1
|
Mahmud ASM, Seers CA, Huq NL, Zhang L, Butler CA, Moore C, Cross KJ, Reynolds EC. Production and properties of adhesin-free gingipain proteinase RgpA. Sci Rep 2023; 13:10780. [PMID: 37402780 DOI: 10.1038/s41598-023-37534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
The Arg-specific gingipains of Porphyromonas gingivalis RgpA and RgpB have 97% identical sequences in their catalytic domains yet their propeptides are only 76% identical. RgpA isolates as a proteinase-adhesin complex (HRgpA) which hinders direct kinetic comparison of RgpAcat as a monomer with monomeric RgpB. We tested modifications of rgpA identifying a variant that enabled us to isolate histidine-tagged monomeric RgpA (rRgpAH). Kinetic comparisons between rRgpAH and RgpB used benzoyl-L-Arg-4-nitroanilide with and without cysteine and glycylglycine acceptor molecules. With no glycylglycine, values of Km, Vmax, kcat and kcat/Km for each enzyme were similar, but with glycylglycine Km decreased, Vmax increased and kcat increased ~ twofold for RgpB but ~ sixfold for rRgpAH. The kcat/Km for rRgpAH was unchanged whereas that of RgpB more than halved. Recombinant RgpA propeptide inhibited rRgpAH and RgpB with Ki 13 nM and 15 nM Ki respectively slightly more effectively than RgpB propeptide which inhibited rRgpAH and RgpB with Ki 22 nM and 29 nM respectively (p < 0.0001); a result that may be attributable to the divergent propeptide sequences. Overall, the data for rRgpAH reflected observations previously made by others using HRgpA, indicating rRgpAH fidelity and confirming the first production and isolation of functional affinity tagged RgpA.
Collapse
Affiliation(s)
- Abu Sayeed M Mahmud
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Christine A Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - N Laila Huq
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Catherine A Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Caroline Moore
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keith J Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
2
|
Frey AM, Satur MJ, Phansopa C, Honma K, Urbanowicz PA, Spencer DIR, Pratten J, Bradshaw D, Sharma A, Stafford G. Characterization of Porphyromonas gingivalis sialidase and disruption of its role in host-pathogen interactions. MICROBIOLOGY-SGM 2020; 165:1181-1197. [PMID: 31517596 DOI: 10.1099/mic.0.000851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Key to onset and progression of periodontitis is a complex relationship between oral bacteria and the host. The organisms most associated with severe periodontitis are the periodontal pathogens of the red complex: Tannerella forsythia, Treponema denticola and Porphyromonas gingivalis. These organisms express sialidases, which cleave sialic acid from host glycoproteins, and contribute to disease through various mechanisms. Here, we expressed and purified recombinant P. gingivalis sialidase SiaPG (PG_0352) and characterized its activity on a number of substrates, including host sialoglycoproteins and highlighting the inability to cleave diacetylated sialic acids - a phenomenon overcome by the NanS sialate-esterase from T. forsythia. Indeed SiaPG required NanS to maximize sialic acid harvesting from heavily O-acetylated substrates such as bovine salivary mucin, hinting at the possibility of interspecies cooperation in sialic acid release from host sources by these members of the oral microbiota. Activity of SiaPG and P. gingivalis was inhibited using the commercially available chemotherapeutic zanamivir, indicating its potential as a virulence inhibitor, which also inhibited sialic acid release from mucin, and was capable of inhibiting biofilm formation of P. gingivalis on oral glycoprotein sources. Zanamivir also inhibited attachment and invasion of oral epithelial cells by P. gingivalis and other periodontal pathogens, both in monospecies but also in multispecies infection experiments, indicating potential to suppress host-pathogen interactions of a mixed microbial community. This study broadens our understanding of the multifarious roles of bacterial sialidases in virulence, and indicates that their inhibition with chemotherapeutics could be a promising strategy for periodontitis therapy.
Collapse
Affiliation(s)
- Andrew M Frey
- University of South Florida, Department of Cell Biology, Microbiology, and Molecular Biology, 4202 East Fowler Ave, ISA2015, Tampa, FL 33620, USA.,Integrated BioSciences, School of Clinical Dentistry, The University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, UK
| | - Marianne J Satur
- Integrated BioSciences, School of Clinical Dentistry, The University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, UK
| | - Chatchawal Phansopa
- Integrated BioSciences, School of Clinical Dentistry, The University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, UK
| | - Kiyonobu Honma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, USA
| | | | | | - Jonathan Pratten
- Oral Health R&D, GlaxoSmithKline, St. Georges Avenue, Weybridge, KT13 0DE, UK
| | - David Bradshaw
- Oral Health R&D, GlaxoSmithKline, St. Georges Avenue, Weybridge, KT13 0DE, UK
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, USA
| | - Graham Stafford
- Integrated BioSciences, School of Clinical Dentistry, The University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, UK
| |
Collapse
|
3
|
Sato K, Kakuda S, Yukitake H, Kondo Y, Shoji M, Takebe K, Narita Y, Naito M, Nakane D, Abiko Y, Hiratsuka K, Suzuki M, Nakayama K. Immunoglobulin‐like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system. Mol Microbiol 2018; 110:64-81. [DOI: 10.1111/mmi.14083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Shinji Kakuda
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Hideharu Yukitake
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Katsuki Takebe
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Yuka Narita
- Department of Functional Bioscience, Infection Biology Fukuoka Dental College Matsudo, Tamura, Sawara, Fukuoka 814‐0913Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Daisuke Nakane
- Department of Physics, Faculty of Science Gakushuin University Toshima‐ku, Tokyo 171‐8588Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Mamoru Suzuki
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| |
Collapse
|
4
|
Zhang L, Veith PD, Huq NL, Chen YY, Seers CA, Cross KJ, Gorasia DG, Reynolds EC. Porphyromonas gingivalis Gingipains Display Transpeptidation Activity. J Proteome Res 2018; 17:2803-2818. [PMID: 29984580 DOI: 10.1021/acs.jproteome.8b00286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Porphyromonas gingivalis is a keystone periodontal pathogen that has been associated with autoimmune disorders. The cell surface proteases Lys-gingipain (Kgp) and Arg-gingipains (RgpA and RgpB) are major virulence factors, and their proteolytic activity is enhanced by small peptides such as glycylglycine (GlyGly). The reaction kinetics suggested that GlyGly may function as an acceptor molecule for gingipain-catalyzed transpeptidation. Purified gingipains and P. gingivalis whole cells were used to digest selected substrates including human hemoglobin in the presence or absence of peptide acceptors. Mass spectrometric analysis of the substrates digested with gingipains in the presence of GlyGly showed that transpeptidation outcompeted hydrolysis, whereas the trypsin-digested controls exhibited predominantly hydrolysis activity. The transpeptidation levels increased with increasing concentration of GlyGly. Purified gingipains and whole cells exhibited extensive transpeptidation activities on human hemoglobin. All hemoglobin cleavage sites were found to be suitable for GlyGly transpeptidation, and this transpeptidation enhanced hemoglobin digestion. The transpeptidation products were often more abundant than the corresponding hydrolysis products. In the absence of GlyGly, hemoglobin peptides produced during digestion were utilized as acceptors leading to the detection of up to 116 different transpeptidation products in a single reaction. P. gingivalis cells were able to digest hemoglobin faster when acceptor peptides derived from human serum albumin were included in the reaction, suggesting that gingipain-catalyzed transpeptidation may be relevant for substrates encountered in vivo. The transpeptidation of host proteins in vivo may potentially lead to the breakdown of immunological tolerance, culminating in autoimmune reactions.
Collapse
Affiliation(s)
- Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - N Laila Huq
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Yu-Yen Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Christine A Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Keith J Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Dhana G Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , The University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
5
|
Aw J, Scholz GM, Huq NL, Huynh J, O'Brien-Simpson NM, Reynolds EC. Interplay betweenPorphyromonas gingivalisand EGF signalling in the regulation of CXCL14. Cell Microbiol 2018; 20:e12837. [DOI: 10.1111/cmi.12837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/22/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Jiamin Aw
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Melbourne Victoria Australia
| | - Glen M. Scholz
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Melbourne Victoria Australia
| | - Noorjahan Laila Huq
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Melbourne Victoria Australia
| | - Jennifer Huynh
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Melbourne Victoria Australia
| | - Neil M. O'Brien-Simpson
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Melbourne Victoria Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
6
|
PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System. PLoS One 2016; 11:e0164313. [PMID: 27711252 PMCID: PMC5053529 DOI: 10.1371/journal.pone.0164313] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/22/2016] [Indexed: 01/10/2023] Open
Abstract
Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a β-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS.
Collapse
|
7
|
Gorman MA, Seers CA, Michell BJ, Feil SC, Huq NL, Cross KJ, Reynolds EC, Parker MW. Structure of the lysine specific protease Kgp from Porphyromonas gingivalis, a target for improved oral health. Protein Sci 2014; 24:162-6. [PMID: 25327141 DOI: 10.1002/pro.2589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023]
Abstract
The oral pathogen Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Gingipains, the principle virulence factors of P. gingivalis are multidomain, cell-surface proteins containing a cysteine protease domain. The lysine specific gingipain, Kgp, is a critical virulence factor of P. gingivalis. We have determined the X-ray crystal structure of the lysine-specific protease domain of Kgp to 1.6 Å resolution. The structure provides insights into the mechanism of substrate specificity and catalysis.
Collapse
Affiliation(s)
- Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Olsen I, Potempa J. Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases. J Oral Microbiol 2014; 6:24800. [PMID: 25206939 PMCID: PMC4138498 DOI: 10.3402/jom.v6.24800] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
Gingipains are the major virulence factors of Porphyromonas gingivalis, the main periodontopathogen. It is expected that inhibition of gingipain activity in vivo could prevent or slow down the progression of adult periodontitis. To date, several classes of gingipain inhibitors have been recognized. These include gingipain N-terminal prodomains, synthetic compounds, inhibitors from natural sources, antibiotics, antiseptics, antibodies, and bacteria. Several synthetic compounds are potent gingipain inhibitors but inhibit a broad spectrum of host proteases and have undesirable side effects. Synthetic compounds with high specificity for gingipains have unknown toxicity effects, making natural inhibitors more promising as therapeutic gingipain blockers. Cranberry and rice extracts interfere with gingipain activity and prevent the growth and biofilm formation of periodontopathogens. Although the ideal gingipain inhibitor has yet to be discovered, gingipain inhibition represents a novel approach to treat and prevent periodontitis. Gingipain inhibitors may also help treat systemic disorders that are associated with periodontitis, including cardiovascular disease, rheumatoid arthritis, aspiration pneumonia, pre-term birth, and low birth weight.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland ; Department of Oral Immunology and Infectious Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|