1
|
Sousa LGV, França A, Pinheiro V, Muzny CA, Cerca N. Adaptation of key bacterial vaginosis-associated bacteria to a medium simulating genital tract secretions: a transcriptomic analysis. Front Genet 2025; 16:1552307. [PMID: 40206505 PMCID: PMC11979175 DOI: 10.3389/fgene.2025.1552307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Affiliation(s)
- Lúcia G. V. Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Angela França
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Portugal
| | - Vânia Pinheiro
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Christina A. Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Portugal
| |
Collapse
|
2
|
Maphosa S, Moleleki LN. A computational and secretome analysis approach reveals exclusive and shared candidate type six secretion system substrates in Pectobacterium brasiliense 1692. Microbiol Res 2024; 278:127501. [PMID: 37976736 DOI: 10.1016/j.micres.2023.127501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 11/19/2023]
Abstract
The type 6 secretion system (T6SS) of Gram-negative bacteria (GNB) has implications for bacterial competition, virulence, and survival. For the broad host range pathogen, Pectobacterium brasiliense 1692, T6SS-mediated competition occurs in a tissue-specific manner. However, no other roles have been investigated. The aim of this study was to identify T6SS-associated proteins under virulence inducing conditions. We used Bastion tools to predict 1479 Pbr1692 secreted proteins. Sixteen percent of these overlap between type 1-4 secretion systems (T1SS-T4SS) and T6SS. Using label-free quantitative mass spectrometry of Pbr1692 T6SS active and T6SS inactive strains' secretomes cultured in minimal media supplemented with host extract, 49 T6SS-associated proteins with varied gene ontology predicted functions were identified. We report 19 and 30 T6SS primary substrates and differentially secreted proteins, respectively, in T6SS mutants versus wild type strains. Of the total 49 T6SS-associated proteins presented in this study, 25 were also predicted using the BastionX platform as T6SS exclusive and shared substrates with T1SS-T4SS. This work provides a list of Pbr1692 T6SS secreted effector candidates. These include a potential antibacterial toxin HNH endonuclease and several predicted virulence proteins, including plant cell wall degrading enzymes. A preliminary basis for potential crosstalk between GNB secretion systems is also highlighted.
Collapse
Affiliation(s)
- S Maphosa
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa.
| | - L N Moleleki
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
3
|
Gebauer J, Tesařík R, Králová N, Havlíčková H, Matiašovic J. Salmonella Typhimurium-based inactivated vaccine containing a wide spectrum of bacterial antigens which mimics protein expression changes during different stages of an infection process. Vet Microbiol 2023; 282:109756. [PMID: 37141806 DOI: 10.1016/j.vetmic.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/21/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Salmonella infections are still considered a persistent problem in veterinary medicine. Vaccination is one of the tools for decreasing the burden of many pathogens on animals. However, the efficiency of available commercial or experimental vaccines against non-typhoid Salmonella strains is not yet sufficient. We followed the path of an inactivated vaccine that is safe and well accepted, but whose presented antigen spectrum is limited. We improved this issue by using diverse cultivation conditions mimicking bacterial protein expression during the natural infection process. The cultivation process was set up to simulate the host environment to enhance the expression of SPI-1 (Salmonella pathogenicity island) proteins, SPI-2 proteins, siderophore-related proteins, and flagellar proteins. Three different cultivation media were used and subsequent cultures were mixed together, inactivated, and used for the immunization of post-weaned piglets. A mixture of recombinant Salmonella proteins was also used as a recombinant vaccine for comparison. The clinical symptoms during the subsequent experimental infection, antibody response, and organ bacterial loads were examined. One day after the infection, we observed an increased rectal temperature in the group of unvaccinated animals and the animals vaccinated with the recombinant vaccine. The increase in the temperature of the pigs vaccinated with the inactivated Salmonella mixture was significantly lower. In the same group, we also found lower bacterial loads in the ileum content and the colon wall. The IgG response to several Salmonella antigens was enhanced in this group, but it did not reach the titers of the group vaccinated with the recombinant vaccine. To summarize, the pigs vaccinated with an inactivated mixture of Salmonella cultures mimicking protein expression changes during the natural infection exhibited less serious clinical symptoms and lower bacterial load in the body after the experimental infection compared to the unvaccinated pigs and the pigs vaccinated with a mixture of recombinant Salmonella proteins.
Collapse
Affiliation(s)
- Jan Gebauer
- Veterinary Research Institute, Hudcova 296/70, Brno, 62100, Czech Republic.
| | - Radek Tesařík
- Veterinary Research Institute, Hudcova 296/70, Brno, 62100, Czech Republic
| | - Natálie Králová
- Veterinary Research Institute, Hudcova 296/70, Brno, 62100, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 60200, Czech Republic
| | - Hana Havlíčková
- Veterinary Research Institute, Hudcova 296/70, Brno, 62100, Czech Republic
| | - Ján Matiašovic
- Veterinary Research Institute, Hudcova 296/70, Brno, 62100, Czech Republic
| |
Collapse
|
4
|
Buzzanca D, Alessandria V, Botta C, Seif Zadeh N, Ferrocino I, Houf K, Cocolin L, Rantsiou K. Transcriptome Analysis of Arcobacter butzleri Infection in a Mucus-Producing Human Intestinal In Vitro Model. Microbiol Spectr 2023; 11:e0207122. [PMID: 36622176 PMCID: PMC9927503 DOI: 10.1128/spectrum.02071-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Arcobacter butzleri is a foodborne pathogen belonging to the Arcobacteraceae family. This Gram-negative bacterium is found in water, food, and various organisms, including farm animals, clams, and fish. Moreover, A. butzleri has been isolated from human stool samples, where it was associated with gastrointestinal symptoms such as diarrhea. The present study focused on the transcriptome analysis of three A. butzleri strains isolated from human stools and displaying variable virulence potential in vitro. We used a mucus-producing human intestinal in vitro model (Caco-2/HT29-MTX-E12) to study the colonization and invasion abilities of the three A. butzleri strains. The ability of all three A. butzleri strains to colonize our in vitro model system was subsequently confirmed. Moreover, transcriptomics showed the upregulation of putative virulence genes. Among these genes, tonB, exbB, and exbD, which belong to the same operon, were upregulated in strain LMG 11119, which also had the greatest colonization ability. Moreover, genes not currently considered A. butzleri virulence genes were differentially expressed during cell model colonization. The main functions of these genes were linked to organic acid metabolism and iron transport and particularly to the function of the TonB complex. IMPORTANCE Recent advancements in the genomic characterization of A. butzleri revealed putative virulence genes and highlighted the possible pathogenic mechanisms used by this foodborne pathogen. It is therefore possible to study the transcriptomes of these bacteria to explore possible virulence mechanisms under conditions that mimic the infection process. The transcriptome and colonization/invasion analyses that we performed in this study enabled the evaluation of A. butzleri-mediated infection of the mucus-producing human intestinal in vitro model. We confirmed the upregulation of previously proposed virulence genes in the A. butzleri strains. In addition, we identified the differential expression of a number of other genes, which are not currently thought to be associated with virulence, in three A. butzleri strains during infection of mucus-producing human epithelial cells. Changes in the concentration of acetic acid and the upregulation of genes associated with organic acid metabolism during host-pathogen contact were also observed. These findings highlight the importance of previously unreported genes in the virulence mechanisms of A. butzleri.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Negin Seif Zadeh
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Aida H, Uchida K, Nagai M, Hashizume T, Masuo S, Takaya N, Ying BW. Machine learning-assisted medium optimization revealed the discriminated strategies for improved production of the foreign and native metabolites. Comput Struct Biotechnol J 2023; 21:2654-2663. [PMID: 37138901 PMCID: PMC10149329 DOI: 10.1016/j.csbj.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
The composition of medium components is crucial for achieving the best performance of synthetic construction in genetically engineered cells. Which and how medium components determine the performance, e.g., productivity, remain poorly investigated. To address the questions, a comparative survey with two genetically engineered Escherichia coli strains was performed. As a case study, the strains carried the synthetic pathways for producing the aromatic compounds of 4-aminophenylalanine (4APhe) or tyrosine (Tyr), common in the upstream but differentiated in the downstream metabolism. Bacterial growth and compound production were examined in hundreds of medium combinations that comprised 48 pure chemicals. The resultant data sets linking the medium composition to bacterial growth and production were subjected to machine learning for improved production. Intriguingly, the primary medium components determining the production of 4PheA and Tyr were differentiated, which were the initial resource (glucose) of the synthetic pathway and the inducer (IPTG) of the synthetic construction, respectively. Fine-tuning of the primary component significantly increased the yields of 4APhe and Tyr, indicating that a single component could be crucial for the performance of synthetic construction. Transcriptome analysis observed the local and global changes in gene expression for improved production of 4APhe and Tyr, respectively, revealing divergent metabolic strategies for producing the foreign and native metabolites. The study demonstrated that ML-assisted medium optimization could provide a novel point of view on how to make the synthetic construction meet the designed working principle and achieve the expected biological function.
Collapse
Affiliation(s)
- Honoka Aida
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Keisuke Uchida
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Motoki Nagai
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Takamasa Hashizume
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Shunsuke Masuo
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Naoki Takaya
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
- Corresponding author at: School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan.
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
- Corresponding author.
| |
Collapse
|
6
|
Sukweenadhi J, Theda JA, Artadana IBM, Kang SC. Isolation and in vitro Screening of Plant Growth Promoting Rhizospheric Bacteria from Corn (Zea mays var. indentata). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382206014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
7
|
Elpers L, Deiwick J, Hensel M. Effect of Environmental Temperatures on Proteome Composition of Salmonella enterica Serovar Typhimurium. Mol Cell Proteomics 2022; 21:100265. [PMID: 35788066 PMCID: PMC9396072 DOI: 10.1016/j.mcpro.2022.100265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (STM) is a major cause of gastroenteritis and transmitted by consumption of contaminated food. STM is associated to food originating from animals (pork, chicken, eggs) or plants (vegetables, fruits, nuts, and herbs). Infection of warm-blooded mammalian hosts by STM and the underlying complex regulatory network of virulence gene expression depend on various environmental conditions encountered in hosts. However, less is known about the proteome and possible regulatory networks for gene expression of STM outside the preferred host. Nutritional limitations and changes in temperature are the most obvious stresses outside the native host. Thus, we analyzed the proteome profile of STM grown in rich medium (LB medium) or minimal medium (PCN medium) at temperatures ranging from 8 °C to 37 °C. LB medium mimics the nutritional rich environment inside the host, whereas minimal PCN medium represents nutritional limitations outside the host, found during growth of fresh produce (field conditions). Further, the range of temperatures analyzed reflects conditions within natural hosts (37 °C), room temperature (20 °C), during growth under agricultural conditions (16 °C and 12 °C), and during food storage (8 °C). Implications of altered nutrient availability and growth temperature on STM proteomes were analyzed by HPLC/MS-MS and label-free quantification. Our study provides first insights into the complex adaptation of STM to various environmental temperatures, which allows STM not only to infect mammalian hosts but also to enter new infection routes that have been poorly studied so far. With the present dataset, global virulence factors, their impact on infection routes, and potential anti-infective strategies can now be investigated in detail. Especially, we were able to demonstrate functional flagella at 12 °C growth temperature for STM with an altered motility behavior.
Collapse
Affiliation(s)
- Laura Elpers
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Jörg Deiwick
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany; CellNanOs - Center of Cellular Nanoanalytics Osnabrück, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
8
|
Schuster EM, Epple MW, Glaser KM, Mihlan M, Lucht K, Zimmermann JA, Bremser A, Polyzou A, Obier N, Cabezas-Wallscheid N, Trompouki E, Ballabio A, Vogel J, Buescher JM, Westermann AJ, Rambold AS. TFEB induces mitochondrial itaconate synthesis to suppress bacterial growth in macrophages. Nat Metab 2022; 4:856-866. [PMID: 35864246 PMCID: PMC9314259 DOI: 10.1038/s42255-022-00605-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 01/04/2023]
Abstract
Successful elimination of bacteria in phagocytes occurs in the phago-lysosomal system, but also depends on mitochondrial pathways. Yet, how these two organelle systems communicate is largely unknown. Here we identify the lysosomal biogenesis factor transcription factor EB (TFEB) as regulator for phago-lysosome-mitochondria crosstalk in macrophages. By combining cellular imaging and metabolic profiling, we find that TFEB activation, in response to bacterial stimuli, promotes the transcription of aconitate decarboxylase (Acod1, Irg1) and synthesis of its product itaconate, a mitochondrial metabolite with antimicrobial activity. Activation of the TFEB-Irg1-itaconate signalling axis reduces the survival of the intravacuolar pathogen Salmonella enterica serovar Typhimurium. TFEB-driven itaconate is subsequently transferred via the Irg1-Rab32-BLOC3 system into the Salmonella-containing vacuole, thereby exposing the pathogen to elevated itaconate levels. By activating itaconate production, TFEB selectively restricts proliferating Salmonella, a bacterial subpopulation that normally escapes macrophage control, which contrasts TFEB's role in autophagy-mediated pathogen degradation. Together, our data define a TFEB-driven metabolic pathway between phago-lysosomes and mitochondria that restrains Salmonella Typhimurium burden in macrophages in vitro and in vivo.
Collapse
Affiliation(s)
- Ev-Marie Schuster
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian W Epple
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katharina M Glaser
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Mihlan
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Kerstin Lucht
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Julia A Zimmermann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, Medical Center University of Freiburg, Freiburg, Germany
| | - Anna Bremser
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Aikaterini Polyzou
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nadine Obier
- Department of Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nina Cabezas-Wallscheid
- Department of Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eirini Trompouki
- Department of Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Medical Genetics Unit, Department of Medical and Translational Science and SSM School for Advanced Studies, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HZI), University of Würzburg, Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Joerg M Buescher
- Metabolomics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HZI), University of Würzburg, Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Angelika S Rambold
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Center of Chronic Immunodeficiency, Medical Center University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Shem-Tov R, Gal-Mor O. Profiling of Secreted Type 3 Secretion System Substrates by Salmonella enterica. Methods Mol Biol 2022; 2427:47-54. [PMID: 35619024 DOI: 10.1007/978-1-0716-1971-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many of Salmonella enterica virulence-associated phenotypes, including its ability to manipulate various host pathways are mediated by translocation of specific effector proteins via type 3 secretion systems (T3SSs) into the host cell. Culturing Salmonella under a defined set of stimulating conditions in vitro can mimic the physiological signals Salmonella senses during the infection and results in the secretion of these effectors into the growth medium. Here we describe a Salmonella secretion assay to identify and quantify protein substrates secreted by T3SS-1 and demonstrate how this method can be utilized to study the secretion of T3SS-1 effectors and flagellum components in different genetic backgrounds or under varying growth conditions.
Collapse
Affiliation(s)
- Rivka Shem-Tov
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- The Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel.
- The Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
García V, Grønnemose RB, Torres-Puig S, Kudirkiene E, Piantelli M, Ahmed S, Andersen TE, Møller-Jensen J, Olsen JE, Herrero-Fresno A. Genome-wide analysis of fitness-factors in uropathogenic Escherichia coli during growth in laboratory media and during urinary tract infections. Microb Genom 2021; 7. [PMID: 34928200 PMCID: PMC8767336 DOI: 10.1099/mgen.0.000719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) UTI89 is a well-characterized strain, which has mainly been used to study UPEC virulence during urinary tract infection (UTI). However, little is known on UTI89 key fitness-factors during growth in lab media and during UTI. Here, we used a transposon-insertion-sequencing approach (TraDIS) to reveal the UTI89 essential-genes for in vitro growth and fitness-gene-sets for growth in Luria broth (LB) and EZ-MOPS medium without glucose, as well as for human bacteriuria and mouse cystitis. A total of 293 essential genes for growth were identified and the set of fitness-genes was shown to differ depending on the growth media. A modified, previously validated UTI murine model, with administration of glucose prior to infection was applied. Selected fitness-genes for growth in urine and mouse-bladder colonization were validated using deletion-mutants. Novel fitness-genes, such as tusA, corA and rfaG; involved in sulphur-acquisition, magnesium-uptake, and LPS-biosynthesis, were proved to be important during UTI. Moreover, rfaG was confirmed as relevant in both niches, and therefore it may represent a target for novel UTI-treatment/prevention strategies.
Collapse
Affiliation(s)
- Vanesa García
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Rasmus B Grønnemose
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Sergi Torres-Puig
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mateo Piantelli
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Shahana Ahmed
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Thomas E Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
11
|
Cohn AR, Orsi RH, Carroll LM, Chen R, Wiedmann M, Cheng RA. Characterization of Basal Transcriptomes Identifies Potential Metabolic and Virulence-Associated Adaptations Among Diverse Nontyphoidal Salmonella enterica Serovars. Front Microbiol 2021; 12:730411. [PMID: 34721328 PMCID: PMC8552914 DOI: 10.3389/fmicb.2021.730411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
The zoonotic pathogen Salmonella enterica includes >2,600 serovars, which differ in the range of hosts they infect and the severity of disease they cause. To further elucidate the mechanisms behind these differences, we performed transcriptomic comparisons of nontyphoidal Salmonella (NTS) serovars with the model for NTS pathogenesis, S. Typhimurium. Specifically, we used RNA-seq to characterize the understudied NTS serovars S. Javiana and S. Cerro, representing a serovar frequently attributed to human infection via contact with amphibians and reptiles, and a serovar primarily associated with cattle, respectively. Whole-genome sequence (WGS) data were utilized to ensure that strains characterized with RNA-seq were representative of their respective serovars. RNA extracted from representative strains of each serovar grown to late exponential phase in Luria-Bertani (LB) broth showed that transcript abundances of core genes were significantly higher (p<0.001) than those of accessory genes for all three serovars. Inter-serovar comparisons identified that transcript abundances of genes in Salmonella Pathogenicity Island (SPI) 1 were significantly higher in both S. Javiana and S. Typhimurium compared to S. Cerro. Together, our data highlight potential transcriptional mechanisms that may facilitate S. Cerro and S. Javiana survival in and adaptation to their respective hosts and impact their ability to cause disease in others. Furthermore, our analyses demonstrate the utility of omics approaches in advancing our understanding of the diversity of metabolic and virulence mechanisms of different NTS serovars.
Collapse
Affiliation(s)
- Alexa R Cohn
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ruixi Chen
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Rodríguez-Valverde D, León-Montes N, Soria-Bustos J, Martínez-Cruz J, González-Ugalde R, Rivera-Gutiérrez S, González-y-Merchand JA, Rosales-Reyes R, García-Morales L, Hirakawa H, Fox JG, Girón JA, De la Cruz MA, Ares MA. cAMP Receptor Protein Positively Regulates the Expression of Genes Involved in the Biosynthesis of Klebsiella oxytoca Tilivalline Cytotoxin. Front Microbiol 2021; 12:743594. [PMID: 34659176 PMCID: PMC8515920 DOI: 10.3389/fmicb.2021.743594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/31/2021] [Indexed: 01/09/2023] Open
Abstract
Klebsiella oxytoca is a resident of the human gut. However, certain K. oxytoca toxigenic strains exist that secrete the nonribosomal peptide tilivalline (TV) cytotoxin. TV is a pyrrolobenzodiazepine that causes antibiotic-associated hemorrhagic colitis (AAHC). The biosynthesis of TV is driven by enzymes encoded by the aroX and NRPS operons. In this study, we determined the effect of environmental signals such as carbon sources, osmolarity, and divalent cations on the transcription of both TV biosynthetic operons. Gene expression was enhanced when bacteria were cultivated in tryptone lactose broth. Glucose, high osmolarity, and depletion of calcium and magnesium diminished gene expression, whereas glycerol increased transcription of both TV biosynthetic operons. The cAMP receptor protein (CRP) is a major transcriptional regulator in bacteria that plays a key role in metabolic regulation. To investigate the role of CRP on the cytotoxicity of K. oxytoca, we compared levels of expression of TV biosynthetic operons and synthesis of TV in wild-type strain MIT 09-7231 and a Δcrp isogenic mutant. In summary, we found that CRP directly activates the transcription of the aroX and NRPS operons and that the absence of CRP reduced cytotoxicity of K. oxytoca on HeLa cells, due to a significant reduction in TV production. This study highlights the importance of the CRP protein in the regulation of virulence genes in enteric bacteria and broadens our knowledge on the regulatory mechanisms of the TV cytotoxin.
Collapse
Affiliation(s)
- Diana Rodríguez-Valverde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nancy León-Montes
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Soria-Bustos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jessica Martínez-Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ricardo González-Ugalde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge A. González-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lázaro García-Morales
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Hidetada Hirakawa
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
13
|
Soria-Bustos J, Ares MA, Gómez-Aldapa CA, González-Y-Merchand JA, Girón JA, De la Cruz MA. Two Type VI Secretion Systems of Enterobacter cloacae Are Required for Bacterial Competition, Cell Adherence, and Intestinal Colonization. Front Microbiol 2020; 11:560488. [PMID: 33072020 PMCID: PMC7541819 DOI: 10.3389/fmicb.2020.560488] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Enterobacter cloacae has emerged as an opportunistic pathogen in healthcare-associated infections. Analysis of the genomic sequences of several E. cloacae strains revealed the presence of genes that code for expression of at least one type VI secretion system (T6SS). Here, we report that E. cloacae strain ATCC 13047 codes for two functional T6SS named T6SS-1 and T6SS-2. T6SS-1 and T6SS-2 were preferentially expressed in tryptic soy broth and tissue culture medium (DMEM), respectively. Mutants in T6SS-1-associated genes clpV1 and hcp1 significantly affected their ability of inter- and intra-bacterial killing indicating that T6SS-1 is required for bacterial competition. In addition, the Hcp effector protein was detected in supernatants of E. cloacae cultures and a functional T6SS-1 was required for the secretion of this protein. A clpV2 mutant was impaired in both biofilm formation and adherence to epithelial cells, supporting the notion that these phenotypes are T6SS-2 dependent. In vivo data strongly suggest that both T6SSs are required for intestinal colonization because single and double mutants in clpV1 and clpV2 genes were defective in gut colonization in mice. We conclude that the two T6SSs are involved in the pathogenesis scheme of E. cloacae with specialized functions in the interaction with other bacteria and with host cells.
Collapse
Affiliation(s)
- Jorge Soria-Bustos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Carlos A Gómez-Aldapa
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 Mineral de la Reforma, Hidalgo, Mexico
| | - Jorge A González-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
14
|
Fan J, Ma L, Zhao C, Yan J, Che S, Zhou Z, Wang H, Yang L, Hu B. Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response. MOLECULAR PLANT PATHOLOGY 2020; 21:871-891. [PMID: 32267092 PMCID: PMC7214478 DOI: 10.1111/mpp.12936] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes. However, the spatiotemporal expression of genome-wide infection of Pectobacterium remains unclear, although researchers analysed this in some phytopathogens. In the present work, comparing the transcriptome profiles from cellular infection with growth in minimal and rich media, RNA-Seq analyses revealed that the differentially expressed genes (log2 -fold ratio ≥ 1.0) in the cells of Pectobacterium carotovorum subsp. carotovorum PccS1 recovered at a series of time points after inoculation in the host in vivo covered approximately 50% of genes in the genome. Based on the dynamic expression changes in infection, the significantly differentially expressed genes (log2 -fold ratio ≥ 2.0) were classified into five types, and the main expression pattern of the genes for carbohydrate metabolism underlying the processes of infection was identified. The results are helpful to our understanding of the inducement of host plant and environmental adaption of Pectobacterium. In addition, our results demonstrate that maceration caused by PccS1 is due to the depression of callose deposition in the plant for resistance by the pathogenesis-related genes and the superlytic ability of pectinolytic enzymes produced in PccS1, rather than the promotion of plant cell death elicited by the T3SS of bacteria as described in previous work.
Collapse
Affiliation(s)
- Jiaqin Fan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Lin Ma
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Chendi Zhao
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jingyuan Yan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Shu Che
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Zhaowei Zhou
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Huan Wang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Liuke Yang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Baishi Hu
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
15
|
Hau SJ, Mou KT, Bayles DO, Brockmeier SL. Transcriptomic differences noted in Glaesserella parasuis between growth in broth and on agar. PLoS One 2019; 14:e0220365. [PMID: 31386681 PMCID: PMC6684057 DOI: 10.1371/journal.pone.0220365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/15/2019] [Indexed: 11/27/2022] Open
Abstract
Glaesserella parasuis is the cause of Glӓsser’s disease in pigs and is a significant contributor to post-weaning mortality in the swine industry. Prevention of G. parasuis disease relies primarily on bacterin vaccines, which have shown good homologous protection and variable heterologous protection. Bacterin production involves large scale growth of the bacteria and proteins produced during the proliferation phase of production become important antigens that stimulate the immune response. In order to evaluate genes activated during G. parasuis growth on different media substrates, the transcriptome of broth and agar grown G. parasuis strain 29755 were sequenced and compared. The transcription of most purported virulence genes were comparable between broth and agar grown G. parasuis; however, four virulence-associated genes, including ompA and vapD, had elevated expression under agar growth, while six virulence-associate genes had elevated expression during broth growth, including several protease genes. Additionally, there were metabolic shifts toward increased protein and lipid production and increased cellular division in broth grown G. parasuis. The results contribute to the understanding of how growth substrate alters gene transcription and protein expression, which may impact vaccine efficacy if immunogens important to the protective immune response are not produced under specific in vitro conditions. While the results of this work are unable to fully elucidate which growth medium presents a transcriptome more representative of in vivo samples or best suited for bacterin production, it forms a foundation that can be used for future comparisons and provides a better understanding of the metabolic differences in broth and agar grown bacteria.
Collapse
Affiliation(s)
- Samantha J. Hau
- Virus and Prion Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Kathy T. Mou
- Virus and Prion Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Darrell O. Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, United States of America
| | - Susan L. Brockmeier
- Virus and Prion Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
16
|
Mycobacterium abscessus Cells Have Altered Antibiotic Tolerance and Surface Glycolipids in Artificial Cystic Fibrosis Sputum Medium. Antimicrob Agents Chemother 2019; 63:AAC.02488-18. [PMID: 31010859 DOI: 10.1128/aac.02488-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/15/2019] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus is a biofilm-forming, multidrug-resistant nontuberculous mycobacterial (NTM) pathogen increasingly found in cystic fibrosis patients. Antibiotic treatment for these infections is often unsuccessful, partly due to M. abscessus's high intrinsic antibiotic resistance. It is not clear whether antibiotic tolerance caused by biofilm formation also contributes to poor treatment outcomes. We studied the surface glycolipids and antibiotic tolerance of M. abscessus biofilms grown in artificial cystic fibrosis sputum (ACFS) medium to determine how they are affected by nutrient conditions that mimic infection. We found that M. abscessus displays more of the virulence lipid trehalose dimycolate when grown in ACFS than when grown in standard lab medium. In ACFS medium, biofilm-associated cells were more antibiotic tolerant than planktonic cells in the same well. This contrasts with standard lab media, where both biofilm and planktonic cells are highly antibiotic tolerant. These results indicate that M. abscessus cell physiology in biofilms depends on environmental factors and that nutrient conditions found within cystic fibrosis infections could contribute to both increased virulence and antibiotic tolerance.
Collapse
|
17
|
Zhang Z, Wu T, Li Y, Bai X, Yan X, Gao Y, Shi Q, Zhu G. Contribution of the serine protease HtrA in Escherichia coli to infection in foxes. Microb Pathog 2019; 135:103570. [PMID: 31158492 DOI: 10.1016/j.micpath.2019.103570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 11/25/2022]
Abstract
Escherichia coli can cause severe, acute hemorrhagic pneumonia and systemic infection in farmed foxes, raccoon dogs and minks, leading to considerable economic losses to the farmers. It is well established that the htrA-encoded serine protease HtrA is critical for bacterial growth and survival under stress, and HtrA has been determined to be a potential vaccine target. However, the roles of HtrA in E. coli pathogenesis remain unknown. In this study, we generated an htrA-deletion mutant of the E. coli protype strain HBCLE-12 that causes pneumonia in silver foxes and then evaluated the changes in bacterial physiological characteristics in the absence of HtrA. The data show that knockout of the htrA gene did not affect growth and biochemical characteristics but led to impaired virulence of the strain. Increased susceptibility to environmental stresses, impaired survival in serum, and reduced biofilm formation may contribute to the virulence attenuation of the mutant. Furthermore, the HtrA-deficient mutant was subjected to RNA-seq analysis, and 16 differentially expressed genes were determined. This study provided insight that HtrA plays a definitive role in E. coli-induced infection.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science &Technology, Changli, Hebei, 066600, China
| | - Tonglei Wu
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science &Technology, Changli, Hebei, 066600, China
| | - Yonghui Li
- The Second Hospital of Qinhuangdao, Changli, Hebei, 066600, China
| | - Xue Bai
- Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Xijun Yan
- Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agriculture University, China
| | - Qiumei Shi
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science &Technology, Changli, Hebei, 066600, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Raic A, Riedel S, Kemmling E, Bieback K, Overhage J, Lee-Thedieck C. Biomimetic 3D in vitro model of biofilm triggered osteomyelitis for investigating hematopoiesis during bone marrow infections. Acta Biomater 2018; 73:250-262. [PMID: 29679779 DOI: 10.1016/j.actbio.2018.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
In this work, we define the requirements for a human cell-based osteomyelitis model which overcomes the limitations of state of the art animal models. Osteomyelitis is a severe and difficult to treat infection of the bone that develops rapidly, making it difficult to study in humans. We have developed a 3D in vitro model of the bone marrow, comprising a macroporous material, human hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs). Inclusion of biofilms grown on an implant into the model system allowed us to study the effects of postoperative osteomyelitis-inducing bacteria on the bone marrow. The bacteria influenced the myeloid differentiation of HSPCs as well as MSC cytokine expression and the MSC ability to support HSPC maintenance. In conclusion, we provide a new 3D in vitro model which meets all the requirements for investigating the impact of osteomyelitis. STATEMENT OF SIGNIFICANCE Implant-associated osteomyelitis is a persistent bacterial infection of the bone which occurs in many implant patients and can result in functional impairments or even entire loss of the extremity. Nevertheless, surprisingly little is known on the triangle interaction between implant material, bacterial biofilm and affected bone tissue. Closing this gap of knowledge would be crucial for the fundamental understanding of the disease and the development of novel treatment strategies. For this purpose, we developed the first biomaterial-based system that is able to mimic implant-associated osteomyelitis outside of the body, thus, opening the avenue to study this fatal disease in the laboratory.
Collapse
Affiliation(s)
- Annamarija Raic
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sophie Riedel
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Elena Kemmling
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167 Mannheim, Germany
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, 1125 Colonel by Drive, Ottawa ON, K1S 5B6, Canada
| | - Cornelia Lee-Thedieck
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
19
|
Anderson CJ, Kendall MM. Salmonella enterica Serovar Typhimurium Strategies for Host Adaptation. Front Microbiol 2017; 8:1983. [PMID: 29075247 PMCID: PMC5643478 DOI: 10.3389/fmicb.2017.01983] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial pathogens must sense and respond to newly encountered host environments to regulate the expression of critical virulence factors that allow for niche adaptation and successful colonization. Among bacterial pathogens, non-typhoidal serovars of Salmonella enterica, such as serovar Typhimurium (S. Tm), are a primary cause of foodborne illnesses that lead to hospitalizations and deaths worldwide. S. Tm causes acute inflammatory diarrhea that can progress to invasive systemic disease in susceptible patients. The gastrointestinal tract and intramacrophage environments are two critically important niches during S. Tm infection, and each presents unique challenges to limit S. Tm growth. The intestinal tract is home to billions of commensal microbes, termed the microbiota, which limits the amount of available nutrients for invading pathogens such as S. Tm. Therefore, S. Tm encodes strategies to manipulate the commensal population and side-step this nutritional competition. During subsequent stages of disease, S. Tm resists host immune cell mechanisms of killing. Host cells use antimicrobial peptides, acidification of vacuoles, and nutrient limitation to kill phagocytosed microbes, and yet S. Tm is able to subvert these defense systems. In this review, we discuss recently described molecular mechanisms that S. Tm uses to outcompete the resident microbiota within the gastrointestinal tract. S. Tm directly eliminates close competitors via bacterial cell-to-cell contact as well as by stimulating a host immune response to eliminate specific members of the microbiota. Additionally, S. Tm tightly regulates the expression of key virulence factors that enable S. Tm to withstand host immune defenses within macrophages. Additionally, we highlight the chemical and physical signals that S. Tm senses as cues to adapt to each of these environments. These strategies ultimately allow S. Tm to successfully adapt to these two disparate host environments. It is critical to better understand bacterial adaptation strategies because disruption of these pathways and mechanisms, especially those shared by multiple pathogens, may provide novel therapeutic intervention strategies.
Collapse
Affiliation(s)
- Christopher J Anderson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| |
Collapse
|
20
|
Endogenously generated 2-aminoacrylate inhibits motility in Salmonella enterica. Sci Rep 2017; 7:12971. [PMID: 29021529 PMCID: PMC5636819 DOI: 10.1038/s41598-017-13030-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022] Open
Abstract
Members of the broadly distributed Rid/YER057c/UK114 protein family have imine/enamine deaminase activity, notably on 2-aminoacrylate (2AA). Strains of Salmonella enterica, and other organisms lacking RidA, have diverse growth phenotypes, attributed to the accumulation of 2AA. In S. enterica, 2AA inactivates a number of pyridoxal 5’-phosephate(PLP)-dependent enzymes, some of which have been linked to the growth phenotypes of a ridA mutant. This study used transcriptional differences between S. enterica wild-type and ridA strains to explore the breadth of the cellular consequences that resulted from accumulation of 2AA. Accumulation of endogenously generated 2AA in a ridA mutant resulted in lower expression of genes encoding many flagellar assembly components, which led to a motility defect. qRT-PCR results were consistent with the motility phenotype of a ridA mutant resulting from a defect in FlhD4C2 activity. In total, the results of comparative transcriptomics correctly predicted a 2AA-dependent motility defect and identified additional areas of metabolism impacted by the metabolic stress of 2AA in Salmonella enterica. Further, the data emphasized the value of integrating global approaches with biochemical genetic approaches to understand the complex system of microbial metabolism.
Collapse
|
21
|
Targeting the alternative sigma factor RpoN to combat virulence in Pseudomonas aeruginosa. Sci Rep 2017; 7:12615. [PMID: 28974743 PMCID: PMC5626770 DOI: 10.1038/s41598-017-12667-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that infects immunocompromised and cystic fibrosis patients. Treatment is difficult due to antibiotic resistance, and new antimicrobials are needed to treat infections. The alternative sigma factor 54 (σ54, RpoN), regulates many virulence-associated genes. Thus, we evaluated inhibition of virulence in P. aeruginosa by a designed peptide (RpoN molecular roadblock, RpoN*) which binds specifically to RpoN consensus promoters. We expected that RpoN* binding to its consensus promoter sites would repress gene expression and thus virulence by blocking RpoN and/or other transcription factors. RpoN* reduced transcription of approximately 700 genes as determined by microarray analysis, including genes related to virulence. RpoN* expression significantly reduced motility, protease secretion, pyocyanin and pyoverdine production, rhamnolipid production, and biofilm formation. Given the effectiveness of RpoN* in vitro, we explored its effects in a Caenorhabditis elegans–P. aeruginosa infection model. Expression of RpoN* protected C. elegans in a paralytic killing assay, whereas worms succumbed to paralysis and death in its absence. In a slow killing assay, which mimics establishment and proliferation of an infection, C. elegans survival was prolonged when RpoN* was expressed. Thus, blocking RpoN consensus promoter sites is an effective strategy for abrogation of P. aeruginosa virulence.
Collapse
|
22
|
Kollanoor Johny A, Frye JG, Donoghue A, Donoghue DJ, Porwollik S, McClelland M, Venkitanarayanan K. Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol. Front Microbiol 2017; 8:1828. [PMID: 29018419 PMCID: PMC5623010 DOI: 10.3389/fmicb.2017.01828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
Background:Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two plant-derived compounds generally recognized as safe (GRAS), trans-cinnamaldehyde (TC), and eugenol (EG), significantly reduced S. Enteritidis colonization in broiler and layer chickens. To elucidate potential PT8 genes affected by TC and EG during colonization, a whole-genome microarray analysis of the bacterium treated with TC and EG was conducted. Results:S. Enteritidis PT8 was grown in Luria-Bertani broth at 37°C to an OD600 of ~0.5. Subinhibitory concentrations (SICs; concentration that does not inhibit bacterial growth) of TC (0.01%; 0.75 mM) or EG (0.04%; 2.46 mM) were then added to the culture. S. Enteritidis PT8 RNA was extracted before and 30 min after TC or EG addition. Labeled cDNA from three replicate experiments was subsequently hybridized to a microarray of over 99% of S. Enteritidis PT4 genes, and the hybridization signals were quantified. The plant-derived compounds down-regulated (P < 0.005) expression of S. Enteritidis PT8 genes involved in flagellar motility, regulation of the Salmonella Pathogenicity Island 1, and invasion of intestinal epithelial cells. TC and EG also suppressed transcription of genes encoding multiple transport systems and outer membrane proteins. Moreover, several metabolic and biosynthetic pathways in the pathogen were down-regulated during exposure to the plant-derived compounds. Both TC and EG stimulated the transcription of heat shock genes, such as dnaK, dnaJ, ibpB, and ibpA in S. Enteritidis PT8 (P < 0.005). The results obtained from microarray were validated using a quantitative real-time PCR. Conclusion: The plant-derived compounds TC and EG exert antimicrobial effects on S. Enteritidis PT8 by affecting multiple genes, including those associated with virulence, colonization, cell membrane composition, and transport systems.
Collapse
Affiliation(s)
- Anup Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN, United States
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, Richard B. Russell Research Center, Athens, GA, United States
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, USDA, Fayetteville, AR, United States
| | - Dan J Donoghue
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
23
|
Wrobel A, Ottoni C, Leo JC, Gulla S, Linke D. The repeat structure of two paralogous genes, Yersinia ruckeri invasin (yrInv) and a "Y. ruckeri invasin-like molecule", (yrIlm) sheds light on the evolution of adhesive capacities of a fish pathogen. J Struct Biol 2017; 201:171-183. [PMID: 28888816 DOI: 10.1016/j.jsb.2017.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
Abstract
Inverse autotransporters comprise the recently identified type Ve secretion system and are exemplified by intimin from enterohaemorrhagic Escherichia coli and invasin from enteropathogenic Yersiniae. These proteins share a common domain architecture and promote bacterial adhesion to host cells. Here, we identified and characterized two putative inverse autotransporter genes in the fish pathogen Yersinia ruckeri NVH_3758, namely yrInv (for Y. ruckeri invasin) and yrIlm (for Y. ruckeri invasin-like molecule). When trying to clone the highly repetitive genes for structural and functional studies, we experienced problems in obtaining PCR products. PCR failures and the highly repetitive nature of inverse autotransporters prompted us to sequence the genome of Y. ruckeri NVH_3758 using PacBio sequencing, which produces some of the longest average read lengths available in the industry at this moment. According to our sequencing data, YrIlm is composed of 2603 amino acids (7812bp) and has a molecular mass of 256.4kDa. Based on the new genome information, we performed PCR analysis on four non-sequenced Y. ruckeri strains as well as the sequenced. Y. ruckeri type strain. We found that the genes are variably present in the strains, and that the length of yrIlm, when present, also varies. In addition, the length of the gene product for all strains, including the type strain, was much longer than expected based on deposited sequences. The internal repeats of the yrInv gene product are highly diverged, but represent the same bacterial immunoglobulin-like domains as in yrIlm. Using qRT-PCR, we found that yrIlm and yrInv are differentially expressed under conditions relevant for pathogenesis. In addition, we compared the genomic context of both genes in the newly sequenced Y. ruckeri strain to all available PacBio-sequenced Y. ruckeri genomes, and found indications of recent events of horizontal gene transfer. Taken together, this study demonstrates and highlights the power of Single Molecule Real-Time technology for sequencing highly repetitive proteins, and sheds light on the genetic events that gave rise to these highly repetitive genes in a commercially important fish pathogen.
Collapse
Affiliation(s)
- Agnieszka Wrobel
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Claudio Ottoni
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316, Norway
| | - Jack C Leo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Snorre Gulla
- Norwegian Veterinary Institute, 0454 Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
24
|
Abstract
AcrAB-TolC is the paradigm resistance-nodulation-division (RND) multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq) revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps.IMPORTANCE Antibiotic resistance is a major public health concern. In Gram-negative bacteria, overexpression of the AcrAB-TolC multidrug efflux system confers resistance to clinically useful drugs. Here, we show that loss of AcrB efflux function causes loss of virulence in Salmonella enterica serovar Typhimurium. This is due to the reduction of bacterial factors necessary for infection, which is likely to be caused by the retention of noxious molecules inside the bacterium. We also show that, in contrast to loss of AcrB protein, loss of efflux does not induce overexpression of other efflux pumps from the same family. This indicates that there are differences between loss of efflux protein and loss of efflux that make gene deletion mutants unsuitable for studying the biological function of membrane transporters. Understanding the biological role of AcrB will help to assess the risks of targeting efflux pumps as a strategy to combat antibiotic resistance.
Collapse
|
25
|
Beyond Antimicrobial Resistance: Evidence for a Distinct Role of the AcrD Efflux Pump in Salmonella Biology. mBio 2016; 7:mBio.01916-16. [PMID: 27879336 PMCID: PMC5120143 DOI: 10.1128/mbio.01916-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For over 20 years, bacterial multidrug resistance (MDR) efflux pumps have been studied because of their impact on resistance to antimicrobials. However, critical questions remain, including why produce efflux pumps under non-antimicrobial treatment conditions, and why have multiple pumps if their only purpose is antimicrobial efflux? Salmonella spp. possess five efflux pump families, including the resistance-nodulation-division (RND) efflux pumps. Notably, the RND efflux pump AcrD has a unique substrate profile, distinct from other Salmonella efflux pumps. Here we show that inactivation of acrD results in a profoundly altered transcriptome and modulation of pathways integral to Salmonella biology. The most significant transcriptome changes were central metabolism related, with additional changes observed in pathogenicity, environmental sensing, and stress response pathway expression. The extent of tricarboxylic acid cycle and fumarate metabolism expression changes led us to hypothesize that acrD inactivation may result in motility defects due to perturbation of metabolite concentrations, such as fumarate, for which a role in motility has been established. Despite minimal detectable changes in flagellar gene expression, we found that an acrD mutant Salmonella enterica serovar Typhimurium isolate was significantly impaired for swarming motility, which was restored by addition of fumarate. The acrD mutant outcompeted the wild type in fitness experiments. The results of these diverse experiments provide strong evidence that the AcrD efflux pump is not simply a redundant system providing response resilience, but also has distinct physiological functions. Together, these data indicate that the AcrD efflux pump has a significant and previously underappreciated impact on bacterial biology, despite only minor perturbations of antibiotic resistance profiles. Efflux pumps in Gram-negative bacteria are studied because of their important contributions to antimicrobial resistance. However, the role of these pumps in bacterial biology has remained surprisingly elusive. Here, we provide evidence that loss of the AcrD efflux pump significantly impacts the physiology of Salmonella enterica serovar Typhimurium. Inactivation of acrD led to changes in the expression of 403 genes involved in fundamental processes, including basic metabolism, virulence, and stress responses. Pathways such as these allow Salmonella to grow, survive in the environment, and cause disease. Indeed, our data show that the acrD mutant is more fit than wild-type Salmonella under standard lab conditions. We hypothesized that inactivation of acrD would alter levels of bacterial metabolites, impacting traits such as swarming motility. We demonstrated this by exogenous addition of the metabolite fumarate, which partially restored the acrD mutant’s swarming defect. This work extends our understanding of the role of bacterial efflux pumps.
Collapse
|
26
|
Roy R, Shilpa PP, Bagh S. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions. ASTROBIOLOGY 2016; 16:677-689. [PMID: 27623197 DOI: 10.1089/ast.2015.1420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UNLABELLED Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. KEY WORDS Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.
Collapse
Affiliation(s)
- Raktim Roy
- 1 Department of Chemistry and Biochemistry, Presidency University , Kolkata, India
| | - P Phani Shilpa
- 1 Department of Chemistry and Biochemistry, Presidency University , Kolkata, India
| | - Sangram Bagh
- 2 Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics , Kolkata, India
| |
Collapse
|
27
|
Nutrient Deprivation Affects Salmonella Invasion and Its Interaction with the Gastrointestinal Microbiota. PLoS One 2016; 11:e0159676. [PMID: 27437699 PMCID: PMC4954642 DOI: 10.1371/journal.pone.0159676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 01/30/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a foodborne enteric pathogen and a major cause of gastroenteritis in humans. It is known that molecules derived from the human fecal microbiota downregulate S. Typhimurium virulence gene expression and induce a starvation-like response. In this study, S. Typhimurium was cultured in minimal media to mimic starvation conditions such as that experienced by S. Typhimurium in the human intestinal tract, and the pathogen’s virulence in vitro and in vivo was measured. S. Typhimurium cultured in minimal media displayed a reduced ability to invade human epithelial cells in a manner that was at least partially independent of the Salmonella Pathogenicity Island 1 (SPI-1) type III secretion system. Nutrient deprivation did not, however, alter the ability of S. Typhimurium to replicate and survive inside epithelial cells. In a murine model of S. Typhimurium-induced gastroenteritis, prior cultivation in minimal media did not alter the pathogen’s ability to colonize mice, nor did it affect levels of gastrointestinal inflammation. Upon examining the post-infection fecal gastrointestinal microbiota, we found that specifically in the 129Sv/ImJ murine strain S. Typhimurium cultured in minimal media induced differential microbiota compositional shifts compared to that of S. Typhimurium cultured in rich media. Together these findings demonstrate that S. Typhimurium remains a potent pathogen even in the face of nutritional deprivation, but nevertheless that nutrient deprivation encountered in this environment elicits significant changes in the bacterium genetic programme, as well as its capacity to alter host microbiota composition.
Collapse
|
28
|
Sridhar S, Steele-Mortimer O. Inherent Variability of Growth Media Impacts the Ability of Salmonella Typhimurium to Interact with Host Cells. PLoS One 2016; 11:e0157043. [PMID: 27280414 PMCID: PMC4900594 DOI: 10.1371/journal.pone.0157043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
Efficient invasion of non-phagocytic cells, such as intestinal epithelial cells, by Salmonella Typhimurium is dependent on the Salmonella Pathogenicity Island 1 (SPI-1)-encoded Type Three Secretion System. The environmental cues involved in SPI-1 induction are not well understood. In vitro, various conditions are used to induce SPI-1 and the invasive phenotype. Although lysogeny broth (LB) is widely used, multiple formulations exist, and variation can arise due to intrinsic differences in complex components. Minimal media are also susceptible to variation. Still, the impact of these inconsistencies on Salmonella virulence gene expression has not been well studied. The goal of this project is to identify growth conditions in LB and minimal medium that affect SPI-1 induction in vitro using both whole population and single cell analysis. Here we show, using a fluorescent reporter of the SPI-1 gene prgH, that growth of Salmonella in LB yields variable induction. Deliberate modification of media components can influence the invasive profile. Finally, we demonstrate that changes in SPI-1 inducing conditions can affect the ability of Salmonella to replicate intracellularly. These data indicate that the specific media growth conditions impact how the bacteria interact with host cells.
Collapse
Affiliation(s)
- Sushmita Sridhar
- Laboratory of Bacteriology, Rocky Mountain Labs, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Labs, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
29
|
Manga P, Klingeman DM, Lu TYS, Mehlhorn TL, Pelletier DA, Hauser LJ, Wilson CM, Brown SD. Replicates, Read Numbers, and Other Important Experimental Design Considerations for Microbial RNA-seq Identified Using Bacillus thuringiensis Datasets. Front Microbiol 2016; 7:794. [PMID: 27303383 PMCID: PMC4886094 DOI: 10.3389/fmicb.2016.00794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/11/2016] [Indexed: 11/13/2022] Open
Abstract
RNA-seq is being used increasingly for gene expression studies and it is revolutionizing the fields of genomics and transcriptomics. However, the field of RNA-seq analysis is still evolving. Therefore, we specifically designed this study to contain large numbers of reads and four biological replicates per condition so we could alter these parameters and assess their impact on differential expression results. Bacillus thuringiensis strains ATCC10792 and CT43 were grown in two Luria broth medium lots on four dates and transcriptomics data were generated using one lane of sequence output from an Illumina HiSeq2000 instrument for each of the 32 samples, which were then analyzed using DESeq2. Genome coverages across samples ranged from 87 to 465X with medium lots and culture dates identified as major variation sources. Significantly differentially expressed genes (5% FDR, two-fold change) were detected for cultures grown using different medium lots and between different dates. The highly differentially expressed iron acquisition and metabolism genes, were a likely consequence of differing amounts of iron in the two media lots. Indeed, in this study RNA-seq was a tool for predictive biology since we hypothesized and confirmed the two LB medium lots had different iron contents (~two-fold difference). This study shows that the noise in data can be controlled and minimized with appropriate experimental design and by having the appropriate number of replicates and reads for the system being studied. We outline parameters for an efficient and cost effective microbial transcriptomics study.
Collapse
Affiliation(s)
- Punita Manga
- Graduate School of Genome Science and Technology, University of TennesseeKnoxville, TN, USA; BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Dawn M Klingeman
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA; Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Tse-Yuan S Lu
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Tonia L Mehlhorn
- Environmental Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Dale A Pelletier
- Graduate School of Genome Science and Technology, University of TennesseeKnoxville, TN, USA; Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Loren J Hauser
- Graduate School of Genome Science and Technology, University of TennesseeKnoxville, TN, USA; Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Charlotte M Wilson
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA; Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Steven D Brown
- Graduate School of Genome Science and Technology, University of TennesseeKnoxville, TN, USA; BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA; Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| |
Collapse
|
30
|
Jakočiūnė D, Herrero-Fresno A, Jelsbak L, Olsen JE. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth. Int J Food Microbiol 2016; 224:40-6. [DOI: 10.1016/j.ijfoodmicro.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 01/17/2023]
|
31
|
Kunapareddy N, Grun J, Lunsford R, Nikitin S, Wang Z, Gillis D. Multiwavelength Resonance Raman Characterization of the Effect of Growth Phase and Culture Medium on Bacteria. APPLIED SPECTROSCOPY 2015; 69:966-971. [PMID: 26163518 DOI: 10.1366/14-07770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We examine the use of multiwavelength ultraviolet (UV) resonance-Raman signatures to identify the effects of growth phase and growth medium on gram-positive and gram-negative bacteria. Escherichia coli (E. coli), Citrobacter koseri (C. koseri), Citrobacter braakii (C. braakii), and Bacillus cereus (B. cereus) were grown to logarithmic and stationary phases in nutrient broth and brain heart infusion broth. Resonance Raman spectra of bacteria were obtained at multiple wavelengths between 220 and 260 nm; a range that encompasses the resonance frequencies of cellular constituents. We find that spectra of the same bacterial species exhibit differences due to both growth condition and growth phase, but the larger differences reflect changes due to growth phase. The differences in the Raman spectra correlate with genetic differences among the species. Using a Pearson correlation based algorithm, we achieve successful identification of these bacteria in 83% of the cases.
Collapse
|
32
|
Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes. Sci Rep 2015; 5:10799. [PMID: 26028191 PMCID: PMC4450579 DOI: 10.1038/srep10799] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/30/2015] [Indexed: 11/08/2022] Open
Abstract
Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.
Collapse
|
33
|
Chaudhari AA, Jasper SL, Dosunmu E, Miller ME, Arnold RD, Singh SR, Pillai S. Novel pegylated silver coated carbon nanotubes kill Salmonella but they are non-toxic to eukaryotic cells. J Nanobiotechnology 2015; 13:23. [PMID: 25888864 PMCID: PMC4377206 DOI: 10.1186/s12951-015-0085-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance of food borne pathogens such as Salmonella to existing antibiotics is of grave concern. Silver coated single walled carbon nanotubes (SWCNTs-Ag) have broad-spectrum antibacterial activity and may be a good treatment alternative. However, toxicity to human cells due to their physico-chemical properties is a serious public health concern. Although pegylation is commonly used to reduce metal nanoparticle toxicity, SWCNTs-Ag have not been pegylated as yet, and the effect of pegylation of SWCNTs-Ag on their anti-bacterial activity and cell cytotoxicity remains to be studied. Further, there are no molecular studies on the anti-bacterial mechanism of SWCNTs-Ag or their functionalized nanocomposites. MATERIALS AND METHODS In this study we created novel pegylated SWCNTS-Ag (pSWCNTs-Ag), and employed 3 eukaryotic cell lines to evaluate their cytotoxicity as compared to plain SWCNTS-Ag. Simultaneously, we evaluated their antibacterial activity on Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) by the MIC and growth curve assays. In order to understand the possible mechanisms of action of both SWCNTs-Ag and pSWCNTs-Ag, we used electron microscopy (EM) and molecular studies (qRT-PCR). RESULTS pSWCNTs-Ag inhibited Salmonella Typhimurium at 62.5 μg/mL, while remaining non-toxic to human cells. By comparison, plain SWCNTs-Ag were toxic to human cells at 62.5 μg/mL. EM analysis revealed that bacteria internalized either of these nanocomposites after the outer cell membranes were damaged, resulting in cell lysis or expulsion of cytoplasmic contents, leaving empty ghosts. The expression of genes regulating the membrane associated metabolic transporter system (artP, dppA, and livJ), amino acid biosynthesis (trp and argC) and outer membrane integrity (ompF) protiens, was significantly down regulated in Salmonella treated with both pSWCNTs-Ag and SWCNTs-Ag. Although EM analysis of bacteria treated with either SWCNTs-Ag or pSWCNTs-Ag revealed relatively similar morphological changes, the expression of genes regulating the normal physiological processes of bacteria (ybeF), quorum sensing (sdiA), outer membrane structure (safC), invasion (ychP) and virulence (safC, ychP, sseA and sseG) were exclusively down regulated several fold in pSWCNTs-Ag treated bacteria. CONCLUSIONS Altogether, the present data shows that our novel pSWCNTs-Ag are non-toxic to human cells at their bactericidal concentration, as compared to plain SWCNTS-Ag. Therefore, pSWCNTs-Ag may be safe alternative antimicrobials to treat foodborne pathogens.
Collapse
Affiliation(s)
- Atul A Chaudhari
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.
| | - Shanese L Jasper
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.
| | - Ejovwoke Dosunmu
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.
| | - Michael E Miller
- Research Instrumentation Facility, Auburn University, Auburn, AL, USA.
| | - Robert D Arnold
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA.
| | - Shree R Singh
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.
| | - Shreekumar Pillai
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
34
|
Dandekar T, Fieselmann A, Fischer E, Popp J, Hensel M, Noster J. Salmonella-how a metabolic generalist adopts an intracellular lifestyle during infection. Front Cell Infect Microbiol 2015; 4:191. [PMID: 25688337 PMCID: PMC4310325 DOI: 10.3389/fcimb.2014.00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/21/2014] [Indexed: 12/12/2022] Open
Abstract
The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology.
Collapse
Affiliation(s)
- Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Astrid Fieselmann
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Eva Fischer
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Jasmin Popp
- Division of Microbiology, Biology/Chemistry, University of Osnabrück Osnabrück, Germany
| | - Michael Hensel
- Division of Microbiology, Biology/Chemistry, University of Osnabrück Osnabrück, Germany
| | - Janina Noster
- Division of Microbiology, Biology/Chemistry, University of Osnabrück Osnabrück, Germany
| |
Collapse
|