1
|
Li Y, Molyneaux N, Zhang H, Zhou G, Kerr C, Adams MD, Berkner KL, Runge KW. A multiplexed, three-dimensional pooling and next-generation sequencing strategy for creating barcoded mutant arrays: construction of a Schizosaccharomyces pombe transposon insertion library. Nucleic Acids Res 2022; 50:e102. [PMID: 35766443 PMCID: PMC9508820 DOI: 10.1093/nar/gkac546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/14/2022] Open
Abstract
Arrayed libraries of defined mutants have been used to elucidate gene function in the post-genomic era. Yeast haploid gene deletion libraries have pioneered this effort, but are costly to construct, do not reveal phenotypes that may occur with partial gene function and lack essential genes required for growth. We therefore devised an efficient method to construct a library of barcoded insertion mutants with a wider range of phenotypes that can be generalized to other organisms or collections of DNA samples. We developed a novel but simple three-dimensional pooling and multiplexed sequencing approach that leveraged sequence information to reduce the number of required sequencing reactions by orders of magnitude, and were able to identify the barcode sequences and DNA insertion sites of 4391 Schizosaccharomyces pombe insertion mutations with only 40 sequencing preparations. The insertion mutations are in the genes and untranslated regions of nonessential, essential and noncoding RNA genes, and produced a wider range of phenotypes compared to the cognate deletion mutants, including novel phenotypes. This mutant library represents both a proof of principle for an efficient method to produce novel mutant libraries and a valuable resource for the S. pombe research community.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Neil Molyneaux
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Haitao Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Gang Zhou
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Carly Kerr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Mark D Adams
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kathleen L Berkner
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Kurt W Runge
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Halawa M, Cortleven A, Schmülling T, Heyl A. Characterization of CHARK, an unusual cytokinin receptor of rice. Sci Rep 2021; 11:1722. [PMID: 33462253 PMCID: PMC7814049 DOI: 10.1038/s41598-020-80223-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/21/2020] [Indexed: 11/14/2022] Open
Abstract
The signal transduction of the plant hormone cytokinin is mediated by a His-to-Asp phosphorelay. The canonical cytokinin receptor consists of an extra cytoplasmic hormone binding domain named cyclase/histidine kinase associated sensory extracellular (CHASE) and cytoplasmic histidine kinase and receiver domains. In addition to classical cytokinin receptors, a different type receptor—named CHASE domain receptor serine/threonine kinase (CHARK)—is also present in rice. It contains the same ligand binding domain as other cytokinin receptors but has a predicted Ser/Thr—instead of a His-kinase domain. Bioinformatic analysis indicates that CHARK is a retrogene and a product of trans-splicing. Here, we analyzed whether CHARK can function as a bona fide cytokinin receptor. A biochemical assay demonstrated its ability to bind cytokinin. Transient expression of CHARK in protoplasts increased their response to cytokinin. Expression of CHARK in an Arabidopsis receptor double mutant complemented its growth defects and restored the ability to activate cytokinin response genes, clearly demonstrating that CHARK functions as a cytokinin receptor. We propose that the CHARK gene presents an evolutionary novelty in the cytokinin signaling system.
Collapse
Affiliation(s)
- Mhyeddeen Halawa
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Science, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Science, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Science, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Science, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany. .,Biology Department, Adelphi University, 1 South Avenue, Garden City, NY, 11530-0701, USA.
| |
Collapse
|
3
|
Xin Y, Ma B, Xiang Z, He N. Amplification of miniature inverted-repeat transposable elements and the associated impact on gene regulation and alternative splicing in mulberry ( Morus notabilis). Mob DNA 2019; 10:27. [PMID: 31289464 PMCID: PMC6593561 DOI: 10.1186/s13100-019-0169-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background Miniature inverted-repeat transposable elements (MITEs) are common in eukaryotic genomes, and are important for genomic evolution. Results In the present study, the identification of MITEs in the mulberry genome revealed 286,122 MITE-related sequences, including 90,789 full-length elements. The amplification of mulberry MITEs and the influence of MITEs on the evolution of the mulberry genome were analyzed. The timing of MITE amplifications varied considerably among the various MITE families. Fifty-one MITE families have undergone a single round of amplification, while the other families developed from multiple amplifications. Most mulberry MITEs were inserted near genes and some could regulate gene expression through small RNAs. An analysis of transgenic plants indicated that MITE insertions can upregulate the expression of a target gene. Moreover, MITEs are frequently associated with alternative splicing events (exonizations). Conclusion The data presented herein provide insights into the generation of MITEs as well as their impact on gene regulation and evolution in mulberry. Electronic supplementary material The online version of this article (10.1186/s13100-019-0169-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715 China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715 China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715 China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715 China
| |
Collapse
|
4
|
Zhu J, Gong R, Zhu Q, He Q, Xu N, Xu Y, Cai M, Zhou X, Zhang Y, Zhou M. Genome-Wide Determination of Gene Essentiality by Transposon Insertion Sequencing in Yeast Pichia pastoris. Sci Rep 2018; 8:10223. [PMID: 29976927 PMCID: PMC6033949 DOI: 10.1038/s41598-018-28217-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
In many prokaryotes but limited eukaryotic species, the combination of transposon mutagenesis and high-throughput sequencing has greatly accelerated the identification of essential genes. Here we successfully applied this technique to the methylotrophic yeast Pichia pastoris and classified its conditionally essential/non-essential gene sets. Firstly, we showed that two DNA transposons, TcBuster and Sleeping beauty, had high transposition activities in P. pastoris. By merging their insertion libraries and performing Tn-seq, we identified a total of 202,858 unique insertions under glucose supported growth condition. We then developed a machine learning method to classify the 5,040 annotated genes into putatively essential, putatively non-essential, ambig1 and ambig2 groups, and validated the accuracy of this classification model. Besides, Tn-seq was also performed under methanol supported growth condition and methanol specific essential genes were identified. The comparison of conditionally essential genes between glucose and methanol supported growth conditions helped to reveal potential novel targets involved in methanol metabolism and signaling. Our findings suggest that transposon mutagenesis and Tn-seq could be applied in the methylotrophic yeast Pichia pastoris to classify conditionally essential/non-essential gene sets. Our work also shows that determining gene essentiality under different culture conditions could help to screen for novel functional components specifically involved in methanol metabolism.
Collapse
Affiliation(s)
- Jinxiang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruiqing Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiaoyun Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiulin He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ning Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yichun Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
5
|
Han MJ, Zhou QZ, Zhang HH, Tong X, Lu C, Zhang Z, Dai F. iMITEdb: the genome-wide landscape of miniature inverted-repeat transposable elements in insects. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw148. [PMID: 28025339 PMCID: PMC5199201 DOI: 10.1093/database/baw148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/19/2016] [Accepted: 10/18/2016] [Indexed: 01/23/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) have attracted much attention due to their widespread occurrence and high copy numbers in eukaryotic genomes. However, the systematic knowledge about MITEs in insects and other animals is still lacking. In this study, we identified 6012 MITE families from 98 insect species genomes. Comparison of these MITEs with known MITEs in the NCBI non-redundant database and Repbase showed that 5701(∼95%) of 6012 MITE families are novel. The abundance of MITEs varies drastically among different insect species, and significantly correlates with genome size. In general, larger genomes contain more MITEs than small genomes. Furthermore, all identified MITEs were included in a newly constructed database (iMITEdb) (http://gene.cqu.edu.cn/iMITEdb/), which has functions such as browse, search, BLAST and download. Overall, our results not only provide insight on insect MITEs but will also improve assembly and annotation of insect genomes. More importantly, the results presented in this study will promote studies of MITEs function, evolution and application in insects. Database URL: http://gene.cqu.edu.cn/iMITEdb/
Collapse
Affiliation(s)
- Min-Jin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Qiu-Zhong Zhou
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang 332000, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Zhou M, Tao G, Pi P, Zhu Y, Bai Y, Meng X. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements (MITEs) in moso bamboo (Phyllostachys heterocycla). PLANTA 2016; 244:775-787. [PMID: 27160169 DOI: 10.1007/s00425-016-2544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
Moso bamboo MITEs were genome-wide identified first time, and data shows that MITEs contribute to the genomic diversity and differentiation of bamboo. Miniature inverted-repeat transposable elements (MITEs) are widespread in animals and plants. There are a large number of transposable elements in moso bamboo (Phyllostachys heterocycla var. pubescens) genome, but the genome-wide information of moso bamboo MITEs is not known yet. Here we identified 362 MITE families with a total of 489,592 MITE-related sequences, accounting for 4.74 % of the moso bamboo genome. The 362 MITE families are clustered into six known and one unknown super-families. Our analysis indicated that moso bamboo MITEs preferred to reside in or near the genes that might be involved in regulation of host gene expression. Of the seven super-families, three might undergo major expansion event twice, respectively, during 8-11 million years ago (mya) ago and 22-28 mya ago; two might experience a long expansion period from 6 to 13 mya. Almost 1/3 small RNAs might be derived from the MITE sequences. Some MITE families generate small RNAs mainly from the terminals, while others predominantly from the central region. Given the high copy number of MITEs, many siRNAs and miRNAs derived from MITE sequences and the preferential insertion of MITE into gene regions, MITEs may contribute to the genomic diversity and differentiation of bamboo.
Collapse
Affiliation(s)
- Mingbing Zhou
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China.
| | - Guiyun Tao
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Peiyao Pi
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Yihang Zhu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Youhuang Bai
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Xianwen Meng
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| |
Collapse
|
7
|
Identification, Diversity and Evolution of MITEs in the Genomes of Microsporidian Nosema Parasites. PLoS One 2015; 10:e0123170. [PMID: 25898273 PMCID: PMC4405373 DOI: 10.1371/journal.pone.0123170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous DNA transposons, which are widespread in most eukaryotic genomes. However, genome-wide identification, origin and evolution of MITEs remain largely obscure in microsporidia. In this study, we investigated structural features for de novo identification of MITEs in genomes of silkworm microsporidia Nosema bombycis and Nosema antheraeae, as well as a honeybee microsporidia Nosema ceranae. A total of 1490, 149 and 83 MITE-related sequences from 89, 17 and five families, respectively, were found in the genomes of the above-mentioned species. Species-specific MITEs are predominant in each genome of microsporidian Nosema, with the exception of three MITE families that were shared by N. bombycis and N. antheraeae. One or multiple rounds of amplification occurred for MITEs in N. bombycis after divergence between N. bombycis and the other two species, suggesting that the more abundant families in N. bombycis could be attributed to the recent amplification of new MITEs. Significantly, some MITEs that inserted into the homologous protein-coding region of N. bombycis were recruited as introns, indicating that gene expansion occurred during the evolution of microsporidia. NbS31 and NbS24 had polymorphisms in different geographical strains of N. bombycis, indicating that they could still be active. In addition, several small RNAs in the MITEs in N. bombycis are mainly produced from both ends of the MITEs sequence.
Collapse
|
8
|
Fattash I, Lee CN, Mo K, Yang G. Efficient transposition of the youngest miniature inverted repeat transposable element family of yellow fever mosquito in yeast. FEBS J 2015; 282:1829-40. [PMID: 25754725 DOI: 10.1111/febs.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 01/16/2023]
Abstract
Miniature inverted repeat transposable elements (MITEs) are often the most numerous DNA transposons in plant and animal genomes. The dramatic amplification of MITE families during evolution is puzzling, because the transposase sources for the vast majority of MITE families are unknown. The yellow fever mosquito genome contains > 220-Mb MITE sequences; however, transposition activity has not been demonstrated for any of the MITE families. The Gnome elements are the youngest MITE family in this genome, with at least 116 identical copies. To test whether the putative autonomous element Ozma is capable of mobilizing Gnome and its two sibling MITEs, analyses were performed in a yeast transposition assay system. Whereas the wild-type transposase resulted in very low transposition activity, mutations in the region containing a putative nuclear export signal motif resulted in a dramatic (at least 4160-fold) increase in transposition frequency. We have also demonstrated that each residue of the novel DD37E motif is required for the activity of the Ozma transposase. Footprint sequences left at the donor sites suggest that the transposase may cleave between the second and the third nucleotides from the 5' ends of the elements. The excised elements reinsert specifically at dinucleotide 'TA', ~ 55% of them in yeast genes. The elements described in this article could potentially be useful as genetic tools for genetic manipulation of mosquitoes.
Collapse
Affiliation(s)
- Isam Fattash
- Department of Biology, University of Toronto Mississauga, ON, Canada
| | - Chia-Ni Lee
- Department of Biology, University of Toronto Mississauga, ON, Canada
| | - Kaiguo Mo
- Department of Biology, University of Toronto Mississauga, ON, Canada
| | - Guojun Yang
- Department of Biology, University of Toronto Mississauga, ON, Canada
| |
Collapse
|
9
|
Yang G. MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted repeat transposable elements. BMC Bioinformatics 2013; 14:186. [PMID: 23758809 PMCID: PMC3680318 DOI: 10.1186/1471-2105-14-186] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/02/2013] [Indexed: 11/25/2022] Open
Abstract
Background Miniature inverted repeat transposable elements (MITEs) are abundant non-autonomous elements, playing important roles in shaping gene and genome evolution. Their characteristic structural features are suitable for automated identification by computational approaches, however, de novo MITE discovery at genomic levels is still resource expensive. Efficient and accurate computational tools are desirable. Existing algorithms process every member of a MITE family, therefore a major portion of the computing task is redundant. Results In this study, redundant computing steps were analyzed and a novel algorithm emphasizing on the reduction of such redundant computing was implemented in MITE Digger. It completed processing the whole rice genome sequence database in ~15 hours and produced 332 MITE candidates with low false positive (1.8%) and false negative (0.9%) rates. MITE Digger was also tested for genome wide MITE discovery with four other genomes. Conclusions MITE Digger is efficient and accurate for genome wide retrieval of MITEs. Its user friendly interface further facilitates genome wide analyses of MITEs on a routine basis. The MITE Digger program is available at: http://labs.csb.utoronto.ca/yang/MITEDigger.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
10
|
Fattash I, Rooke R, Wong A, Hui C, Luu T, Bhardwaj P, Yang G. Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome 2013; 56:475-86. [PMID: 24168668 DOI: 10.1139/gen-2012-0174] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Eukaryotic organisms have dynamic genomes, with transposable elements (TEs) as a major contributing factor. Although the large autonomous TEs can significantly shape genomic structures during evolution, genomes often harbor more miniature nonautonomous TEs that can infest genomic niches where large TEs are rare. In spite of their cut-and-paste transposition mechanisms that do not inherently favor copy number increase, miniature inverted-repeat transposable elements (MITEs) are abundant in eukaryotic genomes and exist in high copy numbers. Based on the large number of MITE families revealed in previous studies, accurate annotation of MITEs, particularly in newly sequenced genomes, will identify more genomes highly rich in these elements. Novel families identified from these analyses, together with the currently known families, will further deepen our understanding of the origins, transposase sources, and dramatic amplification of these elements.
Collapse
Affiliation(s)
- Isam Fattash
- a Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | | | | | | | | | | | | |
Collapse
|