1
|
Yang H, Yao W, Fan X, Lu Y, Wang Y, Ma Z. Genome-Wide Identification and Analysis of WD40 Family and Its Expression in F. vesca at Different Coloring Stages. Int J Mol Sci 2024; 25:12334. [PMID: 39596400 PMCID: PMC11594367 DOI: 10.3390/ijms252212334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
WD40 proteins play important roles in the synthesis and regulation of anthocyanin, the regulation of plant morphology and development, and the response to various abiotic stresses. However, the role of WD40 in Fragaria vesca (F. vesca) has not been studied. In this study, a total of 216 FvWD40 family members were identified, which were divided into four subfamilies based on evolutionary tree analysis. Subcellular localization predictions show that FvWD40 family members are mainly localized in chloroplasts, nuclei, and cytoplasm. An analysis of collinearity revealed a total of eight pairs of intraspecific collinearity of the FvWD40 gene family, and interspecific collinearity showed that the FvWD40 gene family covaried more gene pairs with Arabidopsis thaliana (Arabidopsis) than with rice (Oryza sativa). Promoter cis-acting elements revealed that the FvWD40 gene family contains predominantly light, hormone, and abiotic stress response elements. Tissue-specific expression analysis showed that a number of members including FvWD40-111 and FvWD40-137 were highly expressed in all tissues, and a number or members including FvWD40-97 and FvWD40-102 were lowly expressed in all tissues. The FvWD40 gene family was found to be expressed at all four different coloring stages of F. vesca by qRT-PCR, with lower expression at the 50% coloring stage (S3). FvWD40-24, FvWD40-50, and FvWD40-60 showed the highest expression during the white fruit stage (S1) period, suggesting that these genes play a potential regulatory role in the pre-fruit coloring stage. FvWD40-62, FvWD40-88 and FvWD40-103 had the highest expression at the 20% coloration stage (S2), and FvWD40-115, FvWD40-170, FvWD40-184 and FvWD40-195 had the highest expression at the full coloration stage (S4). These results suggest a potential role for these genes during fruit coloration. This study lays a foundation for further research on the function of the WD40 gene family.
Collapse
Affiliation(s)
| | | | | | | | | | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Cui B, Huang M, Guo C, Li R, Wang Y. Cloning and expression analysis of DnMSI1 gene in orchid species Dendrobium nobile Lindl. PLANT SIGNALING & BEHAVIOR 2022; 17:2021649. [PMID: 35007450 PMCID: PMC9176244 DOI: 10.1080/15592324.2021.2021649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 05/26/2023]
Abstract
WD40 repeat proteins, the homologs of yeast MSI1, are conserved in plants, participating in protein complexes and playing fundamental functions in plant development. Although several MSI1-like proteins have been cloned and characterized in plants, the roles of MSI1-like proteins in the biennial ornamental plant, Dendrobium nobile Lindl, are still unclear. Here, we report the cloning of the DnMSI1 gene from Dendrobium nobile Lindl with RACE technology. We found that DnMSI1 expression was induced by GA3 and TDZ but inhibited by ABA, PP333, and drought and salt stress. Furthermore, DnMSI1 over-expression in Arabidopsis resulted in decreased tolerance to NaCl stress. These results suggest that DnMSI1 plays negative regulation roles in regulating salinity-stress resistance in Dendrobium nobile Lindl.
Collapse
Affiliation(s)
- Baolu Cui
- School of Biological Science and Agriculture, Qiannan Normal University, Duyun, Guizhou, China
| | - Min Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, China
| | - Chongdai Guo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, China
| | - Ruihong Li
- School of Biological Science and Agriculture, Qiannan Normal University, Duyun, Guizhou, China
| | - Yuqi Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Cortés GT, Beltran MMG, Gómez-Alegría CJ, Wiser MF. Identification of a protein unique to the genus Plasmodium that contains a WD40 repeat domain and extensive low-complexity sequence. Parasitol Res 2021; 120:2617-2629. [PMID: 34142223 DOI: 10.1007/s00436-021-07190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 11/27/2022]
Abstract
Proteins containing WD40 domains play important roles in the formation of multiprotein complexes. Little is known about WD40 proteins in the malaria parasite. This report contains the initial description of a WD40 protein that is unique to the genus Plasmodium and possibly closely related genera. The N-terminal portion of this protein consists of seven WD40 repeats that are highly conserved in all Plasmodium species. Following the N-terminal region is a central region that is conserved within the major Plasmodium clades, such as parasites of great apes, monkeys, rodents, and birds, but partially conserved across all Plasmodium species. This central region contains extensive low-complexity sequence and is predicted to have a disordered structure. Proteins with disordered structure generally function in molecular interactions. The C-terminal region is semi-conserved across all Plasmodium species and has no notable features. This WD40 repeat protein likely functions in some aspect of parasite biology that is unique to Plasmodium and this uniqueness makes the protein a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Gladys T Cortés
- Departamento de Salud Pública, Facultad de Medicina, Grupo Biologia Celular, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Martha Margarita Gonzalez Beltran
- Ex alumna de la Maestría en Ciencias-Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Grupo UNIMOL, Bogotá, Colombia
| | - Claudio J Gómez-Alegría
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Grupo UNIMOL, Bogotá, Colombia
| | - Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2301, New Orleans, LA, 70112-2824, USA.
| |
Collapse
|
4
|
Simm D, Hatje K, Waack S, Kollmar M. Critical assessment of coiled-coil predictions based on protein structure data. Sci Rep 2021; 11:12439. [PMID: 34127723 PMCID: PMC8203680 DOI: 10.1038/s41598-021-91886-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Coiled-coil regions were among the first protein motifs described structurally and theoretically. The simplicity of the motif promises that coiled-coil regions can be detected with reasonable accuracy and precision in any protein sequence. Here, we re-evaluated the most commonly used coiled-coil prediction tools with respect to the most comprehensive reference data set available, the entire Protein Data Bank, down to each amino acid and its secondary structure. Apart from the 30-fold difference in minimum and maximum number of coiled coils predicted the tools strongly vary in where they predict coiled-coil regions. Accordingly, there is a high number of false predictions and missed, true coiled-coil regions. The evaluation of the binary classification metrics in comparison with naïve coin-flip models and the calculation of the Matthews correlation coefficient, the most reliable performance metric for imbalanced data sets, suggests that the tested tools' performance is close to random. This implicates that the tools' predictions have only limited informative value. Coiled-coil predictions are often used to interpret biochemical data and are part of in-silico functional genome annotation. Our results indicate that these predictions should be treated very cautiously and need to be supported and validated by experimental evidence.
Collapse
Affiliation(s)
- Dominic Simm
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| | - Klas Hatje
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.417570.00000 0004 0374 1269Present Address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stephan Waack
- grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| | - Martin Kollmar
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Plasmodium falciparum Atg18 localizes to the food vacuole via interaction with the multi-drug resistance protein 1 and phosphatidylinositol 3-phosphate. Biochem J 2021; 478:1705-1732. [PMID: 33843972 DOI: 10.1042/bcj20210001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022]
Abstract
Autophagy, a lysosome-dependent degradative process, does not appear to be a major degradative process in malaria parasites and has a limited repertoire of genes. To better understand the autophagy process, we investigated Plasmodium falciparum Atg18 (PfAtg18), a PROPPIN family protein, whose members like S. cerevisiae Atg18 (ScAtg18) and human WIPI2 bind PI3P and play an essential role in autophagosome formation. Wild type and mutant PfAtg18 were expressed in P. falciparum and assessed for localization, the effect of various inhibitors and antimalarials on PfAtg18 localization, and identification of PfAtg18-interacting proteins. PfAtg18 is expressed in asexual erythrocytic stages and localized to the food vacuole, which was also observed with other Plasmodium Atg18 proteins, indicating that food vacuole localization is likely a shared feature. Interaction of PfAtg18 with the food vacuole-associated PI3P is essential for localization, as PfAtg18 mutants of PI3P-binding motifs neither bound PI3P nor localized to the food vacuole. Interestingly, wild type ScAtg18 interacted with PI3P, but its expression in P. falciparum showed complete cytoplasmic localization, indicating additional requirement for food vacuole localization. The food vacuole multi-drug resistance protein 1 (MDR1) was consistently identified in the immunoprecipitates of PfAtg18 and P. berghei Atg18, and also interacted with PfAtg18. In contrast with PfAtg18, ScAtg18 did not interact with MDR1, which, in addition to PI3P, could play a critical role in localization of PfAtg18. Chloroquine and amodiaquine caused cytoplasmic localization of PfAtg18, suggesting that these target PfAtg18 transport pathway. Thus, PI3P and MDR1 are critical mediators of PfAtg18 localization.
Collapse
|
6
|
Talaia G, Amick J, Ferguson SM. Receptor-like role for PQLC2 amino acid transporter in the lysosomal sensing of cationic amino acids. Proc Natl Acad Sci U S A 2021; 118:e2014941118. [PMID: 33597295 PMCID: PMC7923529 DOI: 10.1073/pnas.2014941118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PQLC2, a lysosomal cationic amino acid transporter, also serves as a sensor that responds to scarcity of its substrates by recruiting a protein complex composed of C9orf72, SMCR8, and WDR41 to the surface of lysosomes. This protein complex controls multiple aspects of lysosome function. Although it is known that this response to changes in cationic amino acid availability depends on an interaction between PQLC2 and WDR41, the underlying mechanism for the regulated interaction is not known. In this study, we present evidence that the WDR41-PQLC2 interaction is mediated by a short peptide motif in a flexible loop that extends from the WDR41 β-propeller and inserts into a cavity presented by the inward-facing conformation of PQLC2. The data support a transceptor model wherein conformational changes in PQLC2 related to substrate transport regulate the availability of the WDR41-binding site on PQLC2 and mediate recruitment of the WDR41-SMCR8-C9orf72 complex to the surface of lysosomes.
Collapse
Affiliation(s)
- Gabriel Talaia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Joseph Amick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510;
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
7
|
Topolska M, Roelants FM, Si EP, Thorner J. TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae. Biomolecules 2020; 10:biom10121598. [PMID: 33255682 PMCID: PMC7760575 DOI: 10.3390/biom10121598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Membrane-tethered sterol-binding Lam/Ltc proteins localize at junctions between the endoplasmic reticulum (ER) membrane and other organelles. Two of the six family members-Lam2/Ltc4 (initially Ysp2) and paralog Lam4/Ltc3-localize to ER-plasma membrane (PM) contact sites (CSs) and mediate retrograde ergosterol transport from the PM to the ER. Our prior work demonstrated that Lam2 and Lam4 are substrates of TORC2-regulated protein kinase Ypk1, that Ypk1-mediated phosphorylation inhibits their function in retrograde sterol transport, and that PM sterol retention bolsters cell survival under stressful conditions. At ER-PM CSs, Lam2 and Lam4 associate with Laf1/Ymr102c and Dgr2/Ykl121w (paralogous WD40 repeat-containing proteins) that reportedly bind sterol. Using fluorescent tags, we found that Lam2 and Lam4 remain at ER-PM CSs when Laf1 and Dgr2 are absent, whereas neither Laf1 nor Dgr2 remain at ER-PM CSs when Lam2 and Lam4 are absent. Loss of Laf1 (but not Dgr2) impedes retrograde ergosterol transport, and a laf1∆ mutation does not exacerbate the transport defect of lam2∆ lam4∆ cells, indicating a shared function. Lam2 and Lam4 bind Laf1 and Dgr2 in vitro in a pull-down assay, and the PH domain in Lam2 hinders its interaction with Laf1. Lam2 phosphorylated by Ypk1, and Lam2 with phosphomimetic (Glu) replacements at its Ypk1 sites, exhibited a marked reduction in Laf1 binding. Thus, phosphorylation prevents Lam2 interaction with Laf1 at ER-PM CSs, providing a mechanism by which Ypk1 action inhibits retrograde sterol transport.
Collapse
Affiliation(s)
- Magdalena Topolska
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; (M.T.); (F.M.R.); (E.P.S.)
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 Odense, Denmark
| | - Françoise M. Roelants
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; (M.T.); (F.M.R.); (E.P.S.)
| | - Edward P. Si
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; (M.T.); (F.M.R.); (E.P.S.)
- Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23501-1980, USA
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; (M.T.); (F.M.R.); (E.P.S.)
- Correspondence: ; Tel.: +1-510-642-2558; Fax: +1-510-642-6420
| |
Collapse
|
8
|
De S, Pollari M, Varjosalo M, Mäkinen K. Association of host protein VARICOSE with HCPro within a multiprotein complex is crucial for RNA silencing suppression, translation, encapsidation and systemic spread of potato virus A infection. PLoS Pathog 2020; 16:e1008956. [PMID: 33045020 PMCID: PMC7581364 DOI: 10.1371/journal.ppat.1008956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/22/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, we investigated the significance of a conserved five-amino acid motif 'AELPR' in the C-terminal region of helper component-proteinase (HCPro) for potato virus A (PVA; genus Potyvirus) infection. This motif is a putative interaction site for WD40 domain-containing proteins, including VARICOSE (VCS). We abolished the interaction site in HCPro by replacing glutamic acid (E) and arginine (R) with alanines (A) to generate HCProWD. These mutations partially eliminated HCPro-VCS co-localization in cells. We have earlier described potyvirus-induced RNA granules (PGs) in which HCPro and VCS co-localize and proposed that they have a role in RNA silencing suppression. We now demonstrate that the ability of HCProWD to induce PGs, introduce VCS into PGs, and suppress RNA silencing was impaired. Accordingly, PVA carrying HCProWD (PVAWD) infected Nicotiana benthamiana less efficiently than wild-type PVA (PVAWT) and HCProWD complemented the lack of HCPro in PVA gene expression only partially. HCPro was purified from PVA-infected leaves as part of high molecular weight (HMW) ribonucleoprotein (RNP) complexes. These complexes were more stable when associated with wild-type HCPro than with HCProWD. Moreover, VCS and two viral components of the HMW-complexes, viral protein genome-linked and cylindrical inclusion protein were specifically decreased in HCProWD-containing HMW-complexes. A VPg-mediated boost in translation of replication-deficient PVA (PVAΔGDD) was observed only if viral RNA expressed wild-type HCPro. The role of VCS-VPg-HCPro coordination in PVA translation was further supported by results from VCS silencing and overexpression experiments and by significantly elevated PVA-derived Renilla luciferase vs PVA RNA ratio upon VPg-VCS co-expression. Finally, we found that PVAWD was unable to form virus particles or to spread systemically in the infected plant. We highlight the role of HCPro-VCS containing multiprotein assemblies associated with PVA RNA in protecting it from degradation, ensuring efficient translation, formation of stable virions and establishment of systemic infection.
Collapse
Affiliation(s)
- Swarnalok De
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| | - Maija Pollari
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| | | | - Kristiina Mäkinen
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| |
Collapse
|
9
|
Ma J, An K, Zhou JB, Wu NS, Wang Y, Ye ZQ, Wu YD. WDSPdb: an updated resource for WD40 proteins. Bioinformatics 2020; 35:4824-4826. [PMID: 31161214 PMCID: PMC6853709 DOI: 10.1093/bioinformatics/btz460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/28/2019] [Accepted: 05/29/2019] [Indexed: 11/18/2022] Open
Abstract
Summary The WD40-repeat proteins are a large family of scaffold molecules that assemble complexes in various cellular processes. Obtaining their structures is the key to understanding their interaction details. We present WDSPdb 2.0, a significantly updated resource providing accurately predicted secondary and tertiary structures and featured sites annotations. Based on an optimized pipeline, WDSPdb 2.0 contains about 600 thousand entries, an increase of 10-fold, and integrates more than 37 000 variants from sources of ClinVar, Cosmic, 1000 Genomes, ExAC, IntOGen, cBioPortal and IntAct. In addition, the web site is largely improved for visualization, exploring and data downloading. Availability and implementation http://www.wdspdb.com/wdsp/ or http://wu.scbb.pkusz.edu.cn/wdsp/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jing Ma
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ke An
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jing-Bo Zhou
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nuo-Si Wu
- College of Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Wang
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Bergstrand S, O'Brien EM, Farnebo M. The Cajal Body Protein WRAP53β Prepares the Scene for Repair of DNA Double-Strand Breaks by Regulating Local Ubiquitination. Front Mol Biosci 2019; 6:51. [PMID: 31334247 PMCID: PMC6624377 DOI: 10.3389/fmolb.2019.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Proper repair of DNA double-strand breaks is critical for maintaining genome integrity and avoiding disease. Modification of damaged chromatin has profound consequences for the initial signaling and regulation of repair. One such modification involves ubiquitination by E3 ligases RNF8 and RNF168 within minutes after DNA double-strand break formation, altering chromatin structure and recruiting factors such as 53BP1 and BRCA1 for repair via non-homologous end-joining (NHEJ) and homologous recombination (HR), respectively. The WD40 protein WRAP53β plays an essential role in localizing RNF8 to DNA breaks by scaffolding its interaction with the upstream factor MDC1. Loss of WRAP53β impairs ubiquitination at DNA lesions and reduces downstream repair by both NHEJ and HR. Intriguingly, WRAP53β depletion attenuates repair of DNA double-strand breaks more than depletion of RNF8, indicating functions other than RNF8-mediated ubiquitination. WRAP53β plays key roles with respect to the nuclear organelles Cajal bodies, including organizing the genome to promote associated transcription and collecting factors involved in maturation of the spliceosome and telomere elongation within these organelles. It is possible that similar functions may aid also in DNA repair. Here we describe the involvement of WRAP53β in Cajal bodies and DNA double-strand break repair in detail and explore whether and how these processes may be linked. We also discuss the possibility that the overexpression of WRAP53β detected in several cancer types may reflect its normal participation in the DNA damage response rather than oncogenic properties.
Collapse
Affiliation(s)
- Sofie Bergstrand
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Eleanor M O'Brien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Farnebo
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Fiorucci AS, Bourbousse C, Concia L, Rougée M, Deton-Cabanillas AF, Zabulon G, Layat E, Latrasse D, Kim SK, Chaumont N, Lombard B, Stroebel D, Lemoine S, Mohammad A, Blugeon C, Loew D, Bailly C, Bowler C, Benhamed M, Barneche F. Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination. Genome Biol 2019; 20:100. [PMID: 31113491 PMCID: PMC6528313 DOI: 10.1186/s13059-019-1705-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background The functional determinants of H3K4me3, their potential dependency on histone H2B monoubiquitination, and their contribution to defining transcriptional regimes are poorly defined in plant systems. Unlike in Saccharomyces cerevisiae, where a single SET1 protein catalyzes H3K4me3 as part of COMPlex of proteins ASsociated with Set1 (COMPASS), in Arabidopsis thaliana, this activity involves multiple histone methyltransferases. Among these, the plant-specific SET DOMAIN GROUP 2 (SDG2) has a prominent role. Results We report that SDG2 co-regulates hundreds of genes with SWD2-like b (S2Lb), a plant ortholog of the Swd2 axillary subunit of yeast COMPASS. We show that S2Lb co-purifies with the AtCOMPASS core subunit WDR5, and both S2Lb and SDG2 directly influence H3K4me3 enrichment over highly transcribed genes. S2Lb knockout triggers pleiotropic developmental phenotypes at the vegetative and reproductive stages, including reduced fertility and seed dormancy. However, s2lb seedlings display little transcriptomic defects as compared to the large repertoire of genes targeted by S2Lb, SDG2, or H3K4me3, suggesting that H3K4me3 enrichment is important for optimal gene induction during cellular transitions rather than for determining on/off transcriptional status. Moreover, unlike in budding yeast, most of the S2Lb and H3K4me3 genomic distribution does not rely on a trans-histone crosstalk with histone H2B monoubiquitination. Conclusions Collectively, this study unveils that the evolutionarily conserved COMPASS-like complex has been co-opted by the plant-specific SDG2 histone methyltransferase and mediates H3K4me3 deposition through an H2B monoubiquitination-independent pathway in Arabidopsis. Electronic supplementary material The online version of this article (10.1186/s13059-019-1705-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Sophie Fiorucci
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France.,Present address: Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Clara Bourbousse
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Martin Rougée
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Anne-Flore Deton-Cabanillas
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Gérald Zabulon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Elodie Layat
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, 75005, Paris, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Soon Kap Kim
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Nicole Chaumont
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, 75005, Paris, France
| | - Bérangère Lombard
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Sophie Lemoine
- Genomic Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, 75005, France
| | - Ammara Mohammad
- Genomic Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, 75005, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, 75005, France
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Christophe Bailly
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, 75005, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Fredy Barneche
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France.
| |
Collapse
|
12
|
Jain BP. Genome Wide Analysis of WD40 Proteins in Saccharomyces cerevisiae and Their Orthologs in Candida albicans. Protein J 2019; 38:58-75. [PMID: 30511317 DOI: 10.1007/s10930-018-9804-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The WD40 domain containing proteins are present in the lower organisms (Monera) to higher complex metazoans with involvement in diverse cellular processes. The WD40 repeats fold into β propeller structure due to which the proteins harbouring WD40 domains function as scaffold by offering platform for interactions, bring together diverse cellular proteins to form a single complex for mediating downstream effects. Multiple functions of WD40 domain containing proteins in lower eukaryote as in Fungi have been reported with involvement in vegetative and reproductive growth, virulence etc. In this article insilico analysis of the WDR proteins in the budding yeast Saccharomyces cerevisiae was performed. By WDSP software 83 proteins in S. cerevisiae were identified with at least one WD40 motif. WD40 proteins with 6 or more WD40 motifs were considered for further studies. The WD40 proteins in yeast which are involved in various biological processes show distribution on all chromosomes (16 chromosomes in yeast) except chromosome 1. Besides the WD40 domain some of these proteins also contain other protein domains which might be responsible for the diversity in the functions of WD40 proteins in the budding yeast. These proteins in budding yeast were analysed by DAVID and Blast2Go software for functional and domains categorization. Candida albicans, an opportunistic fungal pathogen also have orthologs of these WD40 proteins with possible similar functions. This is the first time genome wide analysis of WD40 proteins in lower eukaryote i.e. budding yeast. This data may be useful in further study of the functional diversity of yeast proteomes.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Bihar, Motihari, 845401, India.
| |
Collapse
|
13
|
Urbanska P, Joachimiak E, Bazan R, Fu G, Poprzeczko M, Fabczak H, Nicastro D, Wloga D. Ciliary proteins Fap43 and Fap44 interact with each other and are essential for proper cilia and flagella beating. Cell Mol Life Sci 2018; 75:4479-4493. [PMID: 29687140 PMCID: PMC6208767 DOI: 10.1007/s00018-018-2819-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 11/08/2022]
Abstract
Cilia beating is powered by the inner and outer dynein arms (IDAs and ODAs). These multi-subunit macrocomplexes are arranged in two rows on each outer doublet along the entire cilium length, except its distal end. To generate cilia beating, the activity of ODAs and IDAs must be strictly regulated locally by interactions with the dynein arm-associated structures within each ciliary unit and coordinated globally in time and space between doublets and along the axoneme. Here, we provide evidence of a novel ciliary complex composed of two conserved WD-repeat proteins, Fap43p and Fap44p. This complex is adjacent to another WD-repeat protein, Fap57p, and most likely the two-headed inner dynein arm, IDA I1. Loss of either protein results in altered waveform, beat stroke and reduced swimming speed. The ciliary localization of Fap43p and Fap44p is interdependent in the ciliate Tetrahymena thermophila.
Collapse
Affiliation(s)
- Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Rafał Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, USA
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, USA
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
14
|
Ramachandran A, He K, Huang CC, Shahbazian-Yassar R, Shokuhfar T, George A. TRIP-1 in the extracellular matrix promotes nucleation of calcium phosphate polymorphs. Connect Tissue Res 2018; 59:13-19. [PMID: 29745814 DOI: 10.1080/03008207.2018.1424146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In search for bone and dentin extracellular matrix (ECM) proteins, transforming growth factor beta receptor II interacting protein 1 (TRIP-1) was identified as a novel protein synthesized by osteoblasts and odontoblasts and exported to the ECM. TRIP-1 is a WD-40 (WD is Tryptophan-Aspartic acid dipeptide) protein that has been well recognized for its physiological role in the endoplasmic reticulum (ER). In the ER, TRIP-1 functions as an essential subunit of eukaryotic elongation initiation factor 3 and is involved in the protein translational machinery. Recently, we reported that TRIP-1 is localized in the ECM of bone and dentin. In this study, we demonstrate that varying concentrations of TRIP-1 can participate in the nucleation of calcium phosphate polymorphs. Nucleation studies performed with high calcium and phosphate concentration demonstrated that recombinant TRIP-1 could orchestrate the formation of hydroxyapatite crystals. Nucleation experiments performed on demineralized and deproteinized dentin wafer under physiological conditions and subsequent transmission electron microscope analysis of the deposits at the end of 7 and 14 days showed that TRIP-1 promoted the deposition of calcium phosphate mineral aggregates in the gap-overlap region of type I collagen. Taken together, we provide mechanistic insight into the role of this intracellular protein in matrix mineralization.
Collapse
Affiliation(s)
- Amsaveni Ramachandran
- a Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology , University of Illinois at Chicago , Chicago , IL , USA
| | - Kun He
- b Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , Chicago , IL , USA
| | - Chun-Chieh Huang
- a Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology , University of Illinois at Chicago , Chicago , IL , USA
| | - Reza Shahbazian-Yassar
- b Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , Chicago , IL , USA
| | - Tolou Shokuhfar
- c Department of Bioengineering , University of Illinois at Chicago , Chicago , IL , USA
| | - Anne George
- a Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
15
|
Shen C, Du Y, Qiao F, Kong T, Yuan L, Zhang D, Wu X, Li D, Wu YD. Biophysical and structural characterization of the thermostable WD40 domain of a prokaryotic protein, Thermomonospora curvata PkwA. Sci Rep 2018; 8:12965. [PMID: 30154510 PMCID: PMC6113231 DOI: 10.1038/s41598-018-31140-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/10/2018] [Indexed: 01/25/2023] Open
Abstract
WD40 proteins belong to a big protein family with members identified in every eukaryotic proteome. However, WD40 proteins were only reported in a few prokaryotic proteomes. Using WDSP (http://wu.scbb.pkusz.edu.cn/wdsp/), a prediction tool, we identified thousands of prokaryotic WD40 proteins, among which few proteins have been biochemically characterized. As shown in our previous bioinformatics study, a large proportion of prokaryotic WD40 proteins have higher intramolecular sequence identity among repeats and more hydrogen networks, which may indicate better stability than eukaryotic WD40s. Here we report our biophysical and structural study on the WD40 domain of PkwA from Thermomonospora curvata (referred as tPkwA-C). We demonstrated that the stability of thermophilic tPkwA-C correlated to ionic strength and tPkwA-C exhibited fully reversible unfolding under different denaturing conditions. Therefore, the folding kinetics was also studied through stopped-flow circular dichroism spectra. The crystal structure of tPkwA-C was further resolved and shed light on the key factors that stabilize its beta-propeller structure. Like other WD40 proteins, DHSW tetrad has a significant impact on the stability of tPkwA-C. Considering its unique features, we proposed that tPkwA-C should be a great structural template for protein engineering to study key residues involved in protein-protein interaction of a WD40 protein.
Collapse
Affiliation(s)
- Chen Shen
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ye Du
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Medical Research Center, The People's Hospital of Longhua, Shenzhen, 518109, China
| | - Fangfang Qiao
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tian Kong
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lirong Yuan
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Delin Zhang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xianhui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dongyang Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,College of Chemistry, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Hofmeister W, Pettersson M, Kurtoglu D, Armenio M, Eisfeldt J, Papadogiannakis N, Gustavsson P, Lindstrand A. Targeted copy number screening highlights an intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Hum Mutat 2018; 39:495-505. [PMID: 29285825 DOI: 10.1002/humu.23388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/21/2017] [Accepted: 12/15/2017] [Indexed: 02/04/2023]
Abstract
Congenital malformations affecting the neural tube can present as isolated malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q11.2 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14-17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results were seen with overexpression of RNA encoding the deleted variant in zebrafish (total abnormal; 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of wild-type RNA (total abnormal; 3%, n = 177). We predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are the first findings supporting a role for WDR63 in encephalocele formation.
Collapse
Affiliation(s)
- Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Deniz Kurtoglu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Armenio
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Nikos Papadogiannakis
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Tevatia R, Oyler GA. Evolution of DDB1-binding WD40 (DWD) in the viridiplantae. PLoS One 2018; 13:e0190282. [PMID: 29293590 PMCID: PMC5749748 DOI: 10.1371/journal.pone.0190282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022] Open
Abstract
Damaged DNA Binding 1 (DDB1)—binding WD40 (DWD) proteins are highly conserved and involved in a plethora of developmental and physiological processes such as flowering time control, photomorphogenesis, and abiotic stress responses. The phylogeny of this family of proteins in plants and algae of viridiplante is a critical area to understand the emergence of this family in such important and diverse functions. We aimed to investigate the putative homologs of DWD in the viridiplante and establish a deeper DWD evolutionary grasp. The advancement in publicly available genomic data allowed us to perform an extensive genome-wide DWD retrieval. Using annotated Arabidopsis thaliana DWDs as the reference, we generated and characterized a comprehensive DWD database for the studied photoautotrophs. Further, a generic DWD classification system (Type A to K), based on (i) position of DWD motifs, (ii) number of DWD motifs, and (iii) presence/absence of other domains, was adopted. About 72–80% DWDs have one DWD motif, whereas 17–24% DWDs have two and 0.5–4.7% DWDs have three DWD motifs. Neighbor-joining phylogenetic construction of A. thaliana DWDs facilitated us to tune these substrate receptors into 15 groups. Though the DWD count increases from microalgae to higher land plants, the ratio of DWD to WD40 remained constant throughout the viridiplante. The DWD expansion appeared to be the consequence of consistent DWD genetic flow accompanied by several gene duplication events. The network, phylogenetic, and statistical analysis delineated DWD evolutionary relevance in the viridiplante.
Collapse
Affiliation(s)
- Rahul Tevatia
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (RT); (GAO)
| | - George A. Oyler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Synaptic Research LLC, Baltimore, Maryland, United States of America
- * E-mail: (RT); (GAO)
| |
Collapse
|
18
|
Schapira M, Tyers M, Torrent M, Arrowsmith CH. WD40 repeat domain proteins: a novel target class? Nat Rev Drug Discov 2017; 16:773-786. [PMID: 29026209 PMCID: PMC5975957 DOI: 10.1038/nrd.2017.179] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antagonism of protein-protein interactions (PPIs) with small molecules is becoming more feasible as a therapeutic approach. Successful PPI inhibitors tend to target proteins containing deep peptide-binding grooves or pockets rather than the more common large, flat protein interaction surfaces. Here, we review one of the most abundant PPI domains in the human proteome, the WD40 repeat (WDR) domain, which has a central peptide-binding pocket and is a member of the β-propeller domain-containing protein family. Recently, two WDR domain-containing proteins, WDR5 and EED, as well as other β-propeller domains have been successfully targeted by potent, specific, cell-active, drug-like chemical probes. Could WDR domains be a novel target class for drug discovery? Although the research is at an early stage and therefore not clinically validated, cautious optimism is justified, as WDR domain-containing proteins are involved in multiple disease-associated pathways. The druggability and structural diversity of WDR domain binding pockets suggest that understanding how to target this prevalent domain class will open up areas of disease biology that have so far resisted drug discovery efforts.
Collapse
Affiliation(s)
- Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Mount Sinai Hospital, The Lunenfeld-Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Maricel Torrent
- Discovery Research, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
| |
Collapse
|
19
|
Hu XJ, Li T, Wang Y, Xiong Y, Wu XH, Zhang DL, Ye ZQ, Wu YD. Prokaryotic and Highly-Repetitive WD40 Proteins: A Systematic Study. Sci Rep 2017; 7:10585. [PMID: 28878378 PMCID: PMC5587647 DOI: 10.1038/s41598-017-11115-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022] Open
Abstract
As an ancient protein family, the WD40 repeat proteins often play essential roles in fundamental cellular processes in eukaryotes. Although investigations of eukaryotic WD40 proteins have been frequently reported, prokaryotic ones remain largely uncharacterized. In this paper, we report a systematic analysis of prokaryotic WD40 proteins and detailed comparisons with eukaryotic ones. About 4,000 prokaryotic WD40 proteins have been identified, accounting for 6.5% of all WD40s. While their abundances are less than 0.1% in most prokaryotes, they are enriched in certain species from Cyanobacteria and Planctomycetes, and participate in various functions such as prokaryotic signal transduction and nutrient synthesis. Comparisons show that a higher proportion of prokaryotic WD40s tend to contain multiple WD40 domains and a large number of hydrogen bond networks. The observation that prokaryotic WD40 proteins tend to show high internal sequence identity suggests that a substantial proportion of them (~20%) should be formed by recent or young repeat duplication events. Further studies demonstrate that the very young WD40 proteins, i.e., Highly-Repetitive WD40s, should be of higher stability. Our results have presented a catalogue of prokaryotic WD40 proteins, and have shed light on their evolutionary origins.
Collapse
Affiliation(s)
- Xue-Jia Hu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Tuan Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yao Xiong
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Xian-Hui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - De-Lin Zhang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China.
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China.
- College of Chemistry, Peking University, Beijing, 100871, P.R. China.
| |
Collapse
|
20
|
Nguyen TMT, Hull S, Roepman R, van den Born LI, Oud MM, de Vrieze E, Hetterschijt L, Letteboer SJF, van Beersum SEC, Blokland EA, Yntema HG, Cremers FPM, van der Zwaag PA, Arno G, van Wijk E, Webster AR, Haer-Wigman L. Missense mutations in the WD40 domain of AHI1 cause non-syndromic retinitis pigmentosa. J Med Genet 2017; 54:624-632. [PMID: 28442542 PMCID: PMC5574394 DOI: 10.1136/jmedgenet-2016-104200] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/02/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Background Recent findings suggesting that Abelson helper integration site 1 (AHI1) is involved in non-syndromic retinal disease have been debated, as the functional significance of identified missense variants was uncertain. We assessed whether AHI1 variants cause non-syndromic retinitis pigmentosa (RP). Methods Exome sequencing was performed in three probands with RP. The effects of the identified missense variants in AHI1 were predicted by three-dimensional structure homology modelling. Ciliary parameters were evaluated in patient’s fibroblasts, and recombinant mutant proteins were expressed in ciliated retinal pigmented epithelium cells. Results In the three patients with RP, three sets of compound heterozygous variants were detected in AHI1 (c.2174G>A; p.Trp725* and c.2258A>T; p.Asp753Val, c.660delC; p.Ser221Glnfs*10 and c.2090C>T; p.Pro697Leu, c.2087A>G; p.His696Arg and c.2429C>T; p.Pro810Leu). All four missense variants were present in the conserved WD40 domain of Jouberin, the ciliary protein encoded by AHI1, with variable predicted implications for the domain structure. No significant changes in the percentage of ciliated cells, nor in cilium length or intraflagellar transport were detected. However, expression of mutant recombinant Jouberin in ciliated cells showed a significantly decreased enrichment at the ciliary base. Conclusions This report confirms that mutations in AHI1 can underlie autosomal recessive RP. Moreover, it structurally and functionally validates the effect of the RP-associated AHI1 variants on protein function, thus proposing a new genotype–phenotype correlation for AHI1 mutation associated retinal ciliopathies.
Collapse
Affiliation(s)
- Thanh-Minh T Nguyen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sarah Hull
- UniversityCollege London, Instituteof Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Machteld M Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lisette Hetterschijt
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Stef J F Letteboer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sylvia E C van Beersum
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ellen A Blokland
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paul A van der Zwaag
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gavin Arno
- UniversityCollege London, Instituteof Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Andrew R Webster
- UniversityCollege London, Instituteof Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Calvo-Martín JM, Papaceit M, Segarra C. Evidence of neofunctionalization after the duplication of the highly conserved Polycomb group gene Caf1-55 in the obscura group of Drosophila. Sci Rep 2017; 7:40536. [PMID: 28094282 PMCID: PMC5240099 DOI: 10.1038/srep40536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
Drosophila CAF1-55 protein is a subunit of the Polycomb repressive complex PRC2 and other protein complexes. It is a multifunctional and evolutionarily conserved protein that participates in nucleosome assembly and remodelling, as well as in the epigenetic regulation of a large set of target genes. Here, we describe and analyze the duplication of Caf1-55 in the obscura group of Drosophila. Paralogs exhibited a strong asymmetry in evolutionary rates, which suggests that they have evolved according to a neofunctionalization process. During this process, the ancestral copy has been kept under steady purifying selection to retain the ancestral function and the derived copy (Caf1-55dup) that originated via a DNA-mediated duplication event ~18 Mya, has been under clear episodic selection. Different maximum likelihood approaches confirmed the action of positive selection, in contrast to relaxed selection, on Caf1-55dup after the duplication. This adaptive process has also taken place more recently during the divergence of D. subobscura and D. guanche. The possible association of this duplication with a previously detected acceleration in the evolutionary rate of three CAF1-55 partners in PRC2 complexes is discussed. Finally, the timing and functional consequences of the Caf1-55 duplication is compared to other duplications of Polycomb genes.
Collapse
Affiliation(s)
- Juan M. Calvo-Martín
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Papaceit
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Carmen Segarra
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Zou XD, Hu XJ, Ma J, Li T, Ye ZQ, Wu YD. Genome-wide Analysis of WD40 Protein Family in Human. Sci Rep 2016; 6:39262. [PMID: 27991561 PMCID: PMC5172248 DOI: 10.1038/srep39262] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/22/2016] [Indexed: 01/16/2023] Open
Abstract
The WD40 proteins, often acting as scaffolds to form functional complexes in fundamental cellular processes, are one of the largest families encoded by the eukaryotic genomes. Systematic studies of this family on genome scale are highly required for understanding their detailed functions, but are currently lacking in the animal lineage. Here we present a comprehensive in silico study of the human WD40 family. We have identified 262 non-redundant WD40 proteins, and grouped them into 21 classes according to their domain architectures. Among them, 11 animal-specific domain architectures have been recognized. Sequence alignment indicates the complicated duplication and recombination events in the evolution of this family. Through further phylogenetic analysis, we have revealed that the WD40 family underwent more expansion than the overall average in the evolutionary early stage, and the early emerged WD40 proteins are prone to domain architectures with fundamental cellular roles and more interactions. While most widely and highly expressed human WD40 genes originated early, the tissue-specific ones often have late origin. These results provide a landscape of the human WD40 family concerning their classification, evolution, and expression, serving as a valuable complement to the previous studies in the plant lineage.
Collapse
Affiliation(s)
- Xu-Dong Zou
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Xue-Jia Hu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Jing Ma
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Tuan Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.,College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
23
|
A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in Aspergillus nidulans. Int J Mol Sci 2016; 17:ijms17071031. [PMID: 27367684 PMCID: PMC4964407 DOI: 10.3390/ijms17071031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/30/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022] Open
Abstract
WD40 repeat (WDR) proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD). FPWD is within a cell wall metabolism gene cluster in the Ascomycetes (Pezizomycotina) comprising chsD, a Chs activator and a GH17 glucanase. The FPWD, AN1556.2 locus was deleted in Aspergillus nidulans strain SAA.111 by gene replacement and only heterokaryon transformants were obtained. The re-annotation of Aspergilli genomes shows that AN1556.2 consists of two tightly linked separate genes, i.e., the WDR gene and a putative beta-flanking gene of unknown function. The WDR and the beta-flanking genes are conserved genomic neighbors localized within a recently identified metabolic cell wall gene cluster in genomes of Aspergilli. The heterokaryons displayed increased susceptibility to drugs affecting the cell wall, and their phenotypes, observed by optical, confocal, scanning electron and atomic force microscopy, suggest cell wall alterations. Quantitative real-time PCR shows altered expression of some cell wall-related genes. The possible implications on cell wall biosynthesis are discussed.
Collapse
|
24
|
Ulrich A, Schulz J, Kamprad A, Schütze T, Wahl M. Structural Basis for the Functional Coupling of the Alternative Splicing Factors Smu1 and RED. Structure 2016; 24:762-773. [DOI: 10.1016/j.str.2016.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 12/25/2022]
|
25
|
Dutta S, Roy S, Polavaram NS, Baretton GB, Muders MH, Batra S, Datta K. NRP2 transcriptionally regulates its downstream effector WDFY1. Sci Rep 2016; 6:23588. [PMID: 27026195 PMCID: PMC4812299 DOI: 10.1038/srep23588] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/09/2016] [Indexed: 12/15/2022] Open
Abstract
Neuropilins (NRPs) are cell surface glycoproteins that often act as co-receptors for plexins and VEGF family receptors. Neuropilin-2 (NRP2), a family member of NRPs, was shown to regulate autophagy and endocytic trafficking in cancer cells, a function distinctly different from its role as a co-receptor. WD Repeat and FYVE domain containing 1 (WDFY1)–protein acts downstream of NRP2 for this function. Our results indicated that NRP2 maintains an optimum concentration of WDFY1 by negatively regulating its expression. Since increased expression of WDFY1 reduces the endocytic activity, maintenance of WDFY1 level is crucial in metastatic cancer cells to sustain high endocytic activity, essential for promotion of oncogenic activation and cancer cell survival. Here, we have delineated the underlying molecular mechanism of WDFY1 synthesis by NRP2. Our results indicated that NRP2 inhibits WDFY1 transcription by preventing the nuclear localization of a transcription factor, Fetal ALZ50-reactive clone 1 (FAC1). Our finding is novel as transcriptional regulation of a gene by NRP2 axis has not been reported previously. Regulation of WDFY1 transcription by NRP2 axis is a critical event in maintaining metastatic phenotype in cancer cells. Thus, inhibiting NRP2 or hyper-activating WDFY1 can be an effective strategy to induce cell death in metastatic cancer.
Collapse
Affiliation(s)
- Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| | - Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| | - Navatha S Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| | - Gustavo B Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, University of Technology of Dresden, Germany
| | - Michael H Muders
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.,Institute of Pathology, University Hospital Carl Gustav Carus, University of Technology of Dresden, Germany
| | - Surinder Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.,Fred &Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, Omaha, Nebraska, U.S.A
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.,Fred &Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, Omaha, Nebraska, U.S.A
| |
Collapse
|
26
|
Wang C, Dong X, Han L, Su XD, Zhang Z, Li J, Song J. Identification of WD40 repeats by secondary structure-aided profile-profile alignment. J Theor Biol 2016; 398:122-9. [PMID: 27021623 DOI: 10.1016/j.jtbi.2016.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/20/2016] [Accepted: 03/16/2016] [Indexed: 12/31/2022]
Abstract
A WD40 protein typically contains four or more repeats of ~40 residues ended with the Trp-Asp dipeptide, which folds into β-propellers with four β strands in each repeat. They often function as scaffolds for protein-protein interactions and are involved in numerous fundamental biological processes. Despite their important functional role, the "velcro" closure of WD40 propellers and the diversity of WD40 repeats make their identification a difficult task. Here we develop a new WD40 Repeat Recognition method (WDRR), which uses predicted secondary structure information to generate candidate repeat segments, and further employs a profile-profile alignment to identify the correct WD40 repeats from candidate segments. In particular, we design a novel alignment scoring function that combines dot product and BLOSUM62, thereby achieving a great balance of sensitivity and accuracy. Taking advantage of these strategies, WDRR could effectively reduce the false positive rate and accurately identify more remote homologous WD40 repeats with precise repeat boundaries. We further use WDRR to re-annotate the Pfam families in the β-propeller clan (CL0186) and identify a number of WD40 repeat proteins with high confidence across nine model organisms. The WDRR web server and the datasets are available at http://protein.cau.edu.cn/wdrr/.
Collapse
Affiliation(s)
- Chuan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Xiaobao Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Lei Han
- Center for Cancer Molecular Diagnosis, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jinyan Li
- Advanced Analytics Institute and Centre for Health Technologies, University of Technology Sydney, 81 Broadway, Sydney, NSW 2007, Australia.
| | - Jiangning Song
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Melbourne, VIC 3800, Australia; Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
27
|
Villanueva MA, Islas-Flores T, Ullah H. Editorial: Signaling through WD-Repeat Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1157. [PMID: 27536312 PMCID: PMC4971538 DOI: 10.3389/fpls.2016.01157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 05/21/2023]
Affiliation(s)
- Marco A. Villanueva
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de MéxicoPuerto Morelos, Mexico
- *Correspondence: Marco A. Villanueva
| | - Tania Islas-Flores
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de MéxicoPuerto Morelos, Mexico
| | - Hemayet Ullah
- Department of Biology, Howard UniversityWashington, DC, USA
| |
Collapse
|
28
|
Geister KA, Brinkmeier ML, Cheung LY, Wendt J, Oatley MJ, Burgess DL, Kozloff KM, Cavalcoli JD, Oatley JM, Camper SA. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice. PLoS Genet 2015; 11:e1005569. [PMID: 26496357 PMCID: PMC4619696 DOI: 10.1371/journal.pgen.1005569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Skeletal dysplasias are a common, genetically heterogeneous cause of short stature that can result from disruptions in many cellular processes. We report the identification of the lesion responsible for skeletal dysplasia and male infertility in the spontaneous, recessive mouse mutant chagun. We determined that Poc1a, encoding protein of the centriole 1a, is disrupted by the insertion of a processed Cenpw cDNA, which is flanked by target site duplications, suggestive of a LINE-1 retrotransposon-mediated event. Mutant fibroblasts have impaired cilia formation and multipolar spindles. Male infertility is caused by defective spermatogenesis early in meiosis and progressive germ cell loss. Spermatogonial stem cell transplantation studies revealed that Poc1a is essential for normal function of both Sertoli cells and germ cells. The proliferative zone of the growth plate is small and disorganized because chondrocytes fail to re-align after cell division and undergo increased apoptosis. Poc1a and several other genes associated with centrosome function can affect the skeleton and lead to skeletal dysplasias and primordial dwarfisms. This mouse mutant reveals how centrosome dysfunction contributes to defects in skeletal growth and male infertility.
Collapse
Affiliation(s)
- Krista A. Geister
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michelle L. Brinkmeier
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leonard Y. Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer Wendt
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - Melissa J. Oatley
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Daniel L. Burgess
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - Kenneth M. Kozloff
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James D. Cavalcoli
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jon M. Oatley
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Sally A. Camper
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
Asymmetric protein localization is essential for cell polarity and migration. We report a novel protein, Callipygian (CynA), which localizes to the lagging edge before other proteins and becomes more tightly restricted as cells polarize; additionally, it accumulates in the cleavage furrow during cytokinesis. CynA protein that is tightly localized, or "clustered," to the cell rear is immobile, but when polarity is disrupted, it disperses throughout the membrane and responds to uniform chemoattractant stimulation by transiently localizing to the cytosol. These behaviors require a pleckstrin homology-domain membrane tether and a WD40 clustering domain, which can also direct other membrane proteins to the back. Fragments of CynA lacking the pleckstrin homology domain, which are normally found in the cytosol, localize to the lagging edge membrane when coexpressed with full-length protein, showing that CynA clustering is mediated by oligomerization. Cells lacking CynA have aberrant lateral protrusions, altered leading-edge morphology, and decreased directional persistence, whereas those overexpressing the protein display exaggerated features of polarity. Consistently, actin polymerization is inhibited at sites of CynA accumulation, thereby restricting protrusions to the opposite edge. We suggest that the mutual antagonism between CynA and regions of responsiveness creates a positive feedback loop that restricts CynA to the rear and contributes to the establishment of the cell axis.
Collapse
|
30
|
Zhu Y, Huang S, Miao M, Tang X, Yue J, Wang W, Liu Y. Genome-wide identification, sequence characterization, and protein-protein interaction properties of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat family members in Solanum lycopersicum. PLANTA 2015; 241:1337-50. [PMID: 25680350 DOI: 10.1007/s00425-015-2258-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
MAIN CONCLUSIONS One hundred DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family genes were identified in the S. lycopersicum genome. The DWD genes encode proteins presumably functioning as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. These findings provide candidate genes and a research platform for further gene functionality and molecular breeding study. A subclass of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family proteins has been demonstrated to function as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. However, little information is available about the cognate subfamily genes in tomato (S. lycopersicum). In this study, based on the recently released tomato genome sequences, 100 tomato genes encoding DWD proteins that potentially interact with DDB1 were identified and characterized, including analyses of the detailed annotations, chromosome locations and compositions of conserved amino acid domains. In addition, a phylogenetic tree, which comprises of three main groups, of the subfamily genes was constructed. The physical interaction between tomato DDB1 and 14 representative DWD proteins was determined by yeast two-hybrid and co-immunoprecipitation assays. The subcellular localization of these 14 representative DWD proteins was determined. Six of them were localized in both nucleus and cytoplasm, seven proteins exclusively in cytoplasm, and one protein either in nucleus and cytoplasm, or exclusively in cytoplasm. Comparative genomic analysis demonstrated that the expansion of these subfamily members in tomato predominantly resulted from two whole-genome triplication events in the evolution history.
Collapse
Affiliation(s)
- Yunye Zhu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Mathes T, Heilmann M, Pandit A, Zhu J, Ravensbergen J, Kloz M, Fu Y, Smith BO, Christie JM, Jenkins GI, Kennis JTM. Proton-Coupled Electron Transfer Constitutes the Photoactivation Mechanism of the Plant Photoreceptor UVR8. J Am Chem Soc 2015; 137:8113-20. [DOI: 10.1021/jacs.5b01177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tilo Mathes
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Monika Heilmann
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Anjali Pandit
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Department
of Solid-State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| | - Jingyi Zhu
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Janneke Ravensbergen
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Miroslav Kloz
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Yinan Fu
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Brian O. Smith
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - John M. Christie
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Gareth I. Jenkins
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - John T. M. Kennis
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
32
|
Urbanska P, Song K, Joachimiak E, Krzemien-Ojak L, Koprowski P, Hennessey T, Jerka-Dziadosz M, Fabczak H, Gaertig J, Nicastro D, Wloga D. The CSC proteins FAP61 and FAP251 build the basal substructures of radial spoke 3 in cilia. Mol Biol Cell 2015; 26:1463-75. [PMID: 25694453 PMCID: PMC4395127 DOI: 10.1091/mbc.e14-11-1545] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 11/25/2022] Open
Abstract
Motile cilia have nine doublet microtubules, with hundreds of associated proteins that repeat in modules. Each module contains three radial spokes, which differ in their architecture, protein composition, and function. The conserved proteins FAP61 and FAP251 are crucial for the assembly and stable docking of RS3 and cilia motility. Dynein motors and regulatory complexes repeat every 96 nm along the length of motile cilia. Each repeat contains three radial spokes, RS1, RS2, and RS3, which transduct signals between the central microtubules and dynein arms. Each radial spoke has a distinct structure, but little is known about the mechanisms of assembly and function of the individual radial spokes. In Chlamydomonas, calmodulin and spoke-associated complex (CSC) is composed of FAP61, FAP91, and FAP251 and has been linked to the base of RS2 and RS3. We show that in Tetrahymena, loss of either FAP61 or FAP251 reduces cell swimming and affects the ciliary waveform and that RS3 is either missing or incomplete, whereas RS1 and RS2 are unaffected. Specifically, FAP251-null cilia lack an arch-like density at the RS3 base, whereas FAP61-null cilia lack an adjacent portion of the RS3 stem region. This suggests that the CSC proteins are crucial for stable and functional assembly of RS3 and that RS3 and the CSC are important for ciliary motility.
Collapse
Affiliation(s)
- Paulina Urbanska
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Kangkang Song
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Ewa Joachimiak
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Lucja Krzemien-Ojak
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Todd Hennessey
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Maria Jerka-Dziadosz
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Daniela Nicastro
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Dorota Wloga
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| |
Collapse
|
33
|
Elsayed SM, Phillips JB, Heller R, Thoenes M, Elsobky E, Nürnberg G, Nürnberg P, Seland S, Ebermann I, Altmüller J, Thiele H, Toliat M, Körber F, Hu XJ, Wu YD, Zaki MS, Abdel-Salam G, Gleeson J, Boltshauser E, Westerfield M, Bolz HJ. Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene. Hum Mol Genet 2015; 24:2594-603. [PMID: 25616960 DOI: 10.1093/hmg/ddv022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/21/2015] [Indexed: 01/21/2023] Open
Abstract
Determination of variant pathogenicity represents a major challenge in the era of high-throughput sequencing. Erroneous categorization may result if variants affect genes that are in fact dispensable. We demonstrate that this also applies to rare, apparently unambiguous truncating mutations of an established disease gene. By whole-exome sequencing (WES) in a consanguineous family with congenital non-syndromic deafness, we unexpectedly identified a homozygous nonsense variant, p.Arg1066*, in AHI1, a gene associated with Joubert syndrome (JBTS), a severe recessive ciliopathy. None of four homozygotes expressed any signs of JBTS, and one of them had normal hearing, which also ruled out p.Arg1066* as the cause of deafness. Homozygosity mapping and WES in the only other reported JBTS family with a homozygous C-terminal truncation (p.Trp1088Leufs*16) confirmed AHI1 as disease gene, but based on a more N-terminal missense mutation impairing WD40-repeat formation. Morpholinos against N-terminal zebrafish Ahi1, orthologous to where human mutations cluster, produced a ciliopathy, but targeting near human p.Arg1066 and p.Trp1088 did not. Most AHI1 mutations in JBTS patients result in truncated protein lacking WD40-repeats and the SH3 domain; disease was hitherto attributed to loss of these protein interaction modules. Our findings indicate that normal development does not require the C-terminal SH3 domain. This has far-reaching implications, considering that variants like p.Glu984* identified by preconception screening ('Kingsmore panel') do not necessarily indicate JBTS carriership. Genomes of individuals with consanguineous background are enriched for homozygous variants that may unmask dispensable regions of disease genes and unrecognized false positives in diagnostic large-scale sequencing and preconception carrier screening.
Collapse
Affiliation(s)
- Solaf M Elsayed
- Medical Genetics Center, Cairo 11566, Egypt, Children's Hospital, Ain Shams University, Cairo 11566, Egypt
| | | | - Raoul Heller
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Michaela Thoenes
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Ezzat Elsobky
- Medical Genetics Center, Cairo 11566, Egypt, Children's Hospital, Ain Shams University, Cairo 11566, Egypt
| | - Gudrun Nürnberg
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Saskia Seland
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Inga Ebermann
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany, Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Mohammad Toliat
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Friederike Körber
- Department of Radiology, University of Cologne, 50937 Cologne, Germany
| | - Xue-Jia Hu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518000 Shenzhen, P. R. China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518000 Shenzhen, P. R. China, College of Chemistry, Peking University, 100871 Beijing, P. R. China
| | - Maha S Zaki
- Department of Clinical Genetics, National Research Centre, Cairo 11566, Egypt
| | - Ghada Abdel-Salam
- Department of Clinical Genetics, National Research Centre, Cairo 11566, Egypt
| | - Joseph Gleeson
- Laboratory of Neurogenetics, Howard Hughes Medical Institute, Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093, USA
| | - Eugen Boltshauser
- Department of Paediatric Neurology, University Children's Hospital of Zurich, 8032 Zurich, Switzerland and
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Hanno J Bolz
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany, Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
| |
Collapse
|
34
|
Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, Boyer O, Daniel L, Gubler MC, Ekinci Z, Tsimaratos M, Chabrol B, Boddaert N, Verloes A, Chevrollier A, Gueguen N, Desquiret-Dumas V, Ferré M, Procaccio V, Richard L, Funalot B, Moncla A, Bonneau D, Antignac C. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet 2014; 95:637-48. [PMID: 25466283 DOI: 10.1016/j.ajhg.2014.10.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023] Open
Abstract
Galloway-Mowat syndrome is a rare autosomal-recessive condition characterized by nephrotic syndrome associated with microcephaly and neurological impairment. Through a combination of autozygosity mapping and whole-exome sequencing, we identified WDR73 as a gene in which mutations cause Galloway-Mowat syndrome in two unrelated families. WDR73 encodes a WD40-repeat-containing protein of unknown function. Here, we show that WDR73 was present in the brain and kidney and was located diffusely in the cytoplasm during interphase but relocalized to spindle poles and astral microtubules during mitosis. Fibroblasts from one affected child and WDR73-depleted podocytes displayed abnormal nuclear morphology, low cell viability, and alterations of the microtubule network. These data suggest that WDR73 plays a crucial role in the maintenance of cell architecture and cell survival. Altogether, WDR73 mutations cause Galloway-Mowat syndrome in a particular subset of individuals presenting with late-onset nephrotic syndrome, postnatal microcephaly, severe intellectual disability, and homogenous brain MRI features. WDR73 is another example of a gene involved in a disease affecting both the kidney glomerulus and the CNS.
Collapse
|
35
|
Wang Y, Hu XJ, Zou XD, Wu XH, Ye ZQ, Wu YD. WDSPdb: a database for WD40-repeat proteins. Nucleic Acids Res 2014; 43:D339-44. [PMID: 25348404 PMCID: PMC4383882 DOI: 10.1093/nar/gku1023] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
WD40-repeat proteins, as one of the largest protein families, often serve as platforms to assemble functional complexes through the hotspot residues on their domain surfaces, and thus play vital roles in many biological processes. Consequently, it is highly required for researchers who study WD40 proteins and protein-protein interactions to obtain structural information of WD40 domains. Systematic identification of WD40-repeat proteins, including prediction of their secondary structures, tertiary structures and potential hotspot residues responsible for protein-protein interactions, may constitute a valuable resource upon this request. To achieve this goal, we developed a specialized database WDSPdb (http://wu.scbb.pkusz.edu.cn/wdsp/) to provide these details of WD40-repeat proteins based on our recently published method WDSP. The WDSPdb contains 63,211 WD40-repeat proteins identified from 3383 species, including most well-known model organisms. To better serve the community, we implemented a user-friendly interactive web interface to browse, search and download the secondary structures, 3D structure models and potential hotspot residues provided by WDSPdb.
Collapse
Affiliation(s)
- Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xue-Jia Hu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xu-Dong Zou
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xian-Hui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
36
|
Beck BB, Phillips JB, Bartram MP, Wegner J, Thoenes M, Pannes A, Sampson J, Heller R, Göbel H, Koerber F, Neugebauer A, Hedergott A, Nürnberg G, Nürnberg P, Thiele H, Altmüller J, Toliat MR, Staubach S, Boycott KM, Valente EM, Janecke AR, Eisenberger T, Bergmann C, Tebbe L, Wang Y, Wu Y, Fry AM, Westerfield M, Wolfrum U, Bolz HJ. Mutation of POC1B in a severe syndromic retinal ciliopathy. Hum Mutat 2014; 35:1153-62. [PMID: 25044745 PMCID: PMC4425427 DOI: 10.1002/humu.22618] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/12/2014] [Indexed: 12/20/2022]
Abstract
We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease (PKD). Targeted next-generation sequencing for excluding mutations in known LCA and JBTS genes, homozygosity mapping, and whole-exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body, and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for the formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106ProPOC1B in a family with nonsyndromic cone-rod dystrophy. The phenotype associated with homozygous p.Arg106ProPOC1B may thus be highly variable, analogous to homozygous p.Leu710Ser in WDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe PKD.
Collapse
Affiliation(s)
- Bodo B. Beck
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | | | - Malte P. Bartram
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, 97401 Eugene, Oregon, USA
| | - Michaela Thoenes
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Andrea Pannes
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Josephina Sampson
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom, LE7 9HN
| | - Raoul Heller
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Heike Göbel
- Department of Pathology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Friederike Koerber
- Department of Radiology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Antje Neugebauer
- Department of Ophthalmology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Andrea Hedergott
- Department of Ophthalmology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Gudrun Nürnberg
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Mohammad R. Toliat
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Simon Staubach
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, K1H 8L1 Ottawa, Canada
| | - Enza Maria Valente
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza Institute, 71013 San Giovanni Rotondo, Italy
- Department of Medicine and Surgery, University of Salerno, 84080 Salerno, Italy
| | - Andreas R. Janecke
- Department of Pediatrics I, and Division of Human Genetics, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
- Department of Medicine, Renal Division, University of Freiburg Medical Center, 79095 Freiburg, Germany
| | - Lars Tebbe
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg, University of Mainz, 55099 Mainz, Germany
| | - Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518000 Shenzhen, P. R. China
| | - Yundong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518000 Shenzhen, P. R. China
- College of Chemistry, Peking University, 100871 Beijing, P. R. China
| | - Andrew M. Fry
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom, LE7 9HN
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, 97401 Eugene, Oregon, USA
| | - Uwe Wolfrum
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg, University of Mainz, 55099 Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Hanno J. Bolz
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
| |
Collapse
|
37
|
Izumi Y, Suzuki E, Kanzaki S, Yatsuga S, Kinjo S, Igarashi M, Maruyama T, Sano S, Horikawa R, Sato N, Nakabayashi K, Hata K, Umezawa A, Ogata T, Yoshimura Y, Fukami M. Genome-wide copy number analysis and systematic mutation screening in 58 patients with hypogonadotropic hypogonadism. Fertil Steril 2014; 102:1130-1136.e3. [DOI: 10.1016/j.fertnstert.2014.06.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 06/11/2014] [Indexed: 11/15/2022]
|
38
|
Leucine-rich repeat kinase 2 binds to neuronal vesicles through protein interactions mediated by its C-terminal WD40 domain. Mol Cell Biol 2014; 34:2147-61. [PMID: 24687852 DOI: 10.1128/mcb.00914-13] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains, including predicted C-terminal WD40 repeats. In this study, we analyzed functional and molecular features conferred by the WD40 domain. Electron microscopic analysis of the purified LRRK2 C-terminal domain revealed doughnut-shaped particles, providing experimental evidence for its WD40 fold. We demonstrate that LRRK2 WD40 binds and sequesters synaptic vesicles via interaction with vesicle-associated proteins. In fact, a domain-based pulldown approach combined with mass spectrometric analysis identified LRRK2 as being part of a highly specific protein network involved in synaptic vesicle trafficking. In addition, we found that a C-terminal sequence variant associated with an increased risk of developing PD, G2385R, correlates with a reduced binding affinity of LRRK2 WD40 to synaptic vesicles. Our data demonstrate a critical role of the WD40 domain within LRRK2 function.
Collapse
|
39
|
Wagner T, Robaa D, Sippl W, Jung M. Mind the Methyl: Methyllysine Binding Proteins in Epigenetic Regulation. ChemMedChem 2014; 9:466-83. [DOI: 10.1002/cmdc.201300422] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Indexed: 11/07/2022]
|