1
|
Mao Y, Cui X, Wang H, Qin X, Liu Y, Yin Y, Su X, Tang J, Wang F, Ma F, Duan N, Zhang D, Hu Y, Wang W, Wei S, Chen X, Mao Z, Chen X, Shen X. De novo assembly provides new insights into the evolution of Elaeagnus angustifolia L. PLANT METHODS 2022; 18:84. [PMID: 35717244 PMCID: PMC9206267 DOI: 10.1186/s13007-022-00915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/26/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Elaeagnus angustifolia L. is a deciduous tree in the family Elaeagnaceae. It is widely used to study abiotic stress tolerance in plants and to improve desertification-affected land because of its ability to withstand diverse types of environmental stress, such as drought, salt, cold, and wind. However, no studies have examined the mechanisms underlying the resistance of E. angustifolia to environmental stress and its adaptive evolution. METHODS Here, we used PacBio, Hi-C, resequencing, and RNA-seq to construct the genome and transcriptome of E. angustifolia and explore its adaptive evolution. RESULTS The reconstructed genome of E. angustifolia was 526.80 Mb, with a contig N50 of 12.60 Mb and estimated divergence time of 84.24 Mya. Gene family expansion and resequencing analyses showed that the evolution of E. angustifolia was closely related to environmental conditions. After exposure to salt stress, GO pathway analysis showed that new genes identified from the transcriptome were related to ATP-binding, metal ion binding, and nucleic acid binding. CONCLUSION The genome sequence of E. angustifolia could be used for comparative genomic analyses of Elaeagnaceae family members and could help elucidate the mechanisms underlying the response of E. angustifolia to drought, salt, cold, and wind stress. Generally, these results provide new insights that could be used to improve desertification-affected land.
Collapse
Affiliation(s)
- Yunfei Mao
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Xueli Cui
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Haiyan Wang
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Xin Qin
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Yangbo Liu
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Yijun Yin
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Xiafei Su
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Juan Tang
- Biomarker Technologies Corporation, Beijing, China
| | | | - Fengwang Ma
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Naibin Duan
- Germplasm Resource Center of Shandong Province, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Donglin Zhang
- Department of Horticulture, University of Georgia, Athens, USA
| | - Yanli Hu
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Wenli Wang
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Shaochong Wei
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Xiaoliu Chen
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Zhiquan Mao
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Xuesen Chen
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Xiang Shen
- College of Horticultural Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
2
|
Naganathan A, Keltz R, Lyon H, Culver GM. Uncovering a delicate balance between endonuclease RNase III and ribosomal protein S15 in E. coli ribosome assembly. Biochimie 2021; 191:104-117. [PMID: 34508826 DOI: 10.1016/j.biochi.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
The bacterial ribosomal protein S15 is located in the platform, a functional region of the 30S ribosomal subunit. While S15 is critical for in vitro formation of E. coli small subunits (SSUs), it is dispensable for in vivo biogenesis and growth. In this work, a novel synergistic interaction between rpsO, the gene that encodes S15, and rnc (the gene that encodes RNase III), was uncovered in E. coli. RNase III catalyzes processing of precursor ribosomal RNA (rRNA) transcripts and thus is involved in functional ribosome subunit maturation. Strains lacking S15 (ΔrpsO), RNase III (Δrnc) or both genes were examined to understand the relationship between these two factors and the impact of this double deletion on rRNA processing and SSU maturation. The double deletion of rpsO and rnc partially alleviates the observed cold sensitivity of ΔrpsO alone. A novel 16S rRNA precursor (17S∗ rRNA) that is detected in free 30S subunits of Δrnc is incorporated in 70S-like ribosomes in the double deletion. The stable accumulation of 17S∗ rRNA suggests that timing of processing events is closely coupled with SSU formation events in vivo. The double deletion has a suppressive effect on the cell elongation phenotype of ΔrpsO. The alteration of the phenotypes associated with S15 loss, due to the absence of RNase III, indicates that pre-rRNA processing and improvement of growth, relative to that observed for ΔrpsO, are connected. The characterization of the functional link between the two factors illustrates that there are redundancies and compensatory pathways for SSU maturation.
Collapse
Affiliation(s)
| | - Roxanne Keltz
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Hiram Lyon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, NY, USA; Center for RNA Biology, University of Rochester, Rochester, NY, USA; Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
3
|
Eugenol, citral, and hexanal, alone or in combination with heat, affect viability, biofilm formation, and swarming on Shiga-toxin-producing Escherichia coli. Food Sci Biotechnol 2021; 30:599-607. [PMID: 33936852 DOI: 10.1007/s10068-021-00887-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 10/21/2022] Open
Abstract
Shiga-toxin-producing Escherichia coli strains are pathogenic for humans and cause mild to severe illnesses. In this study, the antimicrobial effect of citral, eugenol, and hexanal in combination with heat shock (HS) was evaluated in terms of the growth, biofilm formation, swarming, and expression of virulence genes of STEC serotypes (O157:H7, O103, O111, and O26). Eugenol was the most effective compound against the growth of E. coli strains (MBC = 0.58 to 0.73 mg/mL), followed by citral (MBC = 0.86 to 1.26 mg/mL) and hexanal (MBC = 2.24 to 2.52 mg/mL). Biofilm formation and swarming motility have great variability between STEC strains. Natural compounds-alone or combined with HS-inhibited biofilm formation; however, swarming motility was induced by most treatments. The expression of the studied genes during biofilm formation and swarming under natural antimicrobials was affected but not in a uniform pattern. These treatments could be used to control contamination of STEC and inhibit biofilm formation.
Collapse
|
4
|
Huang Z, Yu K, Fang Y, Dai H, Cai H, Li Z, Kan B, Wei Q, Wang D. Comparative Genomics and Transcriptomics Analyses Reveal a Unique Environmental Adaptability of Vibrio fujianensis. Microorganisms 2020; 8:microorganisms8040555. [PMID: 32294952 PMCID: PMC7232310 DOI: 10.3390/microorganisms8040555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Vibrio is ubiquitous in marine environments and uses numerous evolutionary characteristics and survival strategies in order to occupy its niche. Here, a newly identified species, Vibrio fujianensis, was deeply explored to reveal a unique environmental adaptability. V. fujianensis type strain FJ201301T shared 817 core genes with the Vibrio species in the population genomic analysis, but possessed unique genes of its own. In addition, V. fujianensis FJ201301T was predicated to carry 106 virulence-related factors, several of which were mostly found in other pathogenic Vibrio species. Moreover, a comparative transcriptome analysis between the low-salt (1% NaCl) and high-salt (8% NaCl) condition was conducted to identify the genes involved in salt tolerance. A total of 913 unigenes were found to be differentially expressed. In a high-salt condition, 577 genes were significantly upregulated, whereas 336 unigenes were significantly downregulated. Notably, differentially expressed genes have a significant association with ribosome structural component and ribosome metabolism, which may play a role in salt tolerance. Transcriptional changes in ribosome genes indicate that V. fujianensis may have gained a predominant advantage in order to adapt to the changing environment. In conclusion, to survive in adversity, V. fujianensis has enhanced its environmental adaptability and developed various strategies to fill its niche.
Collapse
Affiliation(s)
- Zhenzhou Huang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Keyi Yu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Yujie Fang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Hang Dai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Hongyan Cai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Zhenpeng Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
| | - Qiang Wei
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
- Office of Laboratory Management, China CDC, Beijing 102206, China
- Correspondence: (Q.W.); (D.W.)
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
- Correspondence: (Q.W.); (D.W.)
| |
Collapse
|
5
|
Pathak B, Mondal S, Barat C. Inhibition of Escherichia coli
ribosome subunit dissociation by chloramphenicol and Blasticidin: a new mode of action of the antibiotics. Lett Appl Microbiol 2016; 64:79-85. [DOI: 10.1111/lam.12686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 11/27/2022]
Affiliation(s)
- B.K. Pathak
- Post Graduate Department of Biotechnology; St. Xavier's College; Kolkata India
| | - S. Mondal
- Post Graduate Department of Biotechnology; St. Xavier's College; Kolkata India
| | - C. Barat
- Post Graduate Department of Biotechnology; St. Xavier's College; Kolkata India
| |
Collapse
|
6
|
Tarusawa T, Ito S, Goto S, Ushida C, Muto A, Himeno H. (p)ppGpp-dependent and -independent pathways for salt tolerance inEscherichia coli. J Biochem 2016; 160:19-26. [DOI: 10.1093/jb/mvw008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/27/2015] [Indexed: 11/13/2022] Open
|
7
|
Mars RAT, Mendonça K, Denham EL, van Dijl JM. The reduction in small ribosomal subunit abundance in ethanol-stressed cells of Bacillus subtilis is mediated by a SigB-dependent antisense RNA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2553-9. [PMID: 26115952 DOI: 10.1016/j.bbamcr.2015.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 02/05/2023]
Abstract
One of the best-characterized general stress responses in bacteria is the σB-mediated stress response of the Gram-positive soil bacterium Bacillus subtilis. The σB regulon contains approximately 200 protein-encoding genes and 136 putative regulatory RNAs. One of these σB-dependent RNAs, named S1136-S1134, was recently mapped as being transcribed from the S1136 promoter on the opposite strand of the essential rpsD gene, which encodes the ribosomal primary-binding protein S4. Accordingly, S1136-S1134 transcription results in an rpsD-overlapping antisense RNA (asRNA). Upon exposure of B. subtilis to ethanol, the S1136 promoter was found to be induced, while rpsD transcription was downregulated. By quantitative PCR, we show that the activation of transcription from the S1136 promoter is directly responsible for the downregulation of rpsD upon ethanol exposure. We also show that this downregulation of rpsD leads to a reduced level of the small (30S) ribosomal subunit upon ethanol stress. The activation of the S1136 promoter thus represents the first example of antisense transcription-mediated regulation in the general stress response of B. subtilis and implicates the reduction of ribosomal protein abundance as a new aspect in the σB-dependent stress response. We propose that the observed reduction in the level of the small ribosomal subunit, which contains the ribosome-decoding center, may protect B. subtilis cells against misreading and spurious translation of possibly toxic aberrant peptides under conditions of ethanol stress.
Collapse
Affiliation(s)
- Ruben A T Mars
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| | - Karoline Mendonça
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| | - Emma L Denham
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands; Division of Translational and Systems Medicine, Unit of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
8
|
Fu X, Wang D, Yin X, Du P, Kan B. Time course transcriptome changes in Shewanella algae in response to salt stress. PLoS One 2014; 9:e96001. [PMID: 24789066 PMCID: PMC4006864 DOI: 10.1371/journal.pone.0096001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/01/2014] [Indexed: 11/19/2022] Open
Abstract
Shewanella algae, which produces tetrodotoxin and exists in various seafoods, can cause human diseases, such as spondylodiscitis and bloody diarrhea. In the present study, we focused on the temporal, dynamic process in salt-stressed S. algae by monitoring the gene transcript levels at different time points after high salt exposure. Transcript changes in amino acid metabolism, carbohydrate metabolism, energy metabolism, membrane transport, regulatory functions, and cellular signaling were found to be important for the high salt response in S. algae. The most common strategies used by bacteria to survive and grow in high salt environments, such as Na+ efflux, K+ uptake, glutamate transport and biosynthesis, and the accumulation of compatible solutes, were also observed in S. algae. In particular, genes involved in peptidoglycan biosynthesis and DNA repair were highly and steadily up-regulated, accompanied by rapid and instantaneous enhancement of the transcription of large- and small-ribosome subunits, which suggested that the structural changes in the cell wall and some stressful responses occurred in S. algae. Furthermore, the transcription of genes involved in the tricarboxylic acid (TCA) cycle and the glycolytic pathway was decreased, whereas the transcription of genes involved in anaerobic respiration was increased. These results, demonstrating the multi-pathway reactions of S. algae in response to salt stress, increase our understanding of the microbial stress response mechanisms.
Collapse
Affiliation(s)
- Xiuping Fu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Duochun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Xiling Yin
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Pengcheng Du
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Evolved osmotolerant Escherichia coli mutants frequently exhibit defective N-acetylglucosamine catabolism and point mutations in cell shape-regulating protein MreB. Appl Environ Microbiol 2014; 80:3729-40. [PMID: 24727267 DOI: 10.1128/aem.00499-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Biocatalyst robustness toward stresses imposed during fermentation is important for efficient bio-based production. Osmotic stress, imposed by high osmolyte concentrations or dense populations, can significantly impact growth and productivity. In order to better understand the osmotic stress tolerance phenotype, we evolved sexual (capable of in situ DNA exchange) and asexual Escherichia coli strains under sodium chloride (NaCl) stress. All isolates had significantly improved growth under selection and could grow in up to 0.80 M (47 g/liter) NaCl, a concentration that completely inhibits the growth of the unevolved parental strains. Whole genome resequencing revealed frequent mutations in genes controlling N-acetylglucosamine catabolism (nagC, nagA), cell shape (mrdA, mreB), osmoprotectant uptake (proV), and motility (fimA). Possible epistatic interactions between nagC, nagA, fimA, and proV deletions were also detected when reconstructed as defined mutations. Biofilm formation under osmotic stress was found to be decreased in most mutant isolates, coupled with perturbations in indole secretion. Transcriptional analysis also revealed significant changes in ompACGL porin expression and increased transcription of sulfonate uptake systems in the evolved mutants. These findings expand our current knowledge of the osmotic stress phenotype and will be useful for the rational engineering of osmotic tolerance into industrial strains in the future.
Collapse
|
10
|
Yang Z, Guo Q, Goto S, Chen Y, Li N, Yan K, Zhang Y, Muto A, Deng H, Himeno H, Lei J, Gao N. Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence. Protein Cell 2014; 5:394-407. [PMID: 24671761 PMCID: PMC3996153 DOI: 10.1007/s13238-014-0044-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/26/2014] [Indexed: 12/20/2022] Open
Abstract
The in vivo assembly of ribosomal subunits is a highly complex process, with a tight coordination between protein assembly and rRNA maturation events, such as folding and processing of rRNA precursors, as well as modifications of selected bases. In the cell, a large number of factors are required to ensure the efficiency and fidelity of subunit production. Here we characterize the immature 30S subunits accumulated in a factor-null Escherichia coli strain (∆rsgA∆rbfA). The immature 30S subunits isolated with varying salt concentrations in the buffer system show interesting differences on both protein composition and structure. Specifically, intermediates derived under the two contrasting salt conditions (high and low) likely reflect two distinctive assembly stages, the relatively early and late stages of the 3' domain assembly, respectively. Detailed structural analysis demonstrates a mechanistic coupling between the maturation of the 5' end of the 17S rRNA and the assembly of the 30S head domain, and attributes a unique role of S5 in coordinating these two events. Furthermore, our structural results likely reveal the location of the unprocessed terminal sequences of the 17S rRNA, and suggest that the maturation events of the 17S rRNA could be employed as quality control mechanisms on subunit production and protein translation.
Collapse
Affiliation(s)
- Zhixiu Yang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|