marimuthu
- Communicable Diseases Agency, Singapore, Singapore.
- National Centre for Infectious Diseases, Singapore, Singapore.
- Tan Tock Seng Hospital, Singapore, Singapore.
- Yong Loo Lin School of Medicine, The National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Tan GSE, Chia GJM, Thevasagayam NM, Loy SQD, Prakki SRS, Lim ZQ, Chua JY, Chia JWZ, Marimuthu K, Vasoo S, Ng OT, Poh BF, Ang BSP. Whole-genome sequencing establishes persistence of biofilm-associated Pseudomonas aeruginosa detected from microbiological surveillance of gastrointestinal endoscopes. J Hosp Infect 2024; 152:73-80. [PMID: 39059770 DOI: 10.1016/j.jhin.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND An increased incidence of Pseudomonas aeruginosa in microbiological surveillance (MS) cultures from gastrointestinal endoscopes was detected between March 2020 and March 2023 in Tan Tock Seng Hospital Singapore. AIM To describe the use of whole-genome sequencing (WGS) in this investigation. METHODS WGS was performed for all P. aeruginosa isolates with pairwise comparison of isolates to assess for genomic linkage. Comprehensive review of reprocessing practices and environmental sampling was performed. FINDINGS Twenty-two P. aeruginosa isolates were detected from endoscopic MS cultures. Fifteen (68%) isolates were available for WGS. Eighteen pairwise comparisons of isolates were made, of which 10 were found to be genomically linked. One endoscope had P. aeruginosa repeatedly cultured from subsequent MS that were genomically linked and persistent despite repeat endoscopic reprocessing, establishing the persistence of biofilm that could not be eradicated with routine reprocessing. All P. aeruginosa isolates cultured from other different endoscopes were genetically distinct. Investigation into reprocessing practices revealed the use of air/water valves connected to endoscopes during clinical use. Inspection of these valves revealed the presences of cracks and tears. All other environmental samples were negative. CONCLUSION The WGS findings helped to deprioritize common source contamination and supported the hypothesis of biofilm build-up within endoscopes, leading to repeatedly positive MS cultures that were genomically linked. This was possibly related to incomplete reprocessing of the damaged air/water valves, resulting in biofilm build-up. All faulty valves were changed and subsequently cleaned separately with ultrasonic cleaning followed by sterilization which resolved this incident.
Collapse
Affiliation(s)
- G S E Tan
- Department of Infection Prevention and Control, Tan Tock Seng Hospital, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; National Centre for Infectious Diseases, Singapore.
| | - G J M Chia
- Department of Infection Prevention and Control, Tan Tock Seng Hospital, Singapore
| | | | - S Q D Loy
- National Centre for Infectious Diseases, Singapore
| | - S R S Prakki
- National Centre for Infectious Diseases, Singapore
| | - Z Q Lim
- National Centre for Infectious Diseases, Singapore
| | - J Y Chua
- National Centre for Infectious Diseases, Singapore
| | - J W Z Chia
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore
| | - K Marimuthu
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; National Centre for Infectious Diseases, Singapore
| | - S Vasoo
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; National Centre for Infectious Diseases, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - O T Ng
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; National Centre for Infectious Diseases, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - B F Poh
- Department of Infection Prevention and Control, Tan Tock Seng Hospital, Singapore
| | - B S P Ang
- Department of Infection Prevention and Control, Tan Tock Seng Hospital, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; National Centre for Infectious Diseases, Singapore
| |
Collapse
|
3
|
Janezic S, Garneau JR, Monot M. Comparative Genomics of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:199-218. [PMID: 38175477 DOI: 10.1007/978-3-031-42108-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile, a Gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of large numbers of genome sequences, mainly due to the use of next-generation sequencing methods, has undoubtedly shown their immense advantages in the determination of C. difficile population structure. The implementation of fine-scale comparative genomic approaches has paved the way for global transmission and recurrence studies, as well as more targeted studies, such as the PaLoc or CRISPR/Cas systems. In this chapter, we provide an overview of recent and significant findings on C. difficile using comparative genomic studies with implications for epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food (NLZOH), Maribor, Slovenia.
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France
| |
Collapse
|
4
|
Etifa P, Rodríguez C, Harmanus C, Sanders IMJG, Sidorov IA, Mohammed OA, Savage E, Timms AR, Freeman J, Smits WK, Wilcox MH, Baines SD. Non-Toxigenic Clostridioides difficile Strain E4 (NTCD-E4) Prevents Establishment of Primary C. difficile Infection by Epidemic PCR Ribotype 027 in an In Vitro Human Gut Model. Antibiotics (Basel) 2023; 12:435. [PMID: 36978302 PMCID: PMC10044524 DOI: 10.3390/antibiotics12030435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant healthcare burden. Non-toxigenic C. difficile (NTCD) strains have shown a benefit in preventing porcine enteritis and in human recurrent CDI. In this study, we evaluated the efficacy of metronidazole-resistant NTCD-E4 in preventing CDI facilitated by a range of antimicrobials in an in vitro human gut model. NTCD-E4 spores (at a dose of 107) were instilled 7 days before a clinical ribotype (RT) 027 (at the same dose) strain (210). In separate experiments, four different antimicrobials were used to perturb gut microbiotas; bacterial populations and cytotoxin production were determined using viable counting and Vero cell cytotoxicity, respectively. RT027 and NTCD-E4 proliferated in the in vitro model when inoculated singly, with RT027 demonstrating high-level cytotoxin (3-5-log10-relative units) production. In experiments where the gut model was pre-inoculated with NTCD-E4, RT027 was remained quiescent and failed to produce cytotoxins. NTCD-E4 showed mutations in hsmA and a gene homologous to CD196-1331, previously linked to medium-dependent metronidazole resistance, but lacked other metronidazole resistance determinants. This study showed that RT027 was unable to elicit simulated infection in the presence of NTCD-E4 following stimulation by four different antimicrobials. These data complement animal and clinical studies in suggesting NTCD offer prophylactic potential in the management of human CDI.
Collapse
Affiliation(s)
- Perezimor Etifa
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, Reading RG6 6DZ, UK
| | - César Rodríguez
- Facultad de Microbiología & CIET, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica
| | - Céline Harmanus
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ingrid M. J. G. Sanders
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Igor A. Sidorov
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Olufunmilayo A. Mohammed
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Emily Savage
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Andrew R. Timms
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jane Freeman
- Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Wiep Klaas Smits
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mark H. Wilcox
- Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Simon D. Baines
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
5
|
Transmission Patterns of Clostridioides difficile in a Non-Epidemic Setting Based on WGS Analysis. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen and has a considerable burden on healthcare systems. Our objective was to determine the transmission patterns of C. difficile in a non-epidemic setting using whole-genome multi-locus sequence typing (wgMLST) and core-genome single-nucleotide polymorphism (cgSNP) analyses. A retrospective study was conducted in a 650-bed university hospital between January 2016 and February 2017. In total, 191 strains isolated from 169 symptomatic C. difficile infection (CDI) patients were analyzed by WGS. Sequences were compared using wgMLST and cgSNP analyses. Genetic data and ward movements were then combined to identify the transmission rate and the type of transmission. The transmission rate varied from 55/169 (19.5%) (wgMLST) to 33/169 (32.5%) (cgSNP). Most transmission was considered cryptic, irrespective of the genetic analysis (38/55 [69.1%] by wgMLST to 25/33 [75.8%] by cgSNP). No transmission within the same ward was observed. In a non-epidemic setting, most C. difficile transmission occurs from sources other than symptomatic CDI patients.
Collapse
|
6
|
Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat Commun 2020; 11:598. [PMID: 32001686 PMCID: PMC6992631 DOI: 10.1038/s41467-020-14382-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Metronidazole was until recently used as a first-line treatment for potentially life-threatening Clostridioides difficile (CD) infection. Although cases of metronidazole resistance have been documented, no clear mechanism for metronidazole resistance or a role for plasmids in antimicrobial resistance has been described for CD. Here, we report genome sequences of seven susceptible and sixteen resistant CD isolates from human and animal sources, including isolates from a patient with recurrent CD infection by a PCR ribotype (RT) 020 strain, which developed resistance to metronidazole over the course of treatment (minimal inhibitory concentration [MIC] = 8 mg L−1). Metronidazole resistance correlates with the presence of a 7-kb plasmid, pCD-METRO. pCD-METRO is present in toxigenic and non-toxigenic resistant (n = 23), but not susceptible (n = 563), isolates from multiple countries. Introduction of a pCD-METRO-derived vector into a susceptible strain increases the MIC 25-fold. Our finding of plasmid-mediated resistance can impact diagnostics and treatment of CD infections. Cases of C. difficile (CD) resistant to metronidazole have been reported but the mechanism remains enigmatic. Here the authors identify a plasmid, which correlates with metronidazole resistance status in a large international collection of CD isolates, and demonstrate that the plasmid can confer metronidazole resistance.
Collapse
|
7
|
Janezic S, Rupnik M. Development and Implementation of Whole Genome Sequencing-Based Typing Schemes for Clostridioides difficile. Front Public Health 2019; 7:309. [PMID: 31709221 PMCID: PMC6821651 DOI: 10.3389/fpubh.2019.00309] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
Clostridioides difficile is an important nosocomial pathogen increasingly observed in the community and in different non-human reservoirs. The epidemiology and transmissibility of C. difficile has been studied using a variety of typing methods, including more recently developed whole-genome sequence (WGS) analysis that is becoming used routinely for bacterial typing worldwide. Here we review the schemes for WGS-based typing methods available for C. difficile and their applications in the field of human C. difficile infection (CDI). The two main approaches to discover genomic variations are single nucleotide variant (SNV) analysis and methods based on gene-by-gene comparisons (frequently called core genome or whole genome MLST, cgMLST, or wgMLST). SNV analysis currently provides the ultimate resolution, however, typing nomenclature and standardized methodology are missing. On the other hand, gene-by-gene approaches allow portability and standardized nomenclature, and are therefore becoming increasingly popular in bacterial epidemiology and outbreak investigation. Two commercial software packages (BioNumerics and Ridom SeqSphere+) and an open source database (EnteroBase) for allele and sequence type determination for C. difficile are currently available. Proof-of-concept WGS studies have already enabled advances in the investigation of the population structure of C. difficile species, microevolution within the epidemic strains, intercontinental transmission over time and in tracking of transmission events. WGS of clinical C. difficile isolates demonstrated a considerable genetic diversity suggesting diverse reservoirs for CDI. WGS was also shown to aid in resolving relapses and reinfections in recurrent CDI and has potential for use as a tool for assessing hospital infection prevention and control performance.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food, Maribor, Slovenia.,Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia.,Medical Faculty, University of Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Eyre DW, Didelot X, Buckley AM, Freeman J, Moura IB, Crook DW, Peto TEA, Walker AS, Wilcox MH, Dingle KE. Clostridium difficile trehalose metabolism variants are common and not associated with adverse patient outcomes when variably present in the same lineage. EBioMedicine 2019; 43:347-355. [PMID: 31036529 PMCID: PMC6558026 DOI: 10.1016/j.ebiom.2019.04.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clostridium difficile ribotype-027, ribotype-078, and ribotype-017 are virulent and epidemic lineages. Trehalose metabolism variants in these ribotypes, combined with increased human trehalose consumption, have been hypothesised to have contributed to their emergence and virulence. METHODS 5232 previously whole-genome sequenced C. difficile isolates were analysed. Clinical isolates were used to investigate the impact of trehalose metabolism variants on mortality. Import data were used to estimate changes in dietary trehalose. Ribotype-027 virulence was investigated in a clinically reflective gut model. FINDINGS Trehalose metabolism variants found in ribotype-027 and ribotype-017 were widely distributed throughout C. difficile clade-2 and clade-4 in 24/29 (83%) and 10/11 (91%) of sequence types (STs), respectively. The four-gene trehalose metabolism cluster described in ribotype-078 was common in genomes from all five clinically-important C. difficile clades (40/167 [24%] STs). The four-gene cluster was variably present in 208 ribotype-015 infections (98 [47%]); 27/208 (13%) of these patients died within 30-days of diagnosis. Adjusting for age, sex, and infecting ST, there was no association between 30-day all-cause mortality and the four-gene cluster (OR 0.36 [95%CI 0.09-1.34, p = 0.13]). Synthetic trehalose imports in the USA, UK, Germany and the EU were < 1 g/capita/year during 2000-2006, and < 9 g/capita/year 2007-2012, compared with dietary trehalose from natural sources of ~100 g/capita/year. Trehalose supplementation did not increase ribotype-027 virulence in a clinically-validated gut model. INTERPRETATION Trehalose metabolism variants are common in C. difficile. Increases in total dietary trehalose during the early-mid 2000s C. difficile epidemic were likely relatively minimal. Alternative explanations are required to explain why ribotype-027, ribotype-078 and ribotype-017 have been successful. FUNDING National Institute for Health Research. Gut model experiments only: Hayashibara Co. Ltd.
Collapse
Affiliation(s)
- David W Eyre
- Big Data Institute, University of Oxford, UK; Nuffield Department of Medicine, University of Oxford, UK.
| | - Xavier Didelot
- School of Life Sciences, Department of Statistics, University of Warwick, UK
| | - Anthony M Buckley
- Healthcare Associated Infections Research Group, University of Leeds, Leeds, UK
| | - Jane Freeman
- Healthcare Associated Infections Research Group, University of Leeds, Leeds, UK
| | - Ines B Moura
- Healthcare Associated Infections Research Group, University of Leeds, Leeds, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, UK; National Institutes of Health Research Health Protection Unit on Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, UK; National Institutes of Health Research Biomedical Research Centre, University of Oxford, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, UK; National Institutes of Health Research Health Protection Unit on Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, UK; National Institutes of Health Research Biomedical Research Centre, University of Oxford, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, UK; National Institutes of Health Research Health Protection Unit on Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, UK; National Institutes of Health Research Biomedical Research Centre, University of Oxford, UK
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, University of Leeds, Leeds, UK
| | - Kate E Dingle
- Nuffield Department of Medicine, University of Oxford, UK
| |
Collapse
|
9
|
Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically-relevant faecal environment, with implications for pathogenicity. Sci Rep 2018; 8:16691. [PMID: 30420658 PMCID: PMC6232153 DOI: 10.1038/s41598-018-35050-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility.
Collapse
|
10
|
Eyre DW, Fawley WN, Rajgopal A, Settle C, Mortimer K, Goldenberg SD, Dawson S, Crook DW, Peto TEA, Walker AS, Wilcox MH. Comparison of Control of Clostridium difficile Infection in Six English Hospitals Using Whole-Genome Sequencing. Clin Infect Dis 2018; 65:433-441. [PMID: 28575285 PMCID: PMC5850028 DOI: 10.1093/cid/cix338] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022] Open
Abstract
Background. Variation in Clostridium difficile infection (CDI) rates between healthcare institutions suggests overall incidence could be reduced if the lowest rates could be achieved more widely. Methods. We used whole-genome sequencing (WGS) of consecutive C. difficile isolates from 6 English hospitals over 1 year (2013–14) to compare infection control performance. Fecal samples with a positive initial screen for C. difficile were sequenced. Within each hospital, we estimated the proportion of cases plausibly acquired from previous cases. Results. Overall, 851/971 (87.6%) sequenced samples contained toxin genes, and 451 (46.4%) were fecal-toxin-positive. Of 652 potentially toxigenic isolates >90-days after the study started, 128 (20%, 95% confidence interval [CI] 17–23%) were genetically linked (within ≤2 single nucleotide polymorphisms) to a prior patient’s isolate from the previous 90 days. Hospital 2 had the fewest linked isolates, 7/105 (7%, 3–13%), hospital 1, 9/70 (13%, 6–23%), and hospitals 3–6 had similar proportions of linked isolates (22–26%) (P ≤ .002 comparing hospital-2 vs 3–6). Results were similar adjusting for locally circulating ribotypes. Adjusting for hospital, ribotype-027 had the highest proportion of linked isolates (57%, 95% CI 29–81%). Fecal-toxin-positive and toxin-negative patients were similarly likely to be a potential transmission donor, OR = 1.01 (0.68–1.49). There was no association between the estimated proportion of linked cases and testing rates. Conclusions. WGS can be used as a novel surveillance tool to identify varying rates of C. difficile transmission between institutions and therefore to allow targeted efforts to reduce CDI incidence.
Collapse
Affiliation(s)
- David W Eyre
- Nuffield Department of Medicine, University of Oxford
| | - Warren N Fawley
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust
| | - Anu Rajgopal
- Calderdale and Huddersfield NHS Foundation Trust
| | | | - Kalani Mortimer
- St. Helens and Knowsley Teaching Hospitals NHS Trust, Merseyside
| | | | - Susan Dawson
- Great Western Hospitals NHS Foundation Trust, Swindon, United Kingdom
| | | | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford
| | | | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust
| |
Collapse
|
11
|
Comparative Genomics of Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:59-75. [PMID: 29383664 DOI: 10.1007/978-3-319-72799-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clostridium difficile, a gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of genome sequences in large numbers, mainly due to the use of next-generation sequencing methods, have undoubtedly shown their immense advantages in the determination of the C. difficile population structure. The implementation of fine-scale comparative genomic approaches have paved the way to global transmission and recurrence studies, but also more targeted studies such as the PaLoc or the CRISPR/Cas systems. In this chapter, we provide an overview of the recent and significant findings on C. difficile using comparative genomics studies with implication for the epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
|
12
|
Andersen JM, Shoup M, Robinson C, Britton R, Olsen KEP, Barrangou R. CRISPR Diversity and Microevolution in Clostridium difficile. Genome Biol Evol 2016; 8:2841-55. [PMID: 27576538 PMCID: PMC5630864 DOI: 10.1093/gbe/evw203] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes.
Collapse
Affiliation(s)
- Joakim M Andersen
- Department of Food, Processing and Nutritional Sciences, North Carolina State University, NC
| | - Madelyn Shoup
- Department of Microbiology and Molecular Genetics, Michigan State University, MI
| | - Cathy Robinson
- Department of Microbiology and Molecular Genetics, Michigan State University, MI
| | - Robert Britton
- Department of Molecular Virology and Microbiology, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, TX
| | - Katharina E P Olsen
- Microbial Competence Centre, Novo Nordisk, Bagsværd, Denmark (Former Employment: Department of Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark)
| | - Rodolphe Barrangou
- Department of Food, Processing and Nutritional Sciences, North Carolina State University, NC
| |
Collapse
|
13
|
Genomic diversity of Clostridium difficile strains. Res Microbiol 2015; 166:353-60. [DOI: 10.1016/j.resmic.2015.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/15/2015] [Accepted: 02/04/2015] [Indexed: 02/04/2023]
|
14
|
Eyre DW, Tracey L, Elliott B, Slimings C, Huntington PG, Stuart RL, Korman TM, Kotsiou G, McCann R, Griffiths D, Fawley WN, Armstrong P, Dingle KE, Walker AS, Peto TE, Crook DW, Wilcox MH, Riley TV. Emergence and spread of predominantly community-onset Clostridium difficile PCR ribotype 244 infection in Australia, 2010 to 2012. ACTA ACUST UNITED AC 2015; 20:21059. [PMID: 25788254 DOI: 10.2807/1560-7917.es2015.20.10.21059] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe an Australia-wide Clostridium difficile outbreak in 2011 and 2012 involving the previously uncommon ribotype 244. In Western Australia, 14 of 25 cases were community-associated, 11 were detected in patients younger than 65 years, 14 presented to emergency/outpatient departments, and 14 to non-tertiary/community hospitals. Using whole genome sequencing, we confirm ribotype 244 is from the same C. difficile clade as the epidemic ribotype 027. Like ribotype 027, it produces toxins A, B, and binary toxin, however it is fluoroquinolone-susceptible and thousands of single nucleotide variants distinct from ribotype 027. Fifteen outbreak isolates from across Australia were sequenced. Despite their geographic separation, all were genetically highly related without evidence of geographic clustering, consistent with a point source, for example affecting the national food chain. Comparison with reference laboratory strains revealed the outbreak clone shared a common ancestor with isolates from the United States and United Kingdom (UK). A strain obtained in the UK was phylogenetically related to our outbreak. Follow-up of that case revealed the patient had recently returned from Australia. Our data demonstrate new C. difficile strains are an on-going threat, with potential for rapid spread. Active surveillance is needed to identify and control emerging lineages.
Collapse
Affiliation(s)
- D W Eyre
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Eyre DW, Walker AS. Clostridium difficile surveillance: harnessing new technologies to control transmission. Expert Rev Anti Infect Ther 2014; 11:1193-205. [PMID: 24151834 DOI: 10.1586/14787210.2013.845987] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clostridium difficile surveillance allows outbreaks of cases clustered in time and space to be identified and further transmission prevented. Traditionally, manual detection of groups of cases diagnosed in the same ward or hospital, often followed by retrospective reference laboratory genotyping, has been used to identify outbreaks. However, integrated healthcare databases offer the prospect of automated real-time outbreak detection based on statistically robust methods, and accounting for contacts between cases, including those distant to the ward of diagnosis. Complementary to this, rapid benchtop whole genome sequencing, and other highly discriminatory genotyping, has the potential to distinguish which cases are part of an outbreak with high precision and in clinically relevant timescales. These new technologies are likely to shape future surveillance.
Collapse
Affiliation(s)
- David W Eyre
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
16
|
Eyre DW, Fawley WN, Best EL, Griffiths D, Stoesser NE, Crook DW, Peto TEA, Walker AS, Wilcox MH. Comparison of multilocus variable-number tandem-repeat analysis and whole-genome sequencing for investigation of Clostridium difficile transmission. J Clin Microbiol 2013; 51:4141-9. [PMID: 24108611 PMCID: PMC3838059 DOI: 10.1128/jcm.01095-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/24/2013] [Indexed: 11/20/2022] Open
Abstract
No study to date has compared multilocus variable-number tandem-repeat analysis (MLVA) and whole-genome sequencing (WGS) in an investigation of the transmission of Clostridium difficile infection. Isolates from 61 adults with ongoing and/or recurrent C. difficile infections and 17 asymptomatic carriage episodes in children (201 samples), as well as from 61 suspected outbreaks affecting 2 to 41 patients in 31 hospitals in the United Kingdom (300 samples), underwent 7-locus MLVA and WGS in parallel. When the first and last samples from the same individual taken for a median (interquartile range [IQR]) of 63 days (43 to 105 days) apart were compared, the estimated rates of the evolution of single nucleotide variants (SNVs), summed tandem-repeat differences (STRDs), and locus variants (LVs) were 0.79 (95% confidence interval [CI], 0.00 to 1.75), 1.63 (95% CI, 0.00 to 3.59), and 1.21 (95% CI, 0.00 to 2.67)/called genome/year, respectively. Differences of >2 SNVs and >10 STRDs have been used to exclude direct case-to-case transmission. With the first serial sample per individual being used to assess discriminatory power, across all pairs of samples sharing a PCR ribotype, 192/283 (68%) differed by >10 STRDs and 217/283 (77%) by >2 SNVs. Among all pairs of cases from the same suspected outbreak, 1,190/1,488 (80%) pairs had concordant results using >2 SNVs and >10 STRDs to exclude transmission. For the discordant pairs, 229 (15%) had ≥2 SNVs but ≤10 STRDs, and 69 (5%) had ≤2 SNVs but ≥10 STRDs. Discordant pairs had higher numbers of LVs than concordant pairs, supporting the more diverse measure in each type of discordant pair. Conclusions on whether the potential outbreaks were confirmed were concordant in 58/61 (95%) investigations. Overall findings using MLVA and WGS were very similar despite the fact that they analyzed different parts of the bacterial genome. With improvements in WGS technology, it is likely that MLVA locus data will be available from WGS in the near future.
Collapse
Affiliation(s)
- D. W. Eyre
- NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - W. N. Fawley
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - E. L. Best
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - D. Griffiths
- NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - N. E. Stoesser
- NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - D. W. Crook
- NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - T. E. A. Peto
- NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - A. S. Walker
- NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - M. H. Wilcox
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
17
|
Eyre DW, Babakhani F, Griffiths D, Seddon J, Del Ojo Elias C, Gorbach SL, Peto TEA, Crook DW, Walker AS. Whole-genome sequencing demonstrates that fidaxomicin is superior to vancomycin for preventing reinfection and relapse of infection with Clostridium difficile. J Infect Dis 2013; 209:1446-51. [PMID: 24218500 PMCID: PMC3982846 DOI: 10.1093/infdis/jit598] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Whole-genome sequencing was used to determine whether the reductions in recurrence of Clostridium difficile infection observed with fidaxomicin in pivotal phase 3 trials occurred by preventing relapse of the same infection, by preventing reinfection with a new strain, or by preventing both outcomes. Paired isolates of C. difficile were available from 93 of 199 participants with recurrences (28 were treated with fidaxomicin, and 65 were treated with vancomycin). Given C. difficile evolutionary rates, paired samples ≤2 single-nucleotide variants (SNVs) apart were considered relapses, paired samples >10 SNVs apart were considered reinfection, and those 3–10 SNVs apart (or without whole-genome sequences) were considered indeterminate in a competing risks survival analysis. Fidaxomicin reduced the risk of both relapse (competing risks hazard ratio [HR], 0.40 [95% confidence interval {CI}, .25–.66]; P = .0003) and reinfection (competing risks HR, 0.33 [95% CI, 0.11–1.01]; P = .05).
Collapse
Affiliation(s)
- David W Eyre
- NIHR Oxford Biomedical Research Centre, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|