1
|
Li J, Mascarinas P, McGlinn E. The expanding roles of Nr6a1 in development and evolution. Front Cell Dev Biol 2024; 12:1357968. [PMID: 38440075 PMCID: PMC10909835 DOI: 10.3389/fcell.2024.1357968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
The Nuclear Receptor (NR) family of transcriptional regulators possess the ability to sense signalling molecules and directly couple that to a transcriptional response. While this large class of proteins are united by sequence and structural homology, individual NR functional output varies greatly depending on their expression, ligand selectivity and DNA binding sequence specificity. Many NRs have remained somewhat enigmatic, with the absence of a defined ligand categorising them as orphan nuclear receptors. One example is Nuclear Receptor subfamily 6 group A member 1 (Nr6a1), an orphan nuclear receptor that has no close evolutionary homologs and thus is alone in subfamily 6. Nonetheless, Nr6a1 has emerged as an important player in the regulation of key pluripotency and developmental genes, as functionally critical for mid-gestational developmental progression and as a possible molecular target for driving evolutionary change in animal body plan. Here, we review the current knowledge on this enigmatic nuclear receptor and how it impacts development and evolution.
Collapse
|
2
|
Nuclear receptor: Structure and function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:209-227. [PMID: 36813359 DOI: 10.1016/bs.pmbts.2022.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ligand-dependent transcription factors are nuclear receptors (NRs) that regulate various critical cellular processes such as reproduction, metabolism, development, etc. NRs are classified into (subgroup 0 to subgroup 6) seven superfamilies based on ligand-binding characteristics. All NRs share a general domain structure (A/B, C, D, and E) with distinct essential functions. NRs as monomers, homodimers, or heterodimers bind to consensus DNA sequences known as Hormone Response Elements (HREs). Furthermore, nuclear receptor-binding efficiency depends on minor differences in the sequences of HREs, spacing between the two half-sites, and the flanking sequence of the response elements. NRs can trans-activate and repress their target genes. In positively regulated genes, ligand-bound NRs recruit coactivators to activate the target gene expression, and unliganded NRs cause transcriptional repression. On the other hand, NRs repress gene expression by different mechanisms: (i) ligand-dependent transcriptional repression, (ii) ligand-independent transcriptional repression. This chapter will briefly explain NR superfamilies, their structures, molecular mechanism of action and their role in pathophysiological conditions, etc. That could enable the discovery of new receptors and their ligands and may elucidate their roles in various physiological processes. In addition, therapeutic agonists and antagonists would be developed to control the dysregulation of nuclear receptor signaling.
Collapse
|
3
|
Gao J, Petraki S, Sun X, Brooks LA, Lynch TJ, Hsieh CL, Elteriefi R, Lorenzana Z, Punj V, Engelhardt JF, Parekh KR, Ryan AL. Derivation of induced pluripotent stem cells from ferret somatic cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L671-L683. [PMID: 32073882 PMCID: PMC7191474 DOI: 10.1152/ajplung.00456.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Ferrets are an attractive mammalian model for several diseases, especially those affecting the lungs, liver, brain, and kidneys. Many chronic human diseases have been difficult to model in rodents due to differences in size and cellular anatomy. This is particularly the case for the lung, where ferrets provide an attractive mammalian model of both acute and chronic lung diseases, such as influenza, cystic fibrosis, A1A emphysema, and obliterative bronchiolitis, closely recapitulating disease pathogenesis, as it occurs in humans. As such, ferrets have the potential to be a valuable preclinical model for the evaluation of cell-based therapies for lung regeneration and, likely, for other tissues. Induced pluripotent stem cells (iPSCs) provide a great option for provision of enough autologous cells to make patient-specific cell therapies a reality. Unfortunately, they have not been successfully created from ferrets. In this study, we demonstrate the generation of ferret iPSCs that reflect the primed pluripotent state of human iPSCs. Ferret fetal fibroblasts were reprogrammed and acquired core features of pluripotency, having the capacity for self-renewal, multilineage differentiation, and a high-level expression of the core pluripotency genes and pathways at both the transcriptional and protein level. In conclusion, we have generated ferret pluripotent stem cells that provide an opportunity for advancing our capacity to evaluate autologous cell engraftment in ferrets.
Collapse
Affiliation(s)
- Jinghui Gao
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Sophia Petraki
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Leonard A Brooks
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Thomas J Lynch
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Chih-Lin Hsieh
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Reem Elteriefi
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Vasu Punj
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Kalpaj R Parekh
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Amy L Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
4
|
Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Sci 2018; 27:1876-1892. [PMID: 30109749 PMCID: PMC6201731 DOI: 10.1002/pro.3496] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022]
Abstract
Nuclear receptors (NRs) are a family of transcription factors that regulate numerous physiological processes such as metabolism, reproduction, inflammation, as well as the circadian rhythm. NRs sense changes in lipid metabolite levels to drive differential gene expression, producing distinct physiologic effects. This is an allosteric process whereby binding a cognate ligand and specific DNA sequences drives the recruitment of diverse transcriptional co-regulators at chromatin and ultimately transactivation or transrepression of target genes. Dysregulation of NR signaling leads to various malignances, metabolic disorders, and inflammatory disease. Given their important role in physiology and ability to respond to small lipophilic ligands, NRs have emerged as valuable therapeutic targets. Here, we summarize and discuss the recent progress on understanding the complex mechanism of action of NRs, primarily from a structural perspective. Finally, we suggest future studies to improve our understanding of NR signaling and better design drugs by integrating multiple structural and biophysical approaches.
Collapse
Affiliation(s)
- Emily R. Weikum
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Xu Liu
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Eric A. Ortlund
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| |
Collapse
|
5
|
Abstract
Sexual reproduction crucially depends on the production of sperm in males and oocytes in females. Both types of gamete arise from the same precursor, the germ cells. We review the events that characterize the development of germ cells during fetal life as they commit to, and prepare for, oogenesis or spermatogenesis. In females, fetal germ cells enter meiosis, whereas in males they delay meiosis and instead lose pluripotency, activate an irreversible program of prospermatogonial differentiation, and temporarily cease dividing. Both pathways involve sex-specific molecular signals from the somatic cells of the developing gonads and a suite of intrinsic receptors, signal transducers, transcription factors, RNA stability factors, and epigenetic modulators that act in complex, interconnected positive and negative regulatory networks. Understanding these networks is important in the contexts of the etiology, diagnosis, and treatment of infertility and gonadal cancers, and in efforts to augment human and animal fertility using stem cell approaches.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia;
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
6
|
A Structural Investigation into Oct4 Regulation by Orphan Nuclear Receptors, Germ Cell Nuclear Factor (GCNF), and Liver Receptor Homolog-1 (LRH-1). J Mol Biol 2016; 428:4981-4992. [PMID: 27984042 DOI: 10.1016/j.jmb.2016.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023]
Abstract
Oct4 is a transcription factor required for maintaining pluripotency and self-renewal in stem cells. Prior to differentiation, Oct4 must be silenced to allow for the development of the three germ layers in the developing embryo. This fine-tuning is controlled by the nuclear receptors (NRs), liver receptor homolog-1 (LRH-1) and germ cell nuclear factor (GCNF). Liver receptor homolog-1 is responsible for driving the expression of Oct4 where GCNF represses its expression upon differentiation. Both receptors bind to a DR0 motif located within the Oct4 promoter. Here, we present the first structure of mouse GCNF DNA-binding domain in complex with the Oct4 DR0. The overall structure revealed two molecules bound in a head-to-tail fashion on opposite sides of the DNA. Additionally, we solved the structure of the human LRH-1 DNA-binding domain bound to the same element. We explore the structural elements that govern Oct4 recognition by these two NRs.
Collapse
|
7
|
Abstract
Germ cells are the precursors of the sperm and oocytes and hence are critical for survival of the species. In mammals, they are specified during fetal life, migrate to the developing gonads and then undergo a critical period during which they are instructed, by the soma, to adopt the appropriate sexual fate. In a fetal ovary, germ cells enter meiosis and commit to oogenesis, whereas in a fetal testis, they avoid entry into meiosis and instead undergo mitotic arrest and mature toward spermatogenesis. Here, we discuss what we know so far about the regulation of sex-specific differentiation of germ cells, considering extrinsic molecular cues produced by somatic cells, as well as critical intrinsic changes within the germ cells. This review focuses almost exclusively on our understanding of these events in the mouse model.
Collapse
Affiliation(s)
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Sabour D, Xu X, Chung ACK, Le Menuet D, Ko K, Tapia N, Araúzo-Bravo MJ, Gentile L, Greber B, Hübner K, Sebastiano V, Wu G, Schöler HR, Cooney AJ. Germ cell nuclear factor regulates gametogenesis in developing gonads. PLoS One 2014; 9:e103985. [PMID: 25140725 PMCID: PMC4139263 DOI: 10.1371/journal.pone.0103985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/04/2014] [Indexed: 11/18/2022] Open
Abstract
Expression of germ cell nuclear factor (GCNF; Nr6a1), an orphan member of the nuclear receptor gene family of transcription factors, during gastrulation and neurulation is critical for normal embryogenesis in mice. Gcnf represses the expression of the POU-domain transcription factor Oct4 (Pou5f1) during mouse post-implantation development. Although Gcnf expression is not critical for the embryonic segregation of the germ cell lineage, we found that sexually dimorphic expression of Gcnf in germ cells correlates with the expression of pluripotency-associated genes, such as Oct4, Sox2, and Nanog, as well as the early meiotic marker gene Stra8. To elucidate the role of Gcnf during mouse germ cell differentiation, we generated an ex vivo Gcnf-knockdown model in combination with a regulated CreLox mutation of Gcnf. Lack of Gcnf impairs normal spermatogenesis and oogenesis in vivo, as well as the derivation of germ cells from embryonic stem cells (ESCs) in vitro. Inactivation of the Gcnf gene in vivo leads to loss of repression of Oct4 expression in both male and female gonads.
Collapse
Affiliation(s)
- Davood Sabour
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Xueping Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arthur C. K. Chung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Centre for Inflammatory Diseases and Molecular Therapies, The University of Hong Kong, Pokfulam, Hong Kong
| | - Damien Le Menuet
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- INSERM, U693, Faculté de Médecine Paris-Sud, Paris, France
| | - Kinarm Ko
- Center for Stem Cell Research, Institute of Biomedical Sciences and Technology, Konkuk University, Seoul, Republic of Korea
- Department of Neuroscience, School of Medicine, Institute of Biomedical Sciences and Technology, Konkuk University, Seoul, Republic of Korea
| | - Natalia Tapia
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marcos J. Araúzo-Bravo
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Luca Gentile
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Boris Greber
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Karin Hübner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
- * E-mail: (AJC); (HRS)
| | - Austin J. Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (AJC); (HRS)
| |
Collapse
|