1
|
Vélez-Rubio GM, Prosdocimi L, López-Mendilaharsu M, Caraccio MN, Fallabrino A, LaCasella EL, Dutton PH. Natal Origin and Spatiotemporal Distribution of Leatherback Turtle ( Dermochelys coriacea) Strandings at a Foraging Hotspot in Temperate Waters of the Southwest Atlantic Ocean. Animals (Basel) 2023; 13:ani13081285. [PMID: 37106848 PMCID: PMC10134985 DOI: 10.3390/ani13081285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Leatherback turtles migrate long distances between nesting beaches and distant foraging areas worldwide. This study analyzes the genetic diversity, life history stage, spatiotemporal distribution, and associated threats of a foraging aggregation in the Southwest Atlantic Ocean. A total of 242 leatherbacks stranded or bycaught by artisanal fisheries were recorded from 1997 to 2021 in Uruguay, with sizes ranging from 110.0 to 170.0 cm carapace lengths, indicating that the aggregation is composed of large juveniles and adults. Results of Bayesian mixed-stock analysis show that leatherbacks come primarily from the West African rookeries, based on mitochondrial DNA sequences obtained from 59 of the turtles representing seven haplotypes, including a novel one (Dc1.7). The main threat identified in the area is the fisheries bycatch but most of the carcasses observed were badly decomposed. There was significant seasonal and interannual variability in strandings that is likely associated with the availability of prey and the intensity of the fishing effort. Taken together, these findings reinforce the importance of these South American foraging areas for leatherbacks and the need to determine regional habitat use and migratory routes across the broader Atlantic region, in order to develop effective conservation measures to mitigate threats both at nesting beaches and foraging areas.
Collapse
Affiliation(s)
- Gabriela M Vélez-Rubio
- Karumbé NGO, Av. Rivera 3245, Montevideo 11600, Uruguay
- Sección Oceanografía y Ecología Marina, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Departamento MEDIA, Centro Universitario Regional del Este (CURE), Universidad de la República, Ruta 9 Intersección con Ruta 15, Rocha 27000, Uruguay
| | - Laura Prosdocimi
- Karumbé NGO, Av. Rivera 3245, Montevideo 11600, Uruguay
- Laboratorio de Ecología, Comportamiento y Mamíferos Marinos (LECyMM), Museo Argentino de Ciencias Naturales (MACN-CONICET), Av. Ángel Gallardo 470, CABA, Buenos Aires C1405DJR, Argentina
| | | | | | | | - Erin L LaCasella
- NOAA-National Marine Fisheries Service, Southwest Fisheries Science Center, 8901 La Jolla Shores Dr, La Jolla, CA 92037, USA
| | - Peter H Dutton
- NOAA-National Marine Fisheries Service, Southwest Fisheries Science Center, 8901 La Jolla Shores Dr, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Phillips KF, Martin KR, Stahelin GD, Savage AE, Mansfield KL. Genetic variation among sea turtle life stages and species suggests connectivity among ocean basins. Ecol Evol 2022; 12:e9426. [PMID: 36329816 PMCID: PMC9618668 DOI: 10.1002/ece3.9426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Regional genetic differentiation of mitochondrial lineages occurs in migratory species with natal philopatry such as sea turtles. However, early juvenile dispersal represents a key opportunity for gene flow and colonization of new regions through founder events, making it an important yet under-studied life stage. To assess connectivity among sea turtle life stages and ocean basins, we sequenced mitochondrial DNA (mtDNA) fragments from 35 juveniles sampled in the Gulf of Mexico from the rarely observed dispersal stage across three species: green turtles (Chelonia mydas; n = 30), hawksbills (Eretmochelys imbricata; n = 3), and loggerheads (Caretta caretta; n = 2). We estimated green turtle rookery contributions using a many-to-many Bayesian mixed stock analysis that incorporated dispersal probabilities based on rookery size and transport via ocean currents. We assembled a gene tree including 709 distinct mtDNA control region haplotypes from the literature for all seven extant sea turtle species to assess gaps in life-stage data across ocean basins, as well as contextualize the lineages we sampled from dispersing juveniles. Our results indicate a high likelihood that green turtles sampled in the Gulf of Mexico originated from rookeries along the coast of Mexico, with smaller contributions from Costa Rica and Suriname. The gene tree analysis yielded species-level relationships consistent with those presented previously, while intra-species relationships between lineages and ocean basins differed, particularly within loggerhead and green turtle clades. Our results highlight the lack of genetic data from juvenile sea turtles, especially the early dispersal stage, and the potential for these data to answer broader questions of connectivity and diversification across species and lineages.
Collapse
Affiliation(s)
| | | | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaOrlandoFloridaUSA
| | | |
Collapse
|
3
|
Arantes LS, Vargas SM, Santos FR. Global phylogeography of the critically endangered hawksbill turtle (Eretmochelys imbricata). Genet Mol Biol 2020; 43:e20190264. [PMID: 32555943 PMCID: PMC7288670 DOI: 10.1590/1678-4685-gmb-2019-0264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/11/2020] [Indexed: 11/22/2022] Open
Abstract
The hawksbill turtle is a broadly distributed, highly migratory and critically endangered sea turtle species. The paucity of studies restricts the comprehension of its behavior and life history. In this work, we performed a global phylogeographic analysis using a compilation of previously published mitochondrial haplotype data to understand the dynamics and diversity of hawksbill populations worldwide. Our results revealed a complex demographic pattern associated to hawksbill phylogeography since the Pliocene. Isolation by distance is not enough to explain distinct demographic units of hawksbill turtles, which are also influenced by other factors as oceanic currents, coral reef distribution and nesting timing. The foraging aggregations are typically mixed stocks of individuals originating from multiple nesting areas, but there is also a trend of foragers coming from nearby natal beaches. Phylogenetic analysis indicates two highly divergent major lineages split between Atlantic and Indo-Pacific rookeries, but there is also a more recent Atlantic Ocean colonization from the Indo-Pacific Ocean. Long-distance dispersal events are likely responsible for homogenization between distant populations within oceans. Our findings provided new insights about population connectivity, identified gaps that should be prioritized in future research and highlighted the need for international efforts aiming at hawksbill's conservation.
Collapse
Affiliation(s)
- Larissa S Arantes
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Sarah M Vargas
- Universidade Federal do Espírito Santo (UFES), Instituto de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Vitória, ES, Brazil
| | - Fabrício R Santos
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Brown AM, Kopps AM, Allen SJ, Bejder L, Littleford-Colquhoun B, Parra GJ, Cagnazzi D, Thiele D, Palmer C, Frère CH. Population differentiation and hybridisation of Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback (Sousa chinensis) dolphins in north-western Australia. PLoS One 2014; 9:e101427. [PMID: 24988113 PMCID: PMC4079686 DOI: 10.1371/journal.pone.0101427] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/06/2014] [Indexed: 12/02/2022] Open
Abstract
Little is known about the Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback (Sousa chinensis) dolphins (‘snubfin’ and ‘humpback dolphins’, hereafter) of north-western Australia. While both species are listed as ‘near threatened’ by the IUCN, data deficiencies are impeding rigorous assessment of their conservation status across Australia. Understanding the genetic structure of populations, including levels of gene flow among populations, is important for the assessment of conservation status and the effective management of a species. Using nuclear and mitochondrial DNA markers, we assessed population genetic diversity and differentiation between snubfin dolphins from Cygnet (n = 32) and Roebuck Bays (n = 25), and humpback dolphins from the Dampier Archipelago (n = 19) and the North West Cape (n = 18). All sampling locations were separated by geographic distances >200 km. For each species, we found significant genetic differentiation between sampling locations based on 12 (for snubfin dolphins) and 13 (for humpback dolphins) microsatellite loci (FST = 0.05–0.09; P<0.001) and a 422 bp sequence of the mitochondrial control region (FST = 0.50–0.70; P<0.001). The estimated proportion of migrants in a population ranged from 0.01 (95% CI 0.00–0.06) to 0.13 (0.03–0.24). These are the first estimates of genetic diversity and differentiation for snubfin and humpback dolphins in Western Australia, providing valuable information towards the assessment of their conservation status in this rapidly developing region. Our results suggest that north-western Australian snubfin and humpback dolphins may exist as metapopulations of small, largely isolated population fragments, and should be managed accordingly. Management plans should seek to maintain effective population size and gene flow. Additionally, while interactions of a socio-sexual nature between these two species have been observed previously, here we provide strong evidence for the first documented case of hybridisation between a female snubfin dolphin and a male humpback dolphin.
Collapse
Affiliation(s)
- Alexander M. Brown
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
- * E-mail:
| | - Anna M. Kopps
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
- Marine Evolution and Conservation, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Simon J. Allen
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Lars Bejder
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | - Guido J. Parra
- Cetacean Ecology, Behaviour and Evolution Lab, School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
- South Australian Research and Development Institute, Adelaide, South Australia, Australia
| | - Daniele Cagnazzi
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Deborah Thiele
- Fenner School of Environment & Society, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Carol Palmer
- Marine Ecosystems, Flora and Fauna Division, Department of Land Resource Management, Palmerston, Northern Territory, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Celine H. Frère
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| |
Collapse
|
5
|
Assessing the efficacy of direct conservation interventions: clutch protection of the leatherback marine turtle in the Dominican Republic. ORYX 2014. [DOI: 10.1017/s0030605313001488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractThe beaches of Jaragua National Park in the Dominican Republic are the country's last known major nesting site for the leatherback marine turtle Dermochelys coriacea. This nesting aggregation is threatened by widespread illegal egg take, and clutch relocation and artificial incubation have been carried out as protection measures since 1974. We assess the efficacy of such efforts and investigate how artificial incubation may be influencing the success and sex ratios of clutches. We compare hatching success, incubation duration and embryo mortality in in-situ clutches (n = 43) with those incubated artificially at sites in the east and west of the Park (n = 35 and n = 31, respectively). Our results show that in the west, artificial incubation significantly decreases hatching success in clutches. In the east the duration of incubation is increased, which we predict would result in an increase in the number of males from these clutches. Clutch relocation is currently the only viable conservation option for clutches on eastern beaches because of illegal egg take but action is needed to ensure that the natural sex ratio is not distorted. However, on the western beaches in situ clutch incubation seems possible through beach protection. Further community engagement and enforcement are required to improve conservation measures at eastern beaches if long-term, less sustainable intervention is to be avoided.
Collapse
|
6
|
Nishizawa H, Narazaki T, Fukuoka T, Sato K, Hamabata T, Kinoshita M, Arai N. Juvenile green turtles on the northern edge of their range: mtDNA evidence of long-distance westward dispersals in the northern Pacific Ocean. ENDANGER SPECIES RES 2014. [DOI: 10.3354/esr00592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Proietti MC, Reisser J, Marins LF, Rodriguez-Zarate C, Marcovaldi MA, Monteiro DS, Pattiaratchi C, Secchi ER. Genetic structure and natal origins of immature hawksbill turtles (Eretmochelys imbricata) in Brazilian waters. PLoS One 2014; 9:e88746. [PMID: 24558419 PMCID: PMC3928279 DOI: 10.1371/journal.pone.0088746] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/10/2014] [Indexed: 11/19/2022] Open
Abstract
Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.
Collapse
Affiliation(s)
- Maira C. Proietti
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
- * E-mail:
| | - Julia Reisser
- Oceans Institute and School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth, Western Australia, Australia
- Wealth from Oceans Flagship, Commonwealth Scientific and Industrial Research Organisation, Floreat, Western Australia, Australia
| | - Luis Fernando Marins
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Clara Rodriguez-Zarate
- School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
| | | | - Danielle S. Monteiro
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
- Núcleo de Educação e Monitoramento Ambiental, Rio Grande, Rio Grande do Sul, Brazil
| | - Charitha Pattiaratchi
- Oceans Institute and School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Eduardo R. Secchi
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|