1
|
Chong T, Lan NSR, Courtney W, He A, Strange G, Playford D, Dwivedi G, Hillis GS, Ihdayhid AR. Medical Therapy to Prevent or Slow Progression of Aortic Stenosis: Current Evidence and Future Directions. Cardiol Rev 2024; 32:473-482. [PMID: 36961371 DOI: 10.1097/crd.0000000000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Degenerative aortic stenosis is a growing clinical problem owing to the high incidence in an aging population and its significant morbidity and mortality. Currently, aortic valve replacement remains the only treatment. Despite promising observational data, pharmacological management to slow or halt progression of aortic stenosis has remained elusive. Nevertheless, with a greater understanding of the mechanisms which underpin aortic stenosis, research has begun to explore novel treatment strategies. This review will explore the historical agents used to manage aortic stenosis and the emerging agents that are currently under investigation.
Collapse
Affiliation(s)
- Travis Chong
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
| | - Nick S R Lan
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
| | - William Courtney
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Albert He
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
| | - Geoff Strange
- School of Medicine, University of Notre Dame, Fremantle, Australia
| | - David Playford
- School of Medicine, University of Notre Dame, Fremantle, Australia
| | - Girish Dwivedi
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
| | - Graham S Hillis
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Abdul Rahman Ihdayhid
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
- Curtin Medical School, Curtin University, Perth, Australia
| |
Collapse
|
2
|
Fernández-Villabrille S, Martín-Vírgala J, Martín-Carro B, Baena-Huerta F, González-García N, Gil-Peña H, Rodríguez-García M, Fernández-Gómez JM, Fernández-Martín JL, Alonso-Montes C, Naves-Díaz M, Carrillo-López N, Panizo S. RANKL, but Not R-Spondins, Is Involved in Vascular Smooth Muscle Cell Calcification through LGR4 Interaction. Int J Mol Sci 2024; 25:5735. [PMID: 38891922 PMCID: PMC11172097 DOI: 10.3390/ijms25115735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Vascular calcification has a global health impact that is closely linked to bone loss. The Receptor Activator of Nuclear Factor Kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, fundamental for bone metabolism, also plays an important role in vascular calcification. The Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a novel receptor for RANKL, regulates bone remodeling, and it appears to be involved in vascular calcification. Besides RANKL, LGR4 interacts with R-spondins (RSPOs), which are known for their roles in bone but are less understood in vascular calcification. Studies were conducted in rats with chronic renal failure fed normal or high phosphorus diets for 18 weeks, with and without control of circulating parathormone (PTH) levels, resulting in different degrees of aortic calcification. Additionally, vascular smooth muscle cells (VSMCs) were cultured under non-calcifying (1 mM phosphate) and calcifying (3 mM phosphate) media with different concentrations of PTH. To explore the role of RANKL in VSMC calcification, increasing concentrations of soluble RANKL were added to non-calcifying and calcifying media. The effects mediated by RANKL binding to its receptor LGR4 were investigated by silencing the LGR4 receptor in VSMCs. Furthermore, the gene expression of the RANK/RANKL/OPG system and the ligands of LGR4 was assessed in human epigastric arteries obtained from kidney transplant recipients with calcification scores (Kauppila Index). Increased aortic calcium in rats coincided with elevated systolic blood pressure, upregulated Lgr4 and Rankl gene expression, downregulated Opg gene expression, and higher serum RANKL/OPG ratio without changes in Rspos gene expression. Elevated phosphate in vitro increased calcium content and expression of Rankl and Lgr4 while reducing Opg. Elevated PTH in the presence of high phosphate exacerbated the increase in calcium content. No changes in Rspos were observed under the conditions employed. The addition of soluble RANKL to VSMCs induced genotypic differentiation and calcification, partly prevented by LGR4 silencing. In the epigastric arteries of individuals presenting vascular calcification, the gene expression of RANKL was higher. While RSPOs show minimal impact on VSMC calcification, RANKL, interacting with LGR4, drives osteogenic differentiation in VSMCs, unveiling a novel mechanism beyond RANKL-RANK binding.
Collapse
MESH Headings
- RANK Ligand/metabolism
- RANK Ligand/genetics
- Animals
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Humans
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteoprotegerin/metabolism
- Osteoprotegerin/genetics
- Parathyroid Hormone/metabolism
- Cells, Cultured
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Sara Fernández-Villabrille
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Julia Martín-Vírgala
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Beatriz Martín-Carro
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Francisco Baena-Huerta
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Nerea González-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Helena Gil-Peña
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- AGC de la Infancia y Adolescencia, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Princiado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Minerva Rodríguez-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - José Luis Fernández-Martín
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Cristina Alonso-Montes
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Natalia Carrillo-López
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sara Panizo
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
3
|
Vinton Z, Wolfe K, Fisher J, Brooks A. The Effect of Celecoxib on the Progression of Calcific Aortic Valve Disease-Protective or Pathogenic? J Clin Med 2023; 12:jcm12072717. [PMID: 37048799 PMCID: PMC10094907 DOI: 10.3390/jcm12072717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is a debilitating condition for which there are limited therapeutic options aside from valve replacement. As such, it is crucial to explore alternative management strategies for CAVD. Non-steroidal anti-inflammatory drugs (NSAIDs), particularly celecoxib, have been the subject of debate in the literature regarding their potential impact on CAVD. We conducted an in-depth analysis of five studies exploring the effect of celecoxib on CAVD and found discrepancies in both methods and results. Our findings suggest that celecoxib may impact the development of this disease via multiple mechanisms, each of which may have different effects on its pathogenesis. We also discovered limited clinical research examining the connection between celecoxib use and CAVD in medical patients. As such, further studies are needed to clarify the role of celecoxib and other NSAIDs in CAVD progression in order to inform future treatment options and clarify their impact on the disease.
Collapse
Affiliation(s)
- Zachary Vinton
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA
| | - Kevin Wolfe
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA
| | - Jensen Fisher
- Department of Library Services, Rocky Vista University, Parker, CO 80112, USA
| | - Amanda Brooks
- Office of Research and Scholarly Activity, Rocky Vista University, Parker, CO 80112, USA
| |
Collapse
|
4
|
Liu D, Szeto WY, Laudanski K. Elevated Serum Fibroblast Growth Factor 23 (FGF-23) Perseveres into a Convalescence Period After Elective Cardiac Surgery, with Receptor Activator of Nuclear Factor κB Ligand (RANKL) and Cartilage Oligomeric Matrix Protein (COMP) Being Part of the Peri-Surgical -Pro-Arteriosclerotic Inflammatory Response. Med Sci Monit 2023; 29:e937934. [PMID: 36635948 PMCID: PMC9847201 DOI: 10.12659/msm.937934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), cartilage oligomeric matrix protein (COMP), bone morphogenetic protein (BMP-2), and fibroblast growth factor 23 (FGF-23) are involved in inflammation, calcium deposition, and fibrosis of blood vessels. Acute changes in these factors may contribute to the progression of arteriosclerosis, especially if their elevated serum levels persist postoperatively. MATERIAL AND METHODS A total of 90 patients (79 White, 4 African American, and 7 Other) undergoing elective heart surgery were enrolled in the study. Blood was collected before surgery and after surgery at 24 hours, 7 days, and 3 months to allow for longitudinal comparisons. After the plasma isolation, several biomarkers levels were studied using an enzymatic-linked assay. Demographic and clinical information were obtained from electronic health records. RESULTS At 24 hours after surgery, RANKL (RANKLbaseline=248.7±215.7 vs RANKLt24h=376.4±329.7; P=0.035), and BMP-2 (BMP-2baseline=283.7±255.4 vs BMP-2t24h=482.4; P=0.015) were significantly elevated compared to baseline, with levels returning to baseline at 7 days. FGF-23 increased significantly from baseline (FGF-23baseline=1020±1210) to 7 days (FGF-237d=2191±5188; P=0.029) and remained significantly higher than baseline at 3 months (FGF-233m=2041±3521; P=0.044). White blood cells (WBC) remained elevated at discharge (WBCbaseline=6.8±2.1 vs WBC24h=15.0±5.3 vs WBCdischarge=8.8±3.4). IL-8 and C-reactive protein normalized at 3 months. Estimated blood loss was significantly correlated with RANKL at 24 hours (r²=0.33; P=0.035). Serum creatinine levels after surgery at 24 hours (r²=0.41; p=0.008) and 7 days (r²=0.59; P=0.000) was strongly correlated with COMP. CONCLUSIONS Persistent elevation of serum FGF-23 indicates a potential for accelerated arteriosclerosis after cardiac surgery.
Collapse
Affiliation(s)
- Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaonong, PR China
| | - Wilson Y. Szeto
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
6
|
Dayawansa NH, Baratchi S, Peter K. Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease. Front Cardiovasc Med 2022; 9:783543. [PMID: 35355968 PMCID: PMC8959593 DOI: 10.3389/fcvm.2022.783543] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a common acquired valvulopathy, which carries a high burden of mortality. Chronic inflammation has been postulated as the predominant pathophysiological process underlying CAVD. So far, no effective medical therapies exist to halt the progression of CAVD. This review aims to outline the known pathways of inflammation and calcification in CAVD, focussing on the critical roles of mechanical stress and mechanosensing in the perpetuation of valvular inflammation. Following initiation of valvular inflammation, dysregulation of proinflammatory and osteoregulatory signalling pathways stimulates endothelial-mesenchymal transition of valvular endothelial cells (VECs) and differentiation of valvular interstitial cells (VICs) into active myofibroblastic and osteoblastic phenotypes, which in turn mediate valvular extracellular matrix remodelling and calcification. Mechanosensitive signalling pathways convert mechanical forces experienced by valve leaflets and circulating cells into biochemical signals and may provide the positive feedback loop that promotes acceleration of disease progression in the advanced stages of CAVD. Mechanosensing is implicated in multiple aspects of CAVD pathophysiology. The mechanosensitive RhoA/ROCK and YAP/TAZ systems are implicated in aortic valve leaflet mineralisation in response to increased substrate stiffness. Exposure of aortic valve leaflets, endothelial cells and platelets to high shear stress results in increased expression of mediators of VIC differentiation. Upregulation of the Piezo1 mechanoreceptor has been demonstrated to promote inflammation in CAVD, which normalises following transcatheter valve replacement. Genetic variants and inhibition of Notch signalling accentuate VIC responses to altered mechanical stresses. The study of mechanosensing pathways has revealed promising insights into the mechanisms that perpetuate inflammation and calcification in CAVD. Mechanotransduction of altered mechanical stresses may provide the sought-after coupling link that drives a vicious cycle of chronic inflammation in CAVD. Mechanosensing pathways may yield promising targets for therapeutic interventions and prognostic biomarkers with the potential to improve the management of CAVD.
Collapse
Affiliation(s)
- Nalin H. Dayawansa
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Suh SH, Oh TR, Choi HS, Kim CS, Oh KH, Lee J, Oh YK, Jung JY, Choi KH, Ma SK, Bae EH, Kim SW, on behalf of the Korean Cohort Study for Outcomes in Patients with Chronic Kidney Disease (KNOW-CKD) Investigators . Association of Circulating Osteoprotegerin Level with Blood Pressure Variability in Patients with Chronic Kidney Disease. J Clin Med 2021; 11:jcm11010178. [PMID: 35011919 PMCID: PMC8745733 DOI: 10.3390/jcm11010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Circulating osteoprotegerin (OPG) is a biomarker for cardiovascular complications that are closely related to chronic kidney disease (CKD). To investigate the association between circulating OPG level with long-term visit-to-visit blood pressure variability (BPV) in patients with pre-dialysis CKD, a total of 1855 subjects with CKD from stage 1 to pre-dialysis stage 5 from a prospective cohort were analyzed. Long-term visit-to-visit BPV was determined by average real variability (ARV), standard deviation (SD), and coefficient of variation (CoV) of systolic and diastolic blood pressure (SBP and DBP). ARV of SBP (Adjusted β coefficient 0.143, 95% confidence interval 0.021 to 0.264) was significantly associated with serum OPG level. Although SD and CoV of SBP were not significantly associated with serum OPG level in multivariate linear regression analyses, restricted cubic spline visualized the linear correlation of serum OPG level with all of ARV, SD, and CoV. The association between serum OPG level and DBP variability was not significant. Subgroup analyses revealed that the association of serum OPG with BPV is more prominent in the subjects with Charlson comorbidity index ≤3 and in the subjects without history of diabetes mellitus. In conclusion, circulating OPG level is potentially associated with long-term visit-to-visit BPV in patients with pre-dialysis CKD.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Korea; (S.H.S.); (T.R.O.); (H.S.C.); (C.S.K.); (S.K.M.)
| | - Tae Ryom Oh
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Korea; (S.H.S.); (T.R.O.); (H.S.C.); (C.S.K.); (S.K.M.)
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Korea; (S.H.S.); (T.R.O.); (H.S.C.); (C.S.K.); (S.K.M.)
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Korea; (S.H.S.); (T.R.O.); (H.S.C.); (C.S.K.); (S.K.M.)
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea;
| | - Joongyub Lee
- Department of Prevention and Management, School of Medicine, Inha University, Incheon 22212, Korea;
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University, Seoul 08826, Korea;
| | - Ji Yong Jung
- Department of Internal Medicine, Division of Nephrology, Gachon University of Gil Medical Center, Incheon 21565, Korea;
| | - Kyu Hun Choi
- Department of Internal Medicine, Institute of Kidney Disease Research, College of Medicine, Yonsei University, Seoul 03722, Korea;
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Korea; (S.H.S.); (T.R.O.); (H.S.C.); (C.S.K.); (S.K.M.)
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Korea; (S.H.S.); (T.R.O.); (H.S.C.); (C.S.K.); (S.K.M.)
- Correspondence: (E.H.B.); (S.W.K.); Tel.: +82-62-220-6503 (E.H.B.); +82-62-225-6271 (S.W.K.)
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Korea; (S.H.S.); (T.R.O.); (H.S.C.); (C.S.K.); (S.K.M.)
- Correspondence: (E.H.B.); (S.W.K.); Tel.: +82-62-220-6503 (E.H.B.); +82-62-225-6271 (S.W.K.)
| | | |
Collapse
|
8
|
Kraler S, Blaser MC, Aikawa E, Camici GG, Lüscher TF. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J 2021; 43:683-697. [PMID: 34849696 DOI: 10.1093/eurheartj/ehab757] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/12/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a highly prevalent condition that comprises a disease continuum, ranging from microscopic changes to profound fibro-calcific leaflet remodelling, culminating in aortic stenosis, heart failure, and ultimately premature death. Traditional risk factors, such as hypercholesterolaemia and (systolic) hypertension, are shared among atherosclerotic cardiovascular disease and CAVD, yet the molecular and cellular mechanisms differ markedly. Statin-induced low-density lipoprotein cholesterol lowering, a remedy highly effective for secondary prevention of atherosclerotic cardiovascular disease, consistently failed to impact CAVD progression or to improve patient outcomes. However, recently completed phase II trials provide hope that pharmaceutical tactics directed at other targets implicated in CAVD pathogenesis offer an avenue to alter the course of the disease non-invasively. Herein, we delineate key players of CAVD pathobiology, outline mechanisms that entail compromised endothelial barrier function, and promote lipid homing, immune-cell infiltration, and deranged phospho-calcium metabolism that collectively perpetuate a pro-inflammatory/pro-osteogenic milieu in which valvular interstitial cells increasingly adopt myofibro-/osteoblast-like properties, thereby fostering fibro-calcific leaflet remodelling and eventually resulting in left ventricular outflow obstruction. We provide a glimpse into the most promising targets on the horizon, including lipoprotein(a), mineral-binding matrix Gla protein, soluble guanylate cyclase, dipeptidyl peptidase-4 as well as candidates involved in regulating phospho-calcium metabolism and valvular angiotensin II synthesis and ultimately discuss their potential for a future therapy of this insidious disease.
Collapse
Affiliation(s)
- Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mark C Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.,Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, NRB7, Boston, MA 02115, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Heart Division, Royal Brompton & Harefield Hospitals, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
9
|
Dharmarajan S, Speer MY, Pierce K, Lally J, Leaf EM, Lin ME, Scatena M, Giachelli CM. Role of Runx2 in Calcific Aortic Valve Disease in Mouse Models. Front Cardiovasc Med 2021; 8:687210. [PMID: 34778386 PMCID: PMC8585763 DOI: 10.3389/fcvm.2021.687210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Calcific aortic valve disease is common in the aging population and is characterized by the histological changes of the aortic valves including extracellular matrix remodeling, osteochondrogenic differentiation, and calcification. Combined, these changes lead to aortic sclerosis, aortic stenosis (AS), and eventually to heart failure. Runt-related transcription factor 2 (Runx2) is a transcription factor highly expressed in the calcified aortic valves. However, its definitive role in the progression of calcific aortic valve disease (CAVD) has not been determined. In this study, we utilized constitutive and transient conditional knockout mouse models to assess the molecular, histological, and functional changes in the aortic valve due to Runx2 depletion. Methods: Lineage tracing studies were performed to determine the provenance of the cells giving rise to Runx2+ osteochondrogenic cells in the aortic valves of LDLr-/- mice. Hyperlipidemic mice with a constitutive or temporal depletion of Runx2 in the activated valvular interstitial cells (aVICs) and sinus wall cells were further investigated. Following feeding with a diabetogenic diet, the mice were examined for changes in gene expression, blood flow dynamics, calcification, and histology. Results: The aVICs and sinus wall cells gave rise to Runx2+ osteochondrogenic cells in diseased mouse aortic valves. The conditional depletion of Runx2 in the SM22α+ aVICs and sinus wall cells led to the decreased osteochondrogenic gene expression in diabetic LDLr-/- mice. The transient conditional depletion of Runx2 in the aVICs and sinus wall cells of LDLr-/-ApoB100 CAVD mice early in disease led to a significant reduction in the aortic peak velocity, mean velocity, and mean gradient, suggesting the causal role of Runx2 on the progression of AS. Finally, the leaflet hinge and sinus wall calcification were significantly decreased in the aortic valve following the conditional and temporal Runx2 depletion, but no significant effect on the valve cusp calcification or thickness was observed. Conclusions: In the aortic valve disease, Runx2 was expressed early and was required for the osteochondrogenic differentiation of the aVICs and sinus wall cells. The transient depletion of Runx2 in the aVICs and sinus wall cells in a mouse model of CAVD with a high prevalence of hemodynamic valve dysfunction led to an improved aortic valve function. Our studies also suggest that leaflet hinge and sinus wall calcification, even in the absence of significant leaflet cusp calcification, may be sufficient to cause significant valve dysfunctions in mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cecilia M. Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Hammad SK, Eissa RG, Shaheen MA, Younis NN. Resveratrol Ameliorates Aortic Calcification in Ovariectomized Rats via SIRT1 Signaling. Curr Issues Mol Biol 2021; 43:1057-1071. [PMID: 34563044 PMCID: PMC8928980 DOI: 10.3390/cimb43020075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Postmenopausal women are at an increased risk of vascular calcification which is defined as the pathological deposition of minerals in the vasculature, and is strongly linked with increased cardiovascular disease risk. Since estrogen-replacement therapy is associated with increased cancer risk, there is a strong need for safer therapeutic approaches. In this study we aimed to investigate the protective and therapeutic effects of the phytoestrogen resveratrol against vascular calcification in ovariectomized rats, a preclinical model of postmenopause. Furthermore, we aimed to compare the effects of resveratrol to those of estrogen and to explore the mechanisms underpinning those effects. Treatment with resveratrol or estrogen ameliorated aortic calcification in ovariectomized rats, as shown by reduced calcium deposition in the arterial wall. Mechanistically, the effects of resveratrol and estrogen were mediated via the activation of SIRT1 signaling. SIRT1 protein expression was downregulated in the aortas of ovariectomized rats, and upregulated in rats treated with resveratrol or estrogen. Moreover, resveratrol and estrogen reduced the levels of the osteogenic markers: runt-related transcription factor 2 (RUNX2), osteocalcin and alkaline phosphatase (ALP) which have been shown to play a role during vascular calcification. Additionally, the senescence markers (p53, p16 and p21) which were also reported to play a role in the pathogenesis of vascular calcification, were reduced upon treatment with resveratrol and estrogen. In conclusion, the phytoestrogen resveratrol may be a safer alternative to estrogen, as a therapeutic approach against the progression of vascular calcification during postmenopause.
Collapse
Affiliation(s)
- Sally K. Hammad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| | - Rana G. Eissa
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| | - Mohamed A. Shaheen
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Nahla N. Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| |
Collapse
|
11
|
Deligiorgi MV, Panayiotidis MI, Siasos G, Trafalis DT. Osteoporosis Entwined with Cardiovascular Disease: The Implication of Osteoprotegerin and the Example of Statins. Curr Med Chem 2021; 28:1443-1467. [PMID: 31971101 DOI: 10.2174/0929867327666200123151132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022]
Abstract
Beyond being epiphenomenon of shared epidemiological factors, the integration of Osteoporosis (OP) with Cardiovascular Disease (CVD) - termed "calcification paradox" - reflects a continuum of aberrant cardiometabolic status. The present review provides background knowledge on "calcification paradox", focusing on the endocrine aspect of vasculature orchestrated by the osteoblastic molecular fingerprint of vascular cells, acquired via imbalance among established modulators of mineralization. Osteoprotegerin (OPG), the well-established osteoprotective cytokine, has recently been shown to exert a vessel-modifying role. Prompted by this notion, the present review interrogates OPG as the potential missing link between OP and CVD. However, so far, the confirmation of this hypothesis is hindered by the equivocal role of OPG in CVD, being both proatherosclerotic and antiatherosclerotic. Further research is needed to illuminate whether OPG could be a biomarker of the "calcification paradox". Moreover, the present review brings into prominence the dual role of statins - cardioprotective and osteoprotective - as a potential illustration of the integration of CVD with OP. Considering that the statins-induced modulation of OPG is central to the statins-driven osteoprotective signalling, statins could be suggested as an illustration of the role of OPG in the bone/vessels crosstalk, if further studies consolidate the contribution of OPG to the cardioprotective role of statins. Another outstanding issue that merits further evaluation is the inconsistency of the osteoprotective role of statins. Further understanding of the varying bone-modifying role of statins, likely attributed to the unique profile of different classes of statins defined by distinct physicochemical characteristics, may yield tangible benefits for treating simultaneously OP and CVD.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Department of Pharmacology - Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, Building 16, 1st Floor, 75 Mikras Asias, 11527 Goudi, Athens, Greece
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Group of Translational Biosciences, Faculty of Health & Life Sciences, Northumbria University, Ellison Building A516, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Gerasimos Siasos
- Department of Cardiology, Faculty of Medicine, 1st Hippokration Hospital, National and Kapodistrian University of Athens, 114 Vas Sofias, 11527 Athens, Greece
| | - Dimitrios T Trafalis
- Department of Pharmacology - Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, Building 16, 1st Floor, 75 Mikras Asias, 11527 Goudi, Athens, Greece
| |
Collapse
|
12
|
Carrillo-López N, Martínez-Arias L, Fernández-Villabrille S, Ruiz-Torres MP, Dusso A, Cannata-Andía JB, Naves-Díaz M, Panizo S. Role of the RANK/RANKL/OPG and Wnt/β-Catenin Systems in CKD Bone and Cardiovascular Disorders. Calcif Tissue Int 2021; 108:439-451. [PMID: 33586001 DOI: 10.1007/s00223-020-00803-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 12/23/2022]
Abstract
In the course of chronic kidney disease (CKD), alterations in the bone-vascular axis augment the risk of bone loss, fractures, vascular and soft tissue calcification, left ventricular hypertrophy, renal and myocardial fibrosis, which markedly increase morbidity and mortality rates. A major challenge to improve skeletal and cardiovascular outcomes in CKD patients requires a better understanding of the increasing complex interactions among the main modulators of the bone-vascular axis. Serum parathyroid hormone (PTH), phosphorus (P), calcium (Ca), fibroblast growth factor 23 (FGF23), calcidiol, calcitriol and Klotho are involved in this axis interact with RANK/RANKL/OPG system and the Wnt/β-catenin pathway. The RANK/RANKL/OPG system controls bone remodeling by inducing osteoblast synthesis of RANKL and downregulating OPG production and it is also implicated in vascular calcification. The complexity of this system has recently increased due the discovery of LGR4, a novel RANKL receptor involved in bone formation, but possibly also in vascular calcification. The Wnt/β-catenin pathway plays a key role in bone formation: when this pathway is activated, bone is formed, but when it is inhibited, bone formation is stopped. In the progression of CKD, a downregulation of the Wnt/β-catenin pathway has been described which occurs mainly through the not coincident elevations of sclerostin, Dickkopf1 (Dkk1) and the secreted Frizzled Related Proteins (sFRPs). This review analyzes the interactions of PTH, P, Ca, FGF23, calcidiol, calcitriol and Klotho with the RANKL/RANKL/OPG system and the Wnt/β-catenin, pathway and their implications in bone and cardiovascular disorders in CKD.
Collapse
Affiliation(s)
- Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Sara Fernández-Villabrille
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - María Piedad Ruiz-Torres
- Department of System Biology, Universidad de Alcalá, Retic REDinREN-ISCIII, Alcalá de Henares, Spain
| | - Adriana Dusso
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain.
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain.
| | | |
Collapse
|
13
|
Schroeder ME, Gonzalez Rodriguez A, Speckl KF, Walker CJ, Midekssa FS, Grim JC, Weiss RM, Anseth KS. Collagen networks within 3D PEG hydrogels support valvular interstitial cell matrix mineralization. Acta Biomater 2021; 119:197-210. [PMID: 33181362 PMCID: PMC7738375 DOI: 10.1016/j.actbio.2020.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Enzymatically degradable hydrogels were designed for the 3D culture of valvular interstitial cells (VICs), and through the incorporation of various functionalities, we aimed to investigate the role of the tissue microenvironment in promoting the osteogenic properties of VICs and matrix mineralization. Specifically, porcine VICs were encapsulated in a poly(ethylene glycol) hydrogel crosslinked with a matrix metalloproteinase (MMP)-degradable crosslinker (KCGPQG↓IWGQCK) and formed via a thiol-ene photoclick reaction in the presence or absence of collagen type I to promote matrix mineralization. VIC-laden hydrogels were treated with osteogenic medium for up to 15 days, and the osteogenic response was characterized by the expression of RUNX2 as an early marker of an osteoblast-like phenotype, osteocalcin (OCN) as a marker of a mature osteoblast-like phenotype, and vimentin (VIM) as a marker of the fibroblast phenotype. In addition, matrix mineralization was characterized histologically with Von Kossa stain for calcium phosphate. Osteogenic response was further characterized biochemically with calcium assays, and physically via optical density measurements. When the osteogenic medium was supplemented with calcium chloride, OCN expression was upregulated and mineralization was discernable at 12 days of culture. Finally, this platform was used to screen various drug therapeutics that were assessed for their efficacy in preventing mineralization using optical density as a higher throughput readout. Collectively, these results suggest that matrix composition has a key role in supporting mineralization deposition within diseased valve tissue.
Collapse
Affiliation(s)
- Megan E Schroeder
- Materials Science and Engineering Program, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA
| | - Andrea Gonzalez Rodriguez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA
| | - Kelly F Speckl
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA
| | - Cierra J Walker
- Materials Science and Engineering Program, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA
| | - Firaol S Midekssa
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA
| | - Joseph C Grim
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242
| | - Kristi S Anseth
- Materials Science and Engineering Program, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder CO 80303, USA.
| |
Collapse
|
14
|
Yu C, Zhang C, Kuang Z, Zheng Q. The Role of NLRP3 Inflammasome Activities in Bone Diseases and Vascular Calcification. Inflammation 2020; 44:434-449. [PMID: 33215255 PMCID: PMC7985100 DOI: 10.1007/s10753-020-01357-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Continuous stimulation of inflammation is harmful to tissues of an organism. Inflammatory mediators not only have an effect on metabolic and inflammatory bone diseases but also have an adverse effect on certain genetic and periodontal diseases associated with bone destruction. Inflammatory factors promote vascular calcification in various diseases. Vascular calcification is a pathological process similar to bone development, and vascular diseases play an important role in the loss of bone homeostasis. The NLRP3 inflammasome is an essential component of the natural immune system. It can recognize pathogen-related molecular patterns or host-derived dangerous signaling molecules, recruit, and activate the pro-inflammatory protease caspase-1. Activated caspase-1 cleaves the precursors of IL-1β and IL-18 to produce corresponding mature cytokines or recognizes and cleaves GSDMD to mediate cell pyroptosis. In this review, we discuss the role of NLRP3 inflammasome in bone diseases and vascular calcification caused by sterile or non-sterile inflammation and explore potential treatments to prevent bone loss.
Collapse
Affiliation(s)
- Chenyang Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Caihua Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Zhihui Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Qiang Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
15
|
Donato M, Ferri N, Lupo MG, Faggin E, Rattazzi M. Current Evidence and Future Perspectives on Pharmacological Treatment of Calcific Aortic Valve Stenosis. Int J Mol Sci 2020; 21:ijms21218263. [PMID: 33158204 PMCID: PMC7663524 DOI: 10.3390/ijms21218263] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS), the most common heart valve disease, is characterized by the slow progressive fibro-calcific remodeling of the valve leaflets, leading to progressive obstruction to the blood flow. CAVS is an increasing health care burden and the development of an effective medical treatment is a major medical need. To date, no effective pharmacological therapies have proven to halt or delay its progression to the severe symptomatic stage and aortic valve replacement represents the only available option to improve clinical outcomes and to increase survival. In the present report, the current knowledge and latest advances in the medical management of patients with CAVS are summarized, placing emphasis on lipid-lowering agents, vasoactive drugs, and anti-calcific treatments. In addition, novel potential therapeutic targets recently identified and currently under investigation are reported.
Collapse
Affiliation(s)
- Maristella Donato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Elisabetta Faggin
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
- Correspondence: ; Tel.: +39-0498-211-867 or +39-0422-322-207
| |
Collapse
|
16
|
Matilla L, Roncal C, Ibarrola J, Arrieta V, García-Peña A, Fernández-Celis A, Navarro A, Álvarez V, Gainza A, Orbe J, Cachofeiro V, Zalba G, Sádaba R, Rodríguez JA, López-Andrés N. A Role for MMP-10 (Matrix Metalloproteinase-10) in Calcific Aortic Valve Stenosis. Arterioscler Thromb Vasc Biol 2020; 40:1370-1382. [PMID: 32188274 DOI: 10.1161/atvbaha.120.314143] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Aortic valve (AV) calcification plays an important role in the progression of aortic stenosis (AS). MMP-10 (matrix metalloproteinase-10 or stromelysin-2) is involved in vascular calcification in atherosclerosis. We hypothesize that MMP-10 may play a pathophysiological role in calcific AS. Approach and Results: Blood samples (n=112 AS and n=349 controls) and AVs (n=88) from patients undergoing valve replacement were analyzed. Circulating MMP-10 was higher in patients with AS compared with controls (P<0.001) and correlated with TNFα (tumor necrosis factor α; rS=0.451; P<0.0001). MMP-10 was detected by immunochemistry in AVs from patients with AS colocalized with aortic valve interstitial cells markers α-SMA (α-smooth muscle actin) and vimentin and with calcification markers Runx2 (Runt-related transcription factor 2) and SRY (sex-determining region Y)-box 9. MMP-10 expression in AVs was further confirmed by RT-qPCR and western blot. Ex vivo, MMP-10 was elevated in the conditioned media of AVs from patients with AS and associated with interleukin-1β (rS=0.5045, P<0.001) and BMP (bone morphogenetic protein)-2 (rS=0.5003, P<0.01). In vitro, recombinant human MMP-10 induced the overexpression of inflammatory, fibrotic, and osteogenic markers (interleukin-1β, α-SMA, vimentin, collagen, BMP-4, Sox9, OPN [osteopontin], BMP-9, and Smad 1/5/8; P<0.05) and cell mineralization in aortic valve interstitial cells isolated from human AVs, in a mechanism involving Akt (protein kinase B) phosphorylation. These effects were prevented by TIMP-1 (tissue inhibitor of metalloproteinases type 1), a physiological MMP inhibitor, or specifically by an anti-MMP-10 antibody. CONCLUSIONS MMP-10, which is overexpressed in aortic valve from patients with AS, seems to play a central role in calcification in AS through Akt phosphorylation. MMP-10 could be a new therapeutic target for delaying the progression of aortic valve calcification in AS.
Collapse
Affiliation(s)
- Lara Matilla
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA, Pamplona, Spain (C.R., J.O., J.A.R.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (C.R., J.O., V.C., J.A.R.)
| | - Jaime Ibarrola
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Vanessa Arrieta
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Amaia García-Peña
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Amaya Fernández-Celis
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Adela Navarro
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Virginia Álvarez
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Alicia Gainza
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA, Pamplona, Spain (C.R., J.O., J.A.R.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (C.R., J.O., V.C., J.A.R.)
| | - Victoria Cachofeiro
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (C.R., J.O., V.C., J.A.R.).,Departamento de Fisiología, Facultad Medicina, Universidad Complutense, Instituto de Investigacioón Sanitaria Gregorio Maranñoón (IiSGM), Madrid, Spain (V.C.)
| | - Guillermo Zalba
- Department of Biochemistry and Genetics, University of Navarra, IdiSNA, Pamplona, Spain (G.Z.)
| | - Rafael Sádaba
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - José A Rodríguez
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA, Pamplona, Spain (C.R., J.O., J.A.R.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (C.R., J.O., V.C., J.A.R.)
| | - Natalia López-Andrés
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.).,Université de Lorraine, INSERM, Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, France (N.L.-A.)
| |
Collapse
|
17
|
Zheng KH, Tzolos E, Dweck MR. Pathophysiology of Aortic Stenosis and Future Perspectives for Medical Therapy. Cardiol Clin 2020; 38:1-12. [DOI: 10.1016/j.ccl.2019.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Gee T, Farrar E, Wang Y, Wu B, Hsu K, Zhou B, Butcher J. NFκB (Nuclear Factor κ-Light-Chain Enhancer of Activated B Cells) Activity Regulates Cell-Type-Specific and Context-Specific Susceptibility to Calcification in the Aortic Valve. Arterioscler Thromb Vasc Biol 2020; 40:638-655. [PMID: 31893948 DOI: 10.1161/atvbaha.119.313248] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Although often studied independently, little is known about how aortic valve endothelial cells and valve interstitial cells interact collaborate to maintain tissue homeostasis or drive valve calcific pathogenesis. Inflammatory signaling is a recognized initiator of valve calcification, but the cell-type-specific downstream mechanisms have not been elucidated. In this study, we test how inflammatory signaling via NFκB (nuclear factor κ-light-chain enhancer of activated B cells) activity coordinates unique and shared mechanisms of valve endothelial cells and valve interstitial cells differentiation during calcific progression. Approach and Results: Activated NFκB was present throughout the calcific aortic valve disease (CAVD) process in both endothelial and interstitial cell populations in an established mouse model of hypercholesterolemia-induced CAVD and in human CAVD. NFκB activity induces endothelial to mesenchymal transformation in 3-dimensional cultured aortic valve endothelial cells and subsequent osteogenic calcification of transformed cells. Similarly, 3-dimensional cultured valve interstitial cells calcified via NFκB-mediated osteogenic differentiation. NFκB-mediated endothelial to mesenchymal transformation was directly demonstrated in vivo during CAVD via genetic lineage tracking. Genetic deletion of NFκB in either whole valves or valve endothelium only was sufficient to prevent valve-specific molecular and cellular mechanisms of CAVD in vivo despite the persistence of a CAVD inducing environment. CONCLUSIONS Our results identify NFκB signaling as an essential molecular regulator for both valve endothelial and interstitial participation in CAVD pathogenesis. Direct demonstration of valve endothelial cell endothelial to mesenchymal transformation transmigration in vivo during CAVD highlights a new cellular population for further investigation in CAVD morbidity. The efficacy of valve-specific NFκB modulation in inhibiting hypercholesterolemic CAVD suggests potential benefits of multicell type integrated investigation for biological therapeutic development and evaluation for CAVD.
Collapse
Affiliation(s)
- Terence Gee
- From the Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY (T.G., E.F., K.H., J.B.)
| | - Emily Farrar
- From the Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY (T.G., E.F., K.H., J.B.)
| | - Yidong Wang
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (Y.W., B.W., B.Z.)
| | - Bingruo Wu
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (Y.W., B.W., B.Z.)
| | - Kevin Hsu
- From the Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY (T.G., E.F., K.H., J.B.)
| | - Bin Zhou
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (Y.W., B.W., B.Z.)
| | - Jonathan Butcher
- From the Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY (T.G., E.F., K.H., J.B.)
| |
Collapse
|
19
|
García-Gómez MC, Vilahur G. Osteoporosis and vascular calcification: A shared scenario. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2019; 32:33-42. [PMID: 31221532 DOI: 10.1016/j.arteri.2019.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a systemic skeletal disease, characterised by low bone mass and deterioration in the micro-architecture of bone tissue, which causes increased bone fragility and consequently greater susceptibility to fractures. It is the most frequent metabolic bone disease in our population, and fractures resulting from osteoporosis are becoming more common. Furthermore, vascular calcification is a recognised risk factor of cardiovascular morbidity and mortality that historically has been considered a passive and degenerative process. However, it is currently recognised as an active process, which has histopathological characteristics, mineral composition and initiation and development mechanisms characteristic of bone formation. Paradoxically, patients with osteoporosis frequently show vascular calcifications. Traditionally, they have been considered as independent processes related to age, although more recent epidemiological studies have shown that there is a close relationship between the loss of bone mass and vascular calcification, regardless of age. In fact, both conditions share risk factors and pathophysiological mechanisms. These include the relationship between proteins of bone origin, such as osteopontin and osteoprotegerin (OPG), with vascular pathology, and the intercellular protein system RANK/RANKL/OPG and the Wnt signalling pathway. The mechanisms linked in both pathologies should be considered in clinical decisions, given that treatments for osteoporosis could have unforeseen effects on vascular calcification, and vice versa. In short, a better understanding of the relationship between both entities can help in proposing strategies to reduce the increasing prevalence of vascular calcification and osteoporosis in the aging population.
Collapse
Affiliation(s)
| | - Gemma Vilahur
- Programa ICCC-Institut de Recerca Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, España; CIBERCV Instituto de Salud Carlos III, Madrid, España.
| |
Collapse
|
20
|
Development of calcific aortic valve disease: Do we know enough for new clinical trials? J Mol Cell Cardiol 2019; 132:189-209. [PMID: 31136747 DOI: 10.1016/j.yjmcc.2019.05.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/11/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022]
Abstract
Calcific aortic valve disease (CAVD), previously thought to represent a passive degeneration of the valvular extracellular matrix (VECM), is now regarded as an intricate multistage disorder with sequential yet intertangled and interacting underlying processes. Endothelial dysfunction and injury, initiated by disturbed blood flow and metabolic disorders, lead to the deposition of low-density lipoprotein cholesterol in the VECM further provoking macrophage infiltration, oxidative stress, and release of pro-inflammatory cytokines. Such changes in the valvular homeostasis induce differentiation of normally quiescent valvular interstitial cells (VICs) into synthetically active myofibroblasts producing excessive quantities of the VECM and proteins responsible for its remodeling. As a result of constantly ongoing degradation and re-deposition, VECM becomes disorganised and rigid, additionally potentiating myofibroblastic differentiation of VICs and worsening adaptation of the valve to the blood flow. Moreover, disrupted and excessively vascularised VECM is susceptible to the dystrophic calcification caused by calcium and phosphate precipitating on damaged collagen fibers and concurrently accompanied by osteogenic differentiation of VICs. Being combined, passive calcification and biomineralisation synergistically induce ossification of the aortic valve ultimately resulting in its mechanical incompetence requiring surgical replacement. Unfortunately, multiple attempts have failed to find an efficient conservative treatment of CAVD; however, therapeutic regimens and clinical settings have also been far from the optimal. In this review, we focused on interactions and transitions between aforementioned mechanisms demarcating ascending stages of CAVD, suggesting a predisposing condition (bicuspid aortic valve) and drug combination (lipid-lowering drugs combined with angiotensin II antagonists and cytokine inhibitors) for the further testing in both preclinical and clinical trials.
Collapse
|
21
|
Li Y, Zhang Y, Ding JL, Liu JC, Xu JJ, Tang YH, Yi YP, Xu WC, Yu WP, Lu C, Yang W, Yang JS, Gong Y, Zhou JL. Biofunctionalization of decellularized porcine aortic valve with OPG-loaded PCL nanoparticles for anti-calcification. RSC Adv 2019; 9:11882-11893. [PMID: 35517024 PMCID: PMC9063478 DOI: 10.1039/c9ra00408d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 12/28/2022] Open
Abstract
Decellularized valve stents are widely used in tissue-engineered heart valves because they maintain the morphological structure of natural valves, have good histocompatibility and low immunogenicity. However, the surface of the cell valve loses the original endothelial cell coverage, exposing collagen and causing calcification and decay of the valve in advance. In this study, poly ε-caprolactone (PCL) nanoparticles loaded with osteoprotegerin (OPG) were bridged to a decellularized valve using a nanoparticle drug delivery system and tissue engineering technology to construct a new anti-calcification composite valve with sustained release function. The PCL nanoparticles loaded with OPG were prepared via an emulsion solvent evaporation method, which had a particle size of 133 nm and zeta potential of -27.8 mV. Transmission electron microscopy demonstrated that the prepared nanoparticles were round in shape, regular in size, and uniformly distributed, with an encapsulation efficiency of 75%, slow release in vitro, no burst release, no cytotoxicity to BMSCs, and contained OPG nanoparticles in vitro. There was a delay in the differentiation of BMSCs into osteoblasts. The decellularized valve modified by nanoparticles remained intact and its collagen fibers were continuous. After 8 weeks of subcutaneous implantation in rats, the morphological structure of the valve was almost complete, and the composite valve showed anti-calcification ability to a certain extent.
Collapse
Affiliation(s)
- Yang Li
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Yu Zhang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University Shanghai China
| | - Jing-Li Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Jian-Jun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Yan-Hua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Ying-Ping Yi
- Department of Science and Education, The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Wei-Chang Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Wen-Peng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Jue-Sheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Jian-Liang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| |
Collapse
|
22
|
Elseweidy MM, Mohamed HE, Elrashidy RA, Atteia HH, Elnagar GM, Ali AEM. Potential therapeutic roles of 10-dehydrogingerdione and/or pentoxifylline against calcium deposition in aortic tissues of high dietary cholesterol-fed rabbits. Mol Cell Biochem 2019; 453:131-142. [PMID: 30173373 DOI: 10.1007/s11010-018-3438-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023]
Abstract
The present study aimed to investigate the inhibitory effects of 10-dehydrogingerdione (10-DHGD) and pentoxifylline (PTX) either individually or in combined form on calcium deposition in high cholesterol diet (HCD)-fed rabbits as compared to atorvastatin (ATOR), and to clarify the underlying mechanisms. Three-months-old male New Zealand white rabbits received either normal chow or HCD for 12 weeks. The latter group was subdivided into five groups and concurrently treated either with vehicle (dyslipidemic control), ATOR, 10-DHGD, PTX or combined 10-DHGD and PTX. Blood samples and aortic tissue were collected for biochemical and histological analyses. HCD-fed rabbits displayed dyslipidemia, inflammation, atherosclerotic lesions, and calcium deposition in aortas as compared to normal group. This was associated with up-regulation of bone morphogenetic protein-2 (BMP-2), wingless-type MMTV integration site family 3A (Wnt3a) mRNA levels and osteopontin expression in their aortic tissue, along with higher serum alkaline phosphatase and osteocalcin levels. Furthermore, a marked decrease in osteoprotegerin, along with a significant increase in receptor activator of NF-κB(RANK) levels, was found in aortic tissue of dyslipidemic rabbits. 10-DHGD and PTX monotherapy significantly modulated the afore-mentioned calcification markers and attenuated aortic calcification to greater extent than ATOR. Combination of 10-DHGD and PTX exerted more anti-calcifying effect than either individual drug. Our findings suggested therapeutic roles of 10-DHGD and PTX against aortic calcium deposition in dyslipidemic rabbits, likely mediated by HDL-raising effect and attenuation of associated inflammation. Combination of 10-DHGD and PTX may represent a promising therapeutic strategy for aortic calcification associated with atherosclerosis.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Hoda E Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Rania A Elrashidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hebatallah H Atteia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Gehad M Elnagar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Abd El-Monem Ali
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
23
|
RANKL Expression Is Increased in Circulating Mononuclear Cells of Patients with Calcific Aortic Stenosis. J Cardiovasc Transl Res 2018; 11:329-338. [PMID: 29777507 DOI: 10.1007/s12265-018-9804-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
Abstract
We aimed to investigate whether the expression of the OPG/RANK/RANKL triad in peripheral blood mononuclear cells (PBMC) and circulating levels of markers of ectopic mineralization (OPG, FGF-23, PPi) are modified in patients with calcific aortic valve disease (CAVD). We found that patients affected by CAVD (n = 50) had significantly higher circulating levels of OPG as compared to control individuals (p = 0.003). No differences between the two groups were found in FGF-23 and PPi levels. RANKL expression was higher in the PBMC from CAVD patients (p = 0.018) and was directly correlated with the amount of valve calcification (p = 0.032). In vitro studies showed that treatment of valve interstitial cells (VIC) with RANKL plus phosphate was followed by increase in matrix mineralization (p = 0.001). In conclusion, RANKL expression is increased in PBMC of patients with CAVD, is directly correlated with the degree of valve calcification, and promotes pro-calcific differentiation of VIC.
Collapse
|
24
|
Özkalaycı F, Gülmez Ö, Uğur-Altun B, Pandi-Perumal SR, Altun A. The Role of Osteoprotegerin as a Cardioprotective Versus Reactive Inflammatory Marker: the Chicken or the Egg Paradox. Balkan Med J 2018; 35:225-232. [PMID: 29687784 PMCID: PMC5981118 DOI: 10.4274/balkanmedj.2018.0579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cardiovascular disease is one of the most frequent causes of mortality and morbidity worldwide. Several variables have been identified as risk factors for cardiovascular disease. Recently, the role of receptor activator of nuclear factor kappa B, receptor activator of nuclear factor kappa B ligand, and the osteoprotegerin system has been recognized as more important in the pathogenesis of cardiovascular disease. Besides their roles in the regulation of bone resorption, these molecules have been reported to be associated with the pathophysiology of cardiovascular disease. There are conflicting data regarding the impact of osteoprotegerin, a glycoprotein with a regulatory role in the cardiovascular system. The aim of this review is to discuss the current knowledge and the role of osteoprotegerin in cardiovascular disease.
Collapse
Affiliation(s)
- Flora Özkalaycı
- Department of Cardiology, Başkent University İstanbul Hospital, İstanbul, Turkey
| | - Öykü Gülmez
- Department of Cardiology, Başkent University İstanbul Hospital, İstanbul, Turkey
| | - Betül Uğur-Altun
- Department of Endocrinology and Metabolism, Başkent University İstanbul Hospital, İstanbul, Turkey
| | | | - Armağan Altun
- Department of Cardiology, Başkent University İstanbul Hospital, İstanbul, Turkey
| |
Collapse
|
25
|
Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin in the crosstalk between vessels and bone: Its potential utility as a marker of cardiometabolic diseases. Pharmacol Ther 2018; 182:115-132. [DOI: 10.1016/j.pharmthera.2017.08.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Zhiduleva EV, Irtyuga OB, Shishkova AA, Ignat'eva EV, Kostina AS, Levchuk KA, Golovkin AS, Rylov AY, Kostareva AA, Moiseeva OM, Malashicheva AB, Gordeev ML. Cellular Mechanisms of Aortic Valve Calcification. Bull Exp Biol Med 2018; 164:371-375. [PMID: 29308559 DOI: 10.1007/s10517-018-3992-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Indexed: 10/18/2022]
Abstract
Comparative in vitro study examined the osteogenic potential of interstitial cells of aortic valve obtained from the patients with aortic stenosis and from control recipients of orthotopic heart transplantation with intact aortic valve. The osteogenic inductors augmented mineralization of aortic valve interstitial cells (AVIC) in patients with aortic stenosis in comparison with the control level. Native AVIC culture of aortic stenosis patients demonstrated overexpression of osteopontin gene (OPN) and underexpression of osteoprotegerin gene (OPG) in comparison with control levels. In both groups, AVIC differentiation was associated with overexpression of RUNX2 and SPRY1 genes. In AVIC of aortic stenosis patients, expression of BMP2 gene was significantly greater than the control level. The study revealed an enhanced sensitivity of AVIC to osteogenic inductors in aortic stenosis patients, which indicates probable implication of OPN, OPG, and BMP2 genes in pathogenesis of aortic valve calcification.
Collapse
Affiliation(s)
- E V Zhiduleva
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia.
| | - O B Irtyuga
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - A A Shishkova
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - E V Ignat'eva
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - A S Kostina
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - K A Levchuk
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - A S Golovkin
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - A Yu Rylov
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - A A Kostareva
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - O M Moiseeva
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - A B Malashicheva
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia
| | - M L Gordeev
- V. A. Almazov National Medical Research Center, St. Petersburg, Russia
| |
Collapse
|
27
|
Human interstitial cellular model in therapeutics of heart valve calcification. Amino Acids 2017; 49:1981-1997. [DOI: 10.1007/s00726-017-2432-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 12/27/2022]
|
28
|
NOTCH1 Mutations in Aortic Stenosis: Association with Osteoprotegerin/RANK/RANKL. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6917907. [PMID: 28246602 PMCID: PMC5299165 DOI: 10.1155/2017/6917907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/25/2016] [Indexed: 11/29/2022]
Abstract
Background. The NOTCH pathway is known to be important in the pathogenesis of calcific aortic valve disease, possibly through regulators of osteoprotegerin (OPG), receptor activator of nuclear factor κB (RANK), and its ligand (RANKL) system. The purpose of the present study was to search for possible associations between NOTCH1 gene mutations and circulating levels of OPG and soluble RANKL (sRANKL) in patients with aortic stenosis (AS). Methods. The study was performed on 61 patients with AS including 31 with bicuspid and 30 with tricuspid aortic valves. We applied a strategy of targeted mutation screening for 10 out of 34 exons of the NOTCH1 gene by direct sequencing. Serum OPG and sRANKL levels were assessed. Results. In total, 6 genetic variants of the NOTCH1 gene including two new mutations were identified in the study group. In an age- and arterial hypertension-adjusted multivariable regression analysis, the serum OPG levels and the OPG/sRANKL ratio were correlated with NOTCH1 missense variants. All studied missense variants in NOTCH1 gene were found in Ca(2+)-binding EGF motif of the NOTCH extracellular domain bound to Delta-like 4. Conclusion. Our results suggest that the OPG/RANKL/RANK system might be directly influenced by genetic variants of NOTCH1 in aortic valve calcification.
Collapse
|
29
|
Kawakami R, Nakagami H, Noma T, Ohmori K, Kohno M, Morishita R. RANKL system in vascular and valve calcification with aging. Inflamm Regen 2016; 36:10. [PMID: 29259683 PMCID: PMC5725909 DOI: 10.1186/s41232-016-0016-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/10/2016] [Indexed: 12/24/2022] Open
Abstract
Vascular and cardiac valve calcification is associated with cardiovascular mortality in the general population. Increasing clinical and experimental evidence suggests that inflammation accelerates the progression of calcification, which has molecules in common with bone metabolism. For example, osteopontin (OPN), osteoprotegerin (OPG), receptor activator of the nuclear factor κB ligand (RANKL), and alkaline phosphatase (ALP) are proposed to play central roles in the calcification or demineralization of atherosclerotic lesions and the calcification of cardiac valves. Abnormalities in the balance of these proteins may lead to perturbations in vascular/valve calcification. "How to prevent calcification" is a common task based on conventional data; however, several pathological findings indicate that heavily calcified plaques are stable, which may not lead to coronary events. Vulnerable plaques tend to be either noncalcified or only mildly or moderately calcified. "How to treat calcification," which depends on the details of the specific patient, thus remains a difficult challenge. In addition to the detection of calcification, characterization as well as quantification of it is necessary for optimal treatment of this pathology in the future.
Collapse
Affiliation(s)
- Ryo Kawakami
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, 761-0793 Japan.,Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Kagawa, 565-0871 Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, 565-0871 Osaka Japan
| | - Takahisa Noma
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, 761-0793 Japan
| | - Koji Ohmori
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, 761-0793 Japan
| | - Masakazu Kohno
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, 761-0793 Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Kagawa, 565-0871 Japan
| |
Collapse
|
30
|
Abstract
Calcific aortic stenosis (AS) is the most prevalent heart valve disorder in developed countries. It is characterized by progressive fibro-calcific remodelling and thickening of the aortic valve leaflets that, over years, evolve to cause severe obstruction to cardiac outflow. In developed countries, AS is the third-most frequent cardiovascular disease after coronary artery disease and systemic arterial hypertension, with a prevalence of 0.4% in the general population and 1.7% in the population >65 years old. Congenital abnormality (bicuspid valve) and older age are powerful risk factors for calcific AS. Metabolic syndrome and an elevated plasma level of lipoprotein(a) have also been associated with increased risk of calcific AS. The pathobiology of calcific AS is complex and involves genetic factors, lipoprotein deposition and oxidation, chronic inflammation, osteoblastic transition of cardiac valve interstitial cells and active leaflet calcification. Although no pharmacotherapy has proved to be effective in reducing the progression of AS, promising therapeutic targets include lipoprotein(a), the renin-angiotensin system, receptor activator of NF-κB ligand (RANKL; also known as TNFSF11) and ectonucleotidases. Currently, aortic valve replacement (AVR) remains the only effective treatment for severe AS. The diagnosis and staging of AS are based on the assessment of stenosis severity and left ventricular systolic function by Doppler echocardiography, and the presence of symptoms. The introduction of transcatheter AVR in the past decade has been a transformative therapeutic innovation for patients at high or prohibitive risk for surgical valve replacement, and this new technology might extend to lower-risk patients in the near future.
Collapse
Affiliation(s)
- Brian R Lindman
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marie-Annick Clavel
- Québec Heart and Lung Institute, Department of Medicine, Laval University, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| | - Patrick Mathieu
- Québec Heart and Lung Institute, Department of Medicine, Laval University, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| | - Bernard Iung
- Cardiology Department, AP-HP, Bichat Hospital, Paris, France
- Paris-Diderot University, DHU Fire, Paris, France
| | - Patrizio Lancellotti
- University of Liège Hospital, GIGA Cardiovascular Sciences, Department of Cardiology, Heart Valve Clinic and CHU Sart Tilman, Liège, Belgium
- Grupo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| | - Catherine M Otto
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | - Philippe Pibarot
- Québec Heart and Lung Institute, Department of Medicine, Laval University, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| |
Collapse
|
31
|
Fojt R, Pirk J, Kamenický P, Karpíšek M, Straka Z, Malý M, Moťovská Z. Values of osteoprotegerin in aortic valve tissue in patients with significant aortic stenosis depend on the existence of concomitant coronary artery disease. Cardiovasc Pathol 2015; 25:181-184. [PMID: 26874038 DOI: 10.1016/j.carpath.2015.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/30/2015] [Accepted: 12/23/2015] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Calcific aortic valve stenosis (CAVS) is a serious clinical problem. The strongest predictor of CAVS progression is the amount of calcium in the aortic valve. The pathogenesis of CAVS is largely consistent with the pathogenesis of atherosclerosis; however, about 50% of patients with CAVS do not exhibit significant atherosclerosis. Cardiovascular calcification is currently considered an actively regulated process, in which the important role is attributed to the RANKL/RANK/OPG (receptor activator of nuclear factor κB ligand/RANK/osteoprotegerin) axis. We measured OPG levels in the tissue of calcified, stenotic aortic valves in relation to the presence or absence of coronary artery disease (CAD). MATERIALS AND METHODS Aortic valve samples were collected from 105 patients with calcified, mainly severe aortic stenosis, who were divided into two groups according to the presence of CAD. In Group A (n=44), there were normal coronary artery findings, while in Group B (n=61), there was angiographically demonstrated >50% stenosis of at least one coronary artery. The control Group C (n=21) consisted of patients without aortic stenosis and with normal angiographic findings on coronary arteries. RESULTS The highest tissue concentrations of OPG [median (pmol/L), 25th-75th percentile] were found in Group A [6.95, 3.96-18.37], which was significantly different compared to the other two groups (P=.026 and .001, respectively). The levels of OPG in Group B [4.15, 2.47-9.16] and in Group C [2.25, 1.01-5.08] did not differ significantly (P=.078); however, the lowest concentrations of OPG were found in Group C. Neither age nor gender in our study had effect on tissue levels of OPG (P=.994 for gender; P=.848 for age). CONCLUSION Calcified and narrowed aortic valves, compared to the normal valves, were accompanied by a change in tissue concentrations of OPG, which is, in addition, dependent on the presence or absence of CAD. The highest tissue concentrations of OPG in our work were found in patients with significant aortic stenosis without concomitant CAD.
Collapse
Affiliation(s)
- Richard Fojt
- Cardiocentre, Third Medical Faculty Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jan Pirk
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Peter Kamenický
- Assistance Publique - Hôpitaux de Paris and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Zbyněk Straka
- Cardiocentre, Third Medical Faculty Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Marek Malý
- National Institute of Public Health, Prague, Czech Republic
| | - Zuzana Moťovská
- Cardiocentre, Third Medical Faculty Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic.
| |
Collapse
|
32
|
Hénaut L, Sanchez-Nino MD, Aldamiz-Echevarría Castillo G, Sanz AB, Ortiz A. Targeting local vascular and systemic consequences of inflammation on vascular and cardiac valve calcification. Expert Opin Ther Targets 2015; 20:89-105. [PMID: 26788590 DOI: 10.1517/14728222.2015.1081685] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Cardiac valve calcification and vascular calcification (VC) are associated with cardiovascular mortality in the general population and in patients with chronic kidney disease (CKD). CKD, diabetes mellitus, and atherosclerosis are among the causes of systemic inflammation that are associated with VC. AREAS COVERED This review collates clinical and experimental evidence that inflammation accelerates VC progression. Specifically, we review the actions of key pro-inflammatory cytokines and inflammation-related transcription factors on VC, and the role played by senescence. Inflammatory cytokines, such as the TNF superfamily and IL-6 superfamily, and inflammation-related transcription factor NF-κB promote calcification in cultured vascular smooth muscle cells, valvular interstitial cells, or experimental animal models through direct effects, but also indirectly by decreasing circulating Fetuin A or Klotho levels. EXPERT OPINION Experimental evidence suggests a causal link between inflammation and VC that would change the clinical approach to prevention and treatment of VC. However, the molecular basis remains unclear and little is known about VC in humans treated with drugs targeting inflammatory cytokines. The effect of biologicals targeting TNF-α, RANKL, IL-6, and other inflammatory mediators on VC, in addition to the impact of dietary phosphate in patients with chronic systemic inflammation, requires study.
Collapse
Affiliation(s)
- Lucie Hénaut
- a 1 Universidad Autónoma de Madrid, School of Medicine, Nephrology, IIS-Fundación Jiménez Díaz , Madrid, Spain
| | - Maria Dolores Sanchez-Nino
- b 2Universidad Autónoma de Madrid, School of Medicine, IIS-Fundación Jiménez Díaz, Madrid, Spain.,c 3 REDINREN , Madrid, Spain
| | | | - Ana B Sanz
- b 2Universidad Autónoma de Madrid, School of Medicine, IIS-Fundación Jiménez Díaz, Madrid, Spain.,c 3 REDINREN , Madrid, Spain
| | - Alberto Ortiz
- c 3 REDINREN , Madrid, Spain.,e 5 Chief of nephrology, Universidad Autónoma de Madrid, School of Medicine, IIS-Fundación Jiménez Díaz , Madrid, Spain .,f 6 Fundación Renal Iñigo Alvarez de Toledo-IRSIN , Madrid, Spain
| |
Collapse
|
33
|
Parisi V, Leosco D, Ferro G, Bevilacqua A, Pagano G, de Lucia C, Perrone Filardi P, Caruso A, Rengo G, Ferrara N. The lipid theory in the pathogenesis of calcific aortic stenosis. Nutr Metab Cardiovasc Dis 2015; 25:519-525. [PMID: 25816732 DOI: 10.1016/j.numecd.2015.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 01/04/2023]
Abstract
AIMS Biologically active phenomena, triggered by atherogenesis and inflammation, lead to aortic valve (AV) calcification. Lipids play an important role in activating the cell signaling leading to AV bone deposition. This review, based on evidence from animal and human studies, mainly focused on the involvement of lipids and atherogenic phenomena in the pathogenesis of calcific aortic stenosis (AS). DATA SYNTHESIS The role of elevated low density lipoproteins for the risk of both vascular atherosclerosis and AS has been elucidated. Lipid disorders act synergistically with other risk factors to increase prevalence of calcific AS. Atherosclerosis is also involved in the pathogenesis of bone demineralization, a typical hallmark of aging, which is associated with ectopic calcification at vascular and valvular levels. Animal studies have recently contributed to demonstrate that lipids play an important role in AS pathogenesis through the activation of molecular cell signalings, such as Wnt/Lrp5 and RANK/RANKL/Osteprotegerin, which induce the transition of valvular myofibroblasts toward an osteogenic phenotype with consequent valvular bone deposition. Although all these evidence strongly support the lipid theory in AS pathogenesis, lipids lowering therapies failed to demonstrate in controlled trials a significant efficacy to slow AS progression. Encouraging results from animal studies indicate that physical activity may counteract the biological processes inducing AV degeneration. CONCLUSIONS This review indicates a robust interplay between lipids, inflammation, and calcific AS. This new pathophysiological scenario of such an emerging valvular disease paves the way to the next challenge of cardiovascular research: "prevent and care aortic valve stenosis".
Collapse
Affiliation(s)
- V Parisi
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy
| | - D Leosco
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy.
| | - G Ferro
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy
| | - A Bevilacqua
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy
| | - G Pagano
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy
| | - C de Lucia
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy
| | - P Perrone Filardi
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Italy
| | - A Caruso
- Casa di Cura S. Michele, Maddaloni, Italy
| | - G Rengo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy; Fondazione S. Maugeri, IRCCS, Istituto di Telese Terme, BN, Italy
| | - N Ferrara
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy; Fondazione S. Maugeri, IRCCS, Istituto di Telese Terme, BN, Italy
| |
Collapse
|
34
|
Innate and Adaptive Immunity in Calcific Aortic Valve Disease. J Immunol Res 2015; 2015:851945. [PMID: 26065007 PMCID: PMC4433691 DOI: 10.1155/2015/851945] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 01/18/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valve disorder. CAVD is a chronic process characterized by a pathologic mineralization of valve leaflets. Ectopic mineralization of the aortic valve involves complex relationships with immunity. Studies have highlighted that both innate and adaptive immunity play a role in the development of CAVD. In this regard, accumulating evidence indicates that fibrocalcific remodelling of the aortic valve is associated with activation of the NF-κB pathway. The expression of TNF-α and IL-6 is increased in human mineralized aortic valves and promotes an osteogenic program as well as the mineralization of valve interstitial cells (VICs), the main cellular component of the aortic valve. Different factors, including oxidized lipid species, activate the innate immune response through the Toll-like receptors. Moreover, VICs express 5-lipoxygenase and therefore produce leukotrienes, which may amplify the inflammatory response in the aortic valve. More recently, studies have emphasized that an adaptive immune response is triggered during CAVD. Herein, we are reviewing the link between the immune response and the development of CAVD and we have tried, whenever possible, to keep a translational approach.
Collapse
|
35
|
Lerman DA, Prasad S, Alotti N. Denosumab could be a Potential Inhibitor of Valvular Interstitial Cells Calcification in vitro. ACTA ACUST UNITED AC 2015; 5. [PMID: 27468412 DOI: 10.4172/2324-8602.1000249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Denosumab is a fully human monoclonal antibody and novel antiresorptive agent that works by binding receptor activator of nuclear factor kappa-β ligand (RANKL) and inhibiting the signaling cascade that causes osteoclast maturation, activity, and survival. We aimed to elucidate the effect of Denosumab in the process of spontaneous and induced calcification in an in vitro porcine valvular interstitial cells (VICs) model. MATERIALS AND METHODS VICs were extracted from fresh porcine hearts by serial collagenase digestion. Spontaneous calcification of VICs was increased in vitro by adding Na3PO4 (3 mM, pH 7.4) and different concentrations (0.1, 1 and 10 ng/ml) of transforming growth factor beta (TGFß). The degree of calcification before and after treatment with Denosumab was estimated by Alizarin Red staining for calcium deposition, and Sirius Red staining for collagen. Colorimetric techniques were used to determine calcium and collagen deposition quantitatively. For statistical analysis we used SPSS and Microsoft Office Excel 2013. RESULTS Porcine aortic VICs in vitro were induced to calcify by the addition of either 3 mM Na3PO4, showing a 5.2 fold increase by 14 days (P<0.001), or 3 mM Na3PO4 + 10 ng/ml of TGFβ, showing a 7 fold increase by Day 14 (P<0.001). Denosumab inhibited induced calcification by 3 mM Na3PO4 and 3 mM Na3PO4 with the addition of TGFß at either 0.1, 1 or 10 ng/ml to basal levels only at a concentration of 50 μg/ml (P<0.001). CONCLUSION This study has proved that Denosumab could be a potential inhibitor of the calcification of VICs in vitro. A fuller understanding of the actions of Denosumab may identify a novel therapeutic strategy for clinical intervention against aortic valve calcification and aortic stenosis.
Collapse
Affiliation(s)
- Daniel Alejandro Lerman
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian) The University of Edinburgh, United Kingdom
| | - Sai Prasad
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian) The University of Edinburgh, United Kingdom
| | - Nasri Alotti
- Department of Cardiothoracic Surgery, Teaching Hospital of Zala County, Pécs University, Hungary
| |
Collapse
|
36
|
Review of Molecular and Mechanical Interactions in the Aortic Valve and Aorta: Implications for the Shared Pathogenesis of Aortic Valve Disease and Aortopathy. J Cardiovasc Transl Res 2014; 7:823-46. [DOI: 10.1007/s12265-014-9602-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/30/2014] [Indexed: 01/08/2023]
|
37
|
Abstract
PURPOSE OF REVIEW Aortic valve disease (AVD) is a growing public health problem, and the pathogenesis underlying AVD is complex. The lack of durable bioprostheses and pharmacologic therapies remain central needs in care. The purpose of this review is to highlight recent clinical studies that impact the care of children with AVD and is to explore ongoing translational research efforts. RECENT FINDINGS Clinical studies have evaluated the durability of bioprosthetics and surgical strategies, tested statins during early disease, and identified new predictive biomarkers. Large animal models have demonstrated the effectiveness of a novel bioprosthetic scaffold. Mouse models of latent AVD have advanced our ability to elucidate natural history and perform preclinical studies that test new treatments in the context of early disease. SUMMARY Current priorities for AVD patients include identifying new pharmacologic treatments and developing durable bioprostheses. Multidisciplinary efforts are needed that bridge pediatric and adult programs, and bring together different types of expertise and leverage network and consortium resources. As our understanding of the underlying complex genetics is better defined, companion diagnostics may transform future clinical trials and ultimately improve the care of patients with AVD by promoting personalized medicine and early intervention.
Collapse
|
38
|
Wirrig EE, Yutzey KE. Conserved transcriptional regulatory mechanisms in aortic valve development and disease. Arterioscler Thromb Vasc Biol 2014; 34:737-41. [PMID: 24665126 DOI: 10.1161/atvbaha.113.302071] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is increasing evidence for activation of developmental transcriptional regulatory pathways in heart valve disease. Here, we review molecular regulatory mechanisms involved in heart valve progenitor development, leaflet morphogenesis, and extracellular matrix organization that also are active in diseased aortic valves. These include regulators of endothelial-to-mesenchymal transitions, such as the Notch pathway effector RBPJ, and the valve progenitor markers Twist1, Msx1/2, and Sox9. Little is known of the potential reparative or pathological functions of these developmental mechanisms in adult aortic valves, but it is tempting to speculate that valve progenitor cells could contribute to repair in the context of disease. Likewise, loss of either RBPJ or Sox9 leads to aortic valve calcification in mice, supporting a potential therapeutic role in prevention of disease. During aortic valve calcification, transcriptional regulators of osteogenic development are activated in addition to valve progenitor regulatory programs. Specifically, the transcription factor Runx2 and its downstream target genes are induced in calcified valves. Runx2 and osteogenic genes also are induced with vascular calcification, but activation of valve progenitor markers and the cellular context of expression are likely to be different for valve and vascular calcification. Additional research is necessary to determine whether developmental mechanisms contribute to valve repair or whether these pathways can be harnessed for new treatments of heart valve disease.
Collapse
Affiliation(s)
- Elaine E Wirrig
- From The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | |
Collapse
|
39
|
Schmidt N, Brandsch C, Schutkowski A, Hirche F, Stangl GI. Dietary vitamin D inadequacy accelerates calcification and osteoblast-like cell formation in the vascular system of LDL receptor knockout and wild-type mice. J Nutr 2014; 144:638-46. [PMID: 24647396 DOI: 10.3945/jn.113.189118] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vitamin D insufficiency is highly associated with cardiovascular morbidity and mortality. We have demonstrated enhanced vascular calcification in LDL receptor knockout (LDLR(-/-)) mice fed a diet low in vitamin D. This study aimed to investigate the impact of a diet low in vitamin D on vascular calcification in wild-type (WT) mice lacking atherosclerotic plaques and the effects of a persistent and discontinuous vitamin D insufficiency on atherosclerotic plaque composition in LDLR(-/-) mice. The study was performed with 4-wk-old male WT and LDLR(-/-) mice that were fed a normal calcium/phosphate Western diet (210 g/kg fat, 1.5 g/kg cholesterol) containing either adequate (+D; 1000 IU/kg) or low (-D; 50 IU/kg) amounts of vitamin D-3 for 16 wk. Four groups of LDLR(-/-) mice received 1 of the 2 diets for additional 16 wk (total 32 wk) and were compared with mice fed the diets for only 16 wk. WT and LDLR(-/-) mice that were fed the -D diet for 16 wk tended to develop more calcified spots in the aortic valve than mice fed the +D diet (+50% and +56%, respectively; P < 0.10). In LDLR(-/-) mice, the extent of calcification increased from week 16 to week 32 and was higher in the -D than in the +D group (P < 0.05). The calcification, owing to the -D diet, was accompanied by highly expressed osteoblast differentiation factors, indicating a transdifferentiation of vascular cells to osteoblast-like cells. Feeding the +D diet subsequent to the -D diet reduced the vascular calcification (P < 0.05). LDLR(-/-) mice fed the -D diet for 32 wk had higher plaque lipid depositions (+48%, P < 0.05) and a higher expression of cluster of differentiation 68 (+31%, P < 0.05) and tumor necrosis factor α (+134%, P < 0.001) than the +D group. Collectively, the findings imply low vitamin D status as a causal factor for vascular calcification and atherosclerosis.
Collapse
Affiliation(s)
- Nadine Schmidt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
40
|
Furukawa KI. Recent Advances in Research on Human Aortic Valve Calcification. J Pharmacol Sci 2014; 124:129-37. [DOI: 10.1254/jphs.13r05cr] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
41
|
Galeone A, Paparella D, Colucci S, Grano M, Brunetti G. The role of TNF-α and TNF superfamily members in the pathogenesis of calcific aortic valvular disease. ScientificWorldJournal 2013; 2013:875363. [PMID: 24307884 PMCID: PMC3836568 DOI: 10.1155/2013/875363] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/02/2013] [Indexed: 01/08/2023] Open
Abstract
Calcific aortic valve disease (CAVD) represents a slowly progressive pathologic process associated with major morbidity and mortality. The process is characterized by multiple steps: inflammation, fibrosis, and calcification. Numerous studies focalized on its physiopathology highlighting different "actors" for the multiple "acts." This paper focuses on the role of the tumor necrosis factor superfamily (TNFSF) members in the pathogenesis of CAVD. In particular, we discuss the clinical and experimental studies providing evidence of the involvement of tumor necrosis factor-alpha (TNF-α), receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL), its membrane receptor RANK and its decoy receptor osteoprotegerin (OPG), and TNF-related apoptosis-inducing ligand (TRAIL) in valvular calcification.
Collapse
Affiliation(s)
- Antonella Galeone
- Division of Cardiac Surgery, Department of Emergencies and Organ Transplantation (DETO), University of Bari “Aldo Moro”, Italy
| | - Domenico Paparella
- Division of Cardiac Surgery, Department of Emergencies and Organ Transplantation (DETO), University of Bari “Aldo Moro”, Italy
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Maria Grano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
42
|
Callegari A, Coons M, Ricks J, Yang H, Gross T, Huber P, Rosenfeld M, Scatena M. Bone Marrow– or Vessel Wall–Derived Osteoprotegerin Is Sufficient to Reduce Atherosclerotic Lesion Size and Vascular Calcification. Arterioscler Thromb Vasc Biol 2013; 33:2491-500. [DOI: 10.1161/atvbaha.113.301755] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective—
Osteoprotegerin (OPG) is a decoy receptor for the osteoclast differentiation factor receptor activator of NF-κB ligand. OPG regulates bone homeostasis, and its inactivation in mice results in severe osteoporosis. OPG deficiency in apolipoprotein E (ApoE)
−/−
mice results in increased atherosclerotic lesion size and calcification. Furthermore, receptor activator of NF-κB ligand enhances macrophage-dependent smooth muscle cell calcification in vitro. Here, we hypothesized that reconstitution of ApoE
−/−
OPG
−/−
mice with ApoE
−/−
OPG
+/+
bone marrow (BM) would be sufficient to rescue lesion progression and vascular calcification. Conversely, reconstitution of ApoE
−/−
OPG
+/+
mice with ApoE
−/−
OPG
−/−
BM may accelerate lesion progression and vascular calcification.
Approach and Results—
ApoE
−/−
OPG
−/−
mice transplanted with ApoE
−/−
OPG
+/+
BM developed smaller atherosclerotic lesions and deposited less calcium in the innominate artery than that of ApoE
−/−
OPG
−/−
mice transplanted with ApoE
−/−
OPG
−/−
BM. There were no differences in lesion size and calcification in ApoE
−/−
OPG
+/+
mice transplanted with BM from ApoE
−/−
OPG
−/−
or ApoE
−/−
OPG
+/+
mice. The large lesions observed in the ApoE
−/−
OPG
−/−
mice transplanted with OPG
−/−
BM were rich in chondrocyte-like cells, collagen, and proteoglycans. Importantly, the ApoE
−/−
OPG
−/−
mice transplanted with OPG
+/+
BM remained osteoporotic, and the ApoE
−/−
OPG
+/+
mice did not show signs of bone loss regardless of the type of BM received. In coculture experiments, macrophages and mesenchymal stem cells derived from ApoE
−/−
OPG
−/−
BM induced more vascular smooth muscle cell calcification than cells derived from ApoE
−/−
OPG
+/+
mice.
Conclusions—
These results indicate that OPG derived either from the BM or from the vessel wall is sufficient to slow down lesion progression and vascular calcification independent of bone turnover.
Collapse
Affiliation(s)
- A. Callegari
- From the Departments of Bioengineering (A.C., M.L.C., H.L.Y., M.S.), Pathology (J.L.R., M.E.R.), and Orthopaedics and Sports Medicine (T.S.G., P.H.), University of Washington, Seattle, WA
| | - M.L. Coons
- From the Departments of Bioengineering (A.C., M.L.C., H.L.Y., M.S.), Pathology (J.L.R., M.E.R.), and Orthopaedics and Sports Medicine (T.S.G., P.H.), University of Washington, Seattle, WA
| | - J.L. Ricks
- From the Departments of Bioengineering (A.C., M.L.C., H.L.Y., M.S.), Pathology (J.L.R., M.E.R.), and Orthopaedics and Sports Medicine (T.S.G., P.H.), University of Washington, Seattle, WA
| | - H.L. Yang
- From the Departments of Bioengineering (A.C., M.L.C., H.L.Y., M.S.), Pathology (J.L.R., M.E.R.), and Orthopaedics and Sports Medicine (T.S.G., P.H.), University of Washington, Seattle, WA
| | - T.S. Gross
- From the Departments of Bioengineering (A.C., M.L.C., H.L.Y., M.S.), Pathology (J.L.R., M.E.R.), and Orthopaedics and Sports Medicine (T.S.G., P.H.), University of Washington, Seattle, WA
| | - P. Huber
- From the Departments of Bioengineering (A.C., M.L.C., H.L.Y., M.S.), Pathology (J.L.R., M.E.R.), and Orthopaedics and Sports Medicine (T.S.G., P.H.), University of Washington, Seattle, WA
| | - M.E. Rosenfeld
- From the Departments of Bioengineering (A.C., M.L.C., H.L.Y., M.S.), Pathology (J.L.R., M.E.R.), and Orthopaedics and Sports Medicine (T.S.G., P.H.), University of Washington, Seattle, WA
| | - M. Scatena
- From the Departments of Bioengineering (A.C., M.L.C., H.L.Y., M.S.), Pathology (J.L.R., M.E.R.), and Orthopaedics and Sports Medicine (T.S.G., P.H.), University of Washington, Seattle, WA
| |
Collapse
|
43
|
Ko GJ. A biomarker, osteoprotegerin, in patients undergoing hemodialysis. Korean J Intern Med 2013; 28:654-6. [PMID: 24307839 PMCID: PMC3846989 DOI: 10.3904/kjim.2013.28.6.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/10/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Gang Jee Ko
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Chu Y, Lund DD, Weiss RM, Brooks RM, Doshi H, Hajj GP, Sigmund CD, Heistad DD. Pioglitazone attenuates valvular calcification induced by hypercholesterolemia. Arterioscler Thromb Vasc Biol 2013; 33:523-32. [PMID: 23288158 DOI: 10.1161/atvbaha.112.300794] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Development of calcific aortic valve stenosis involves multiple signaling pathways, which may be modulated by peroxisome proliferator-activated receptor-γ). This study tested the hypothesis that pioglitazone (Pio), a ligand for peroxisome proliferator-activated receptor-γ, inhibits calcification of the aortic valve in hypercholesteremic mice. METHODS AND RESULTS Low density lipoprotein receptor(-/-)/apolipoprotein B(100/100) mice were fed a Western-type diet with or without Pio (20 mg/kg per day) for 6 months. Pio attenuated lipid deposition and calcification in the aortic valve, but not aorta. In the aortic valve, Pio reduced levels of active caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Valve function (echocardiography) was significantly improved by Pio. To determine whether changes in gene expression are associated with differential effects of Pio on aortic valves versus aorta, Reversa mice were fed Western diet with or without Pio for 2 months. Several procalcific genes were increased by Western diet, and the increase was attenuated by Pio, in aortic valve, but not aorta. CONCLUSIONS Pio attenuates lipid deposition, calcification, and apoptosis in aortic valves of hypercholesterolemic mice, improves aortic valve function, and exhibits preferential effects on aortic valves versus aorta. We suggest that Pio protects against calcific aortic valve stenosis, and Pio or other peroxisome proliferator-activated receptor-γ ligands may be useful for early intervention to prevent or slow stenosis of aortic valves.
Collapse
Affiliation(s)
- Yi Chu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|