1
|
Nuñez E, Muguruza-Montero A, Alicante SM, Villarroel A. Fluorometric Measurement of Calmodulin-Dependent Peptide-Protein Interactions Using Dansylated Calmodulin. Bio Protoc 2024; 14:e4963. [PMID: 38618173 PMCID: PMC11006803 DOI: 10.21769/bioprotoc.4963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 04/16/2024] Open
Abstract
The assessment of peptide-protein interactions is a pivotal aspect of studying the functionality and mechanisms of various bioactive peptides. In this context, it is essential to employ methods that meet specific criteria, including sensitivity, biocompatibility, versatility, simplicity, and the ability to offer real-time monitoring. In cellular contexts, only a few proteins naturally possess inherent fluorescence, specifically those containing aromatic amino acids, particularly tryptophan. Nonetheless, by covalently attaching fluorescent markers, almost all proteins can be modified for monitoring purposes. Among the early extrinsic fluorescent probes designed for this task, dansyl chloride (DNSC) is a notable option due to its versatile nature and reliable performance. DNSC has been the primary choice as a fluorogenic derivatizing reagent for analyzing amino acids in proteins and peptides for an extended period of time. In our work, we have effectively utilized the distinctive properties of dansylated-calmodulin (D-CaM) for monitoring the interaction dynamics between proteins and peptides, particularly in the context of their association with calmodulin (CaM), a calcium-dependent regulatory protein. This technique not only enables us to scrutinize the affinity of diverse ligands but also sheds light on the intricate role played by calcium in these interactions. Key features • Dynamic fluorescence and real-time monitoring: dansyl-modified CaM enables sensitive, real-time fluorescence, providing valuable insights into the dynamics of molecular interactions and ligand binding. • Selective interaction and stable fluorescent adducts: DNSC selectively interacts with primary amino groups, ensuring specific detection and forming stable fluorescent sulfonamide adducts. • Versatility in research and ease of identification: D-CaM is a versatile tool in biological research, facilitating identification, precise quantification, and drug assessment for therapeutic development. • Sensitivity to surrounding alterations: D-CaM exhibits sensitivity to its surroundings, particularly ligand-induced changes, offering subtle insights into molecular interactions and environmental influences.
Collapse
Affiliation(s)
- Eider Nuñez
- Instituto Biofisika, CSIC-UPV/EHU, Leioa, Spain
| | | | | | | |
Collapse
|
2
|
Endothelial regulation of calmodulin expression and eNOS-calmodulin interaction in vascular smooth muscle. Mol Cell Biochem 2022; 477:1489-1498. [PMID: 35171400 DOI: 10.1007/s11010-022-04391-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
Calmodulin (CaM) is a Ca2+ sensor protein that is required for numerous vascular smooth muscle cell (VSMC) functions. Since CaM is not expressed enough for its many target proteins, factors that modulate its expression and interactions with targets in VSMCs can have extensive effects on vascular functions. VSMCs receive many regulatory inputs from endothelial cells (ECs). However, it is unknown if ECs regulate vascular functions via controlling expression of CaM and its interactions in VSMCs. In this work, we tested the hypothesis that ECs also affect VSMC signaling via regulation of CaM expression and interactions with its target proteins in VSMCs. Using ECs and VSMCs isolated from the same vessels and grown in a co-culture system, we observed that the presence of proliferating ECs significantly upregulates total CaM expression in VSMCs. An imaging module was devised to concurrently measure free Ca2+ and CaM levels in VSMCs in co-culture with ECs. Using indo-1/AM and a CaM biosensor built from a modified CaM-binding sequence of endothelial nitric oxide synthase (eNOS), this system revealed that in response to a generic Ca2+ signal, free Ca2+-bound CaM level is enhanced ~ threefold in VSMCs in co-culture with proliferating ECs. Interestingly, VSMCs express eNOS and eNOS-CaM association in response to the same Ca2+ stimulus is also enhanced ~ threefold in VSMCs co-cultured with ECs. Mechanistically, the endothelium-dependent upregulation of CaM in VSMCs is not affected by inhibition of NO production or endothelin receptors but is prevented by inhibition of vascular endothelial growth factor receptors. Consistently, VEGF-A level is upregulated in VSMCs co-cultured with proliferating ECs. These data indicate a new role of the endothelium in regulating vascular functions via upregulating CaM and its interactions in VSMCs.
Collapse
|
3
|
Gebert-Oberle B, Giles J, Clayton S, Tran QK. Calcium/calmodulin regulates signaling at the α 1A adrenoceptor. Eur J Pharmacol 2019; 848:70-79. [PMID: 30690001 DOI: 10.1016/j.ejphar.2019.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/16/2022]
Abstract
Cardiovascular functions are mediated by multiple 7-pass transmembrane receptors whose activation promotes contraction or relaxation of the tissues. The α1 adrenoceptor type 1A plays important roles in the control of vascular tone and myocardial contractility via Ca2+-dependent actions. Here, using novel FRET-based biosensors, we identified a novel Ca2+-dependent interaction between calmodulin (CaM) and the human α1A adrenoceptor at the juxtamembranous region of its 4th submembrane domain (SMD4JM, a.a. 333-361). SMD4JM houses the known nuclear localization signal of α1A adrenoceptor (NLS, a.a. 334-349). We found that NLS itself also interacts with CaM, but with lower affinity and Ca2+ sensitivity, indicating that full interaction between CaM and α1A receptor in this region requires segment a.a. 333-361. Combined K353Q/L356A substitutions in the non-NLS segment of SMD4JM cause a 3.5-fold reduction in the affinity of CaM-SMD4JM interaction. Overexpression of wild-type α1A adrenoceptor in cells enhances phosphorylation of the extracellular signal-regulated kinases 1/2 (ERK1/2) stimulated by A61603, while overexpression of the K353Q/L356A α1A receptor mutant significantly reduces this signal. Norepinephrine stimulates intracellular Ca2+ signals that are higher in cells overexpressing wild-type receptor but lower in cells overexpressing the K353Q/L356A receptor compared to non-transfected cells in the same microscopic environments. These data support a novel and important role for Ca2+-dependent CaM interaction at SMD4JM in α1A adrenoceptor-mediated signaling.
Collapse
Affiliation(s)
- Briana Gebert-Oberle
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, Ryan Hall 258, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Jennifer Giles
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, Ryan Hall 258, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Sarah Clayton
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, Ryan Hall 258, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, Ryan Hall 258, 3200 Grand Avenue, Des Moines, IA 50312, United States.
| |
Collapse
|
4
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 720] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
5
|
Ehlers K, Clements R, VerMeer M, Giles J, Tran QK. Novel regulations of the angiotensin II receptor type 1 by calmodulin. Biochem Pharmacol 2018; 152:187-200. [PMID: 29605626 DOI: 10.1016/j.bcp.2018.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/27/2018] [Indexed: 01/10/2023]
Abstract
The angiotensin II receptor type 1 (AT1R) mediates many Ca2+-dependent actions of angiotensin II (AngII). Calmodulin (CaM) is a key transducer of Ca2+ signals in cells. Two locations on the receptor's submembrane domains (SMD) 3 and 4 are known to interact with CaM. However, the binding sites for CaM, biochemical properties of the interactions, and their functional impact are not fully understood. Using a FRET-based screening method, we identified a new binding site for CaM on SMD2 (a.a. 125-141), in addition to SMD3 and the juxtamembranous region of SMD4 (SMD4JM, a.a., 309-327). Simultaneous measurements of CaM binding and free Ca2+ show that the interactions are Ca2+-dependent, with disparate Kd and EC50(Ca2+) values within the physiological range of cytoplasmic Ca2+. Full interaction between CaM and SMD3 requires the entire domain (a.a. 215-242) and has an EC50(Ca2+) value in the range of resting cytoplasmic Ca2+, suggesting AT1R-CaM interaction can occur in resting conditions in cells. AngII induces robust ERK1/2 phosphorylation in primary vascular smooth muscle cells. This effect is suppressed by AT1R inhibitor losartan and virtually abolished by CaM antagonist W-7. AngII-induced ERK1/2 phosphorylation is suppressed in cells expressing mutant AT1R with reduced CaM binding at each identified binding domain. AngII triggers transient Ca2+ signals in cells expressing wild-type AT1R. These signals are reduced in cells expressing mutant AT1R with reduced CaM binding at SMD3 or SMD4JM, but are very slow-rising, low amplitude signal in cells expressing AT1R with reduced CaM binding at SMD2. The data indicate that CaM interactions with AT1R can occur at various domains, with different affinities, at different physiological Ca2+ levels, and are important for AT1R-mediated signaling.
Collapse
Affiliation(s)
- Kevin Ehlers
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Robert Clements
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Mark VerMeer
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Jennifer Giles
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States.
| |
Collapse
|
6
|
Tran QK, Firkins R, Giles J, Francis S, Matnishian V, Tran P, VerMeer M, Jasurda J, Burgard MA, Gebert-Oberle B. Estrogen Enhances Linkage in the Vascular Endothelial Calmodulin Network via a Feedforward Mechanism at the G Protein-coupled Estrogen Receptor 1. J Biol Chem 2016; 291:10805-23. [PMID: 26987903 DOI: 10.1074/jbc.m115.697334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 12/13/2022] Open
Abstract
Estrogen exerts many effects on the vascular endothelium. Calmodulin (CaM) is the transducer of Ca(2+) signals and is a limiting factor in cardiovascular tissues. It is unknown whether and how estrogen modifies endothelial functions via the network of CaM-dependent proteins. Here we show that 17β-estradiol (E2) up-regulates total CaM level in endothelial cells. Concurrent measurement of Ca(2+) and Ca(2+)-CaM indicated that E2 also increases free Ca(2+)-CaM. Pharmacological studies, gene silencing, and receptor expression-specific cell studies indicated that the G protein-coupled estrogen receptor 1 (GPER/GPR30) mediates these effects via transactivation of EGFR and subsequent MAPK activation. The outcomes were then examined on four distinct members of the intracellular CaM target network, including GPER/GPR30 itself and estrogen receptor α, the plasma membrane Ca(2+)-ATPase (PMCA), and endothelial nitric-oxide synthase (eNOS). E2 substantially increases CaM binding to estrogen receptor α and GPER/GPR30. Mutations that reduced CaM binding to GPER/GPR30 in separate binding domains do not affect GPER/GPR30-Gβγ preassociation but decrease GPER/GPR30-mediated ERK1/2 phosphorylation. E2 increases CaM-PMCA association, but the expected stimulation of Ca(2+) efflux is reversed by E2-stimulated tyrosine phosphorylation of PMCA. These effects sustain Ca(2+) signals and promote Ca(2+)-dependent CaM interactions with other CaM targets. Consequently, E2 doubles CaM-eNOS interaction and also promotes dual phosphorylation of eNOS at Ser-617 and Ser-1179. Calculations using in-cell and in vitro data revealed substantial individual and combined contribution of these effects to total eNOS activity. Taken together, E2 generates a feedforward loop via GPER/GPR30, which enhances Ca(2+)/CaM signals and functional linkage in the endothelial CaM target network.
Collapse
Affiliation(s)
- Quang-Kim Tran
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Rachel Firkins
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Jennifer Giles
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Sarah Francis
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Vahe Matnishian
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Phuong Tran
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Mark VerMeer
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Jake Jasurda
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Michelle Ann Burgard
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Briana Gebert-Oberle
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| |
Collapse
|
7
|
Burgardt NI, Schmidt A, Manns A, Schutkowski A, Jahreis G, Lin YJ, Schulze B, Masch A, Lücke C, Weiwad M. Parvulin 17-catalyzed Tubulin Polymerization Is Regulated by Calmodulin in a Calcium-dependent Manner. J Biol Chem 2015; 290:16708-22. [PMID: 25940090 DOI: 10.1074/jbc.m114.593228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 12/16/2022] Open
Abstract
Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca(2+)-loaded calmodulin (Ca(2+)/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca(2+)/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca(2+)/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with (15)N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca(2+)-dependent manner with the Par17 N terminus. The reverse experiment with (15)N-labeled Ca(2+)/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca(2+)/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK(796-815) complex. In vitro tubulin polymerization assays furthermore showed that Ca(2+)/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca(2+)/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca(2+)/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca(2+) signaling with microtubule function.
Collapse
Affiliation(s)
- Noelia Inés Burgardt
- From the Institute of Biochemistry and Biophysics (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina, Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale), Germany,
| | - Andreas Schmidt
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Annika Manns
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Alexandra Schutkowski
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Günther Jahreis
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Yi-Jan Lin
- Graduate Institute of Natural Products, Center of Excellence for Environmental Medicine, Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan, and
| | - Bianca Schulze
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Antonia Masch
- Martin-Luther-University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Department of Enzymology, 06099 Halle (Saale), Germany
| | - Christian Lücke
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Matthias Weiwad
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale), Germany, Martin-Luther-University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Department of Enzymology, 06099 Halle (Saale), Germany
| |
Collapse
|
8
|
Tran QK, VerMeer M. Biosensor-based approach identifies four distinct calmodulin-binding domains in the G protein-coupled estrogen receptor 1. PLoS One 2014; 9:e89669. [PMID: 24586950 PMCID: PMC3931812 DOI: 10.1371/journal.pone.0089669] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/22/2014] [Indexed: 01/24/2023] Open
Abstract
The G protein-coupled estrogen receptor 1 (GPER) has been demonstrated to participate in many cellular functions, but its regulatory inputs are not clearly understood. Here we describe a new approach that identifies GPER as a calmodulin-binding protein, locates interaction sites, and characterizes their binding properties. GPER coimmunoprecipitates with calmodulin in primary vascular smooth muscle cells under resting conditions, which is enhanced upon acute treatment with either specific ligands or a Ca(2+)-elevating agent. To confirm direct interaction and locate the calmodulin-binding domain(s), we designed a series of FRET biosensors that consist of enhanced cyan and yellow fluorescent proteins flanking each of GPER's submembrane domains (SMDs). Responses of these biosensors showed that all four submembrane domains directly bind calmodulin. Modifications of biosensor linker identified domains that display the strongest calmodulin-binding affinities and largest biosensor dynamics, including a.a. 83-93, 150-175, 242-259, 330-351, corresponding respectively to SMDs 1, 2, 3, and the juxta-membranous section of SMD4. These biosensors bind calmodulin in a strictly Ca(2+)-dependent fashion and with disparate affinities in the order SMD2>SMD4>SMD3>SMD1, apparent K d values being 0.44 ± 0.03, 1.40 ± 0.16, 8.01 ± 0.29, and 136.62 ± 6.56 µM, respectively. Interestingly, simultaneous determinations of biosensor responses and suitable Ca(2+) indicators identified separate Ca(2+) sensitivities for their interactions with calmodulin. SMD1-CaM complexes display a biphasic Ca(2+) response, representing two distinct species (SMD1 sp1 and SMD1 sp2) with drastically different Ca(2+) sensitivities. The Ca(2+) sensitivities of CaM-SMDs interactions follow the order SMD1sp1>SMD4>SMD2>SMD1sp2>SMD3, EC50(Ca(2+)) values being 0.13 ± 0.02, 0.75 ± 0.05, 2.38 ± 0.13, 3.71 ± 0.13, and 5.15 ± 0.25 µM, respectively. These data indicate that calmodulin may regulate GPER-dependent signaling at the receptor level through multiple interaction sites. FRET biosensors represent a simple method to identify unknown calmodulin-binding domains in G protein-coupled receptors and to quantitatively assess binding properties.
Collapse
Affiliation(s)
- Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, Des Moines, Iowa, United States of America
- * E-mail:
| | - Mark VerMeer
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, Des Moines, Iowa, United States of America
| |
Collapse
|