1
|
Zhou Y, Li T, Jia M, Dai R, Wang R. The Molecular Biology of Prostate Cancer Stem Cells: From the Past to the Future. Int J Mol Sci 2023; 24:ijms24087482. [PMID: 37108647 PMCID: PMC10140972 DOI: 10.3390/ijms24087482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer (PCa) continues to rank as the second leading cause of cancer-related mortality in western countries, despite the golden treatment using androgen deprivation therapy (ADT) or anti-androgen therapy. With decades of research, scientists have gradually realized that the existence of prostate cancer stem cells (PCSCs) successfully explains tumor recurrence, metastasis and therapeutic failure of PCa. Theoretically, eradication of this small population may improve the efficacy of current therapeutic approaches and prolong PCa survival. However, several characteristics of PCSCs make their diminishment extremely challenging: inherent resistance to anti-androgen and chemotherapy treatment, over-activation of the survival pathway, adaptation to tumor micro-environments, escape from immune attack and being easier to metastasize. For this end, a better understanding of PCSC biology at the molecular level will definitely inspire us to develop PCSC targeted approaches. In this review, we comprehensively summarize signaling pathways responsible for homeostatic regulation of PCSCs and discuss how to eliminate these fractional cells in clinical practice. Overall, this study deeply pinpoints PCSC biology at the molecular level and provides us some research perspectives.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Nakamura N, Sloper DT. Altered expression of genes identified in rats with prostatic chronic inflammation in a prostate spheroid model treated by estradiol/testosterone. J Toxicol Sci 2021; 46:515-523. [PMID: 34719554 DOI: 10.2131/jts.46.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rats are the standard model for male reproductive toxicity testing. Rat prostates are physiologically and anatomically different from those of humans. Drug and chemical toxicity testing would benefit from an in vitro model of human prostate cells. Recently, spheroids derived by three-dimensional culture of human cell lines have been used for assessing drug and chemical toxicity in vitro as they mimic in vivo environments more closely than two-dimensional culture. However, forming consistently sized, uniform spheroids is technically challenging for toxicity testing. The purpose of this study was to identify potential genetic markers for assessing prostatic toxicity in spheroids. We formed prostate spheroids using agarose-coated plates seeded with human primary prostate epithelial cells. Prostate spheroids were treated with either 17β-estradiol (E2) or testosterone (T) on days 2-7 of culture. Samples were harvested on culture day 7. qPCR was used to examine gene expression levels previously identified in rats with chronic inflammation exposed to estradiol benzoate, E2 and/or T. Changes in some gene expression levels were observed in the spheroids treated with E2 or T. We found that treatment with 1 nM E2 and/or 10 μM T significantly altered spheroid proliferation and viability, as well as the expression levels of genes including Nanog homeobox (NANOG), C-C motif chemokine ligand 2 (CCL2) and bone morphogenetic protein receptor type 2 (BMPR2). Further studies using biologically active molecules with prostatic toxicity are needed to verify the results and to determine whether gene expression changes in the spheroid are specific to E2 or T treatment.
Collapse
Affiliation(s)
- Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, USA
| | - Daniel T Sloper
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, USA
| |
Collapse
|
3
|
Nascimento-Gonçalves E, Ferreira R, Oliveira PA, Colaço BJA. An Overview of Current Alternative Models for Use in the Context of Prostate Cancer Research. Altern Lab Anim 2020; 48:58-69. [PMID: 32614643 DOI: 10.1177/0261192920929701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer is one of the most commonly diagnosed cancers worldwide, particularly in elderly populations. To mitigate the expected increase in prostate cancer-related morbidity and mortality as a result of an expanding aged population, safer and more effective therapeutics are required. To this end, plenty of research is focusing on the mechanisms underlying cancer initiation and development, the metastatic process and on the discovery of new therapies. While animal models are used (mainly rats and mice) for the study of prostate cancer, alternative models and methods are increasingly being considered to replace, or at least reduce, the number of animals used in this particular field of research. In this review, we cover some of the alternative models that are currently available for use in the study of prostate cancer, including: mathematical models; 2-D and 3-D cell cultures; microfluidic devices; the chicken egg chorioallantoic membrane-based model; and zebrafish embryo-based models. The main advantages and limitations, as well as some examples of applications, are given for each type of model. According to our analysis, immortalised cell lines are still the most commonly used models in the field of prostate cancer research. However, the use of alternative models for prostate cancer research will likely become more prevalent in the coming years partly because of the increasing societal pressure to reduce the numbers of laboratory animals. In this context, the development and dissemination of effective non-animal alternative models assumes particular relevance and will be instrumental in leveraging their success. Taking these perspectives into account, we believe that technological advances will lead to more effective cell culture systems, namely 3-D cultures or organ-on-a-chip devices, which can be used to replace animal-based models in prostate cancer research.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, 386361University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Organic Chemistry, Natural Products and Foodstuffs (QOPNA/LAQV), Department of Chemistry, 56062University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Organic Chemistry, Natural Products and Foodstuffs (QOPNA/LAQV), Department of Chemistry, 56062University of Aveiro, Aveiro, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, 386361University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Bruno Jorge Antunes Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Zootechnics, 56066University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
4
|
Hepburn AC, Curry EL, Moad M, Steele RE, Franco OE, Wilson L, Singh P, Buskin A, Crawford SE, Gaughan L, Mills IG, Hayward SW, Robson CN, Heer R. Propagation of human prostate tissue from induced pluripotent stem cells. Stem Cells Transl Med 2020; 9:734-745. [PMID: 32170918 PMCID: PMC7308643 DOI: 10.1002/sctm.19-0286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Primary culture of human prostate organoids and patient-derived xenografts is inefficient and has limited access to clinical tissues. This hampers their use for translational study to identify new treatments. To overcome this, we established a complementary approach where rapidly proliferating and easily handled induced pluripotent stem cells enabled the generation of human prostate tissue in vivo and in vitro. By using a coculture technique with inductive urogenital sinus mesenchyme, we comprehensively recapitulated in situ 3D prostate histology, and overcame limitations in the primary culture of human prostate stem, luminal and neuroendocrine cells, as well as the stromal microenvironment. This model now unlocks new opportunities to undertake translational studies of benign and malignant prostate disease.
Collapse
Affiliation(s)
- Anastasia C. Hepburn
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Emma L. Curry
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Mohammad Moad
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
- Acute Internal MedicineUniversity Hospital of North TeesStockton on TeesUK
| | - Rebecca E. Steele
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
| | - Omar E. Franco
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Laura Wilson
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Parmveer Singh
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Adriana Buskin
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Susan E. Crawford
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Luke Gaughan
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Ian G. Mills
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Simon W. Hayward
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Craig N. Robson
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
- Department of Urology, Freeman HospitalThe Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
5
|
Kim YD, Kim HS, Lee J, Choi JK, Han E, Jeong JE, Cho YS. ESRP1-Induced CD44 v3 Is Important for Controlling Pluripotency in Human Pluripotent Stem Cells. Stem Cells 2018; 36:1525-1534. [DOI: 10.1002/stem.2864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Young-Dae Kim
- Stem Cell Research Laboratory; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
| | - Han-Seop Kim
- Stem Cell Research Laboratory; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
| | - Jungwoon Lee
- Stem Cell Research Laboratory; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
| | - Jung-Kyun Choi
- Stem Cell Research Laboratory; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
- Department of Bioscience; KRIBB School, University of Science & Technology; Daejeon Republic of Korea
| | - Enna Han
- Stem Cell Research Laboratory; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
- Department of Bioscience; KRIBB School, University of Science & Technology; Daejeon Republic of Korea
| | - Ji E. Jeong
- Stem Cell Research Laboratory; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
| | - Yee S. Cho
- Stem Cell Research Laboratory; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
- Department of Bioscience; KRIBB School, University of Science & Technology; Daejeon Republic of Korea
| |
Collapse
|
6
|
Zhou Y, Hu Z. Epigenetic DNA Demethylation Causes Inner Ear Stem Cell Differentiation into Hair Cell-Like Cells. Front Cell Neurosci 2016; 10:185. [PMID: 27536218 PMCID: PMC4971107 DOI: 10.3389/fncel.2016.00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
The DNA methyltransferase (DNMT) inhibitor 5-azacytidine (5-aza) causes genomic demethylation to regulate gene expression. However, it remains unclear whether 5-aza affects gene expression and cell fate determination of stem cells. In this study, 5-aza was applied to mouse utricle sensory epithelia-derived progenitor cells (MUCs) to investigate whether 5-aza stimulated MUCs to become sensory hair cells. After treatment, MUCs increased expression of hair cell genes and proteins. The DNA methylation level (indicated by percentage of 5-methylcytosine) showed a 28.57% decrease after treatment, which causes significantly repressed DNMT1 protein expression and DNMT activity. Additionally, FM1-43 permeation assays indicated that the permeability of 5-aza-treated MUCs was similar to that of sensory hair cells, which may result from mechanotransduction channels. This study not only demonstrates a possible epigenetic approach to induce tissue specific stem/progenitor cells to become sensory hair cell-like cells, but also provides a cell model to epigenetically modulate stem cell fate determination.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
7
|
Affiliation(s)
- Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine, Room 130, Kettering Laboratory Complex, 160 Panzeca Way, Cincinnati, OH 45267, USA
| | - Neville Ngai Chung Tam
- Department of Environmental Health, University of Cincinnati College of Medicine, Room 130, Kettering Laboratory Complex, 160 Panzeca Way, Cincinnati, OH 45267, USA
| |
Collapse
|
8
|
Calderon-Gierszal EL, Prins GS. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure. PLoS One 2015. [PMID: 26222054 PMCID: PMC4519179 DOI: 10.1371/journal.pone.0133238] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA) can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC) into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20–30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures.
Collapse
Affiliation(s)
- Esther L. Calderon-Gierszal
- Departments of Urology and Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gail S. Prins
- Departments of Urology and Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
9
|
Borges GT, Vêncio EF, Vêncio RZN, Vessella RL, Ware CB, Liu AY. Reprogramming of prostate cancer cells--technical challenges. Curr Urol Rep 2015; 16:468. [PMID: 25404182 DOI: 10.1007/s11934-014-0468-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prostate cancer progression is characterized by tumor dedifferentiation. Cancer cells of less differentiated tumors have a gene expression/transcriptome more similar to that of stem cells. In dedifferentiation, cancer cells may follow a specific program of gene expression changes to a stem-like state. In order to treat cancer effectively, the stem-like cancer cells and cancer differentiation pathway need to be identified and studied. Due to the very low abundance of stem-like cancer cells, their isolation from fresh human tumors is technically challenging. Induced pluripotent stem cell technology can reprogram differentiated cells into stem-like, and this may be a tool to generate sufficient stem-like cancer cells.
Collapse
Affiliation(s)
- Gisely T Borges
- School of Pharmacology, Federal University of Goiás, Goiânia, Brazil,
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Stem cell commitment and differentiation leading to functional cell types and organs has generally been considered unidirectional and deterministic. Starting first with a landmark study 50 years ago, and now with more recent observations, this paradigm has been challenged, necessitating a rethink of what constitutes both programming and reprogramming processes, and how we can use this new understanding for new approaches to drug discovery and regenerative medicine.
Collapse
|
11
|
Cobalt and nickel stabilize stem cell transcription factor OCT4 through modulating its sumoylation and ubiquitination. PLoS One 2014; 9:e86620. [PMID: 24497960 PMCID: PMC3908935 DOI: 10.1371/journal.pone.0086620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/15/2013] [Indexed: 01/13/2023] Open
Abstract
Stem cell research can lead to the development of treatments for a wide range of ailments including diabetes, heart disease, aging, neurodegenerative diseases, spinal cord injury, and cancer. OCT4 is a master regulator of self-renewal of undifferentiated embryonic stem cells. OCT4 also plays a crucial role in reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Given known vivo reproductive toxicity of cobalt and nickel metals, we examined the effect of these metals on expression of several stem cell factors in embryonic Tera-1 cells, as well as stem cells. Cobalt and nickel induced a concentration-dependent increase of OCT4 and HIF-1α, but not NANOG or KLF4. OCT4 induced by cobalt and nickel was due primarily to protein stabilization because MG132 stabilized OCT4 in cells treated with either metals and because neither nickel nor cobalt significantly modulated its steady-state mRNA level. OCT4 stabilization by cobalt and nickel was mediated largely through reactive oxygen species (ROS) as co-treatment with ascorbic acid abolished OCT4 increase. Moreover, nickel and cobalt treatment increased sumoylation and mono-ubiquitination of OCT4 and K123 was crucial for mediating these modifications. Combined, our observations suggest that nickel and cobalt may exert their reproductive toxicity through perturbing OCT4 activity in the stem cell compartment.
Collapse
|
12
|
Taylor RA, Risbridger GP. Cross-species stromal signaling programs human embryonic stem cell differentiation. Differentiation 2014; 87:76-82. [DOI: 10.1016/j.diff.2014.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 11/17/2022]
|
13
|
Kanno H. Regenerative therapy for neuronal diseases with transplantation of somatic stem cells. World J Stem Cells 2013; 5:163-171. [PMID: 24179604 PMCID: PMC3812520 DOI: 10.4252/wjsc.v5.i4.163] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/21/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells, which are capable of differentiating in various species of cells, are hoped to be donor cells in transplantation in regenerative medicine. Embryonic stem (ES) cells and induced pluripotent stem cells have the potential to differentiate in approximately all species of cells. However, the proliferating ability of these cells is high and the cancer formation ability is also recognized. In addition, ethical problems exist in using ES cells. Somatic stem cells with the ability to differentiate in various species of cells have been used as donor cells for neuronal diseases, such as amyotrophic lateral sclerosis, spinal cord injury, Alzheimer disease, cerebral infarction and congenital neuronal diseases. Human mesenchymal stem cells derived from bone marrow, adipose tissue, dermal tissue, umbilical cord blood and placenta are usually used for intractable neuronal diseases as somatic stem cells, while neural progenitor/stem cells and retinal progenitor/stem cells are used for a few congenital neuronal diseases and retinal degenerative disease, respectively. However, non-treated somatic stem cells seldom differentiate to neural cells in recipient neural tissue. Therefore, the contribution to neuronal regeneration using non-treated somatic stem cells has been poor and various differential trials, such as the addition of neurotrophic factors, gene transfer, peptide transfer for neuronal differentiation of somatic stem cells, have been performed. Here, the recent progress of regenerative therapies using various somatic stem cells is described.
Collapse
|