1
|
Farini D, De Felici M. The Beginning of Meiosis in Mammalian Female Germ Cells: A Never-Ending Story of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms232012571. [PMID: 36293427 PMCID: PMC9604137 DOI: 10.3390/ijms232012571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Meiosis is the unique division of germ cells resulting in the recombination of the maternal and paternal genomes and the production of haploid gametes. In mammals, it begins during the fetal life in females and during puberty in males. In both cases, entering meiosis requires a timely switch from the mitotic to the meiotic cell cycle and the transition from a potential pluripotent status to meiotic differentiation. Revealing the molecular mechanisms underlying these interrelated processes represents the essence in understanding the beginning of meiosis. Meiosis facilitates diversity across individuals and acts as a fundamental driver of evolution. Major differences between sexes and among species complicate the understanding of how meiosis begins. Basic meiotic research is further hindered by a current lack of meiotic cell lines. This has been recently partly overcome with the use of primordial-germ-cell-like cells (PGCLCs) generated from pluripotent stem cells. Much of what we know about this process depends on data from model organisms, namely, the mouse; in mice, the process, however, appears to differ in many aspects from that in humans. Identifying the mechanisms and molecules controlling germ cells to enter meiosis has represented and still represents a major challenge for reproductive medicine. In fact, the proper execution of meiosis is essential for fertility, for maintaining the integrity of the genome, and for ensuring the normal development of the offspring. The main clinical consequences of meiotic defects are infertility and, probably, increased susceptibility to some types of germ-cell tumors. In the present work, we report and discuss data mainly concerning the beginning of meiosis in mammalian female germ cells, referring to such process in males only when pertinent. After a brief account of this process in mice and humans and an historical chronicle of the major hypotheses and progress in this topic, the most recent results are reviewed and discussed.
Collapse
|
2
|
Katavolos P, Cain G, Farman C, Romero FA, Magnuson S, Ly JQ, Choo EF, Katakam AK, Andaya R, Maher J. Preclinical Safety Assessment of a Highly Selective and Potent Dual Small-Molecule Inhibitor of CBP/P300 in Rats and Dogs. Toxicol Pathol 2020; 48:465-480. [PMID: 32124659 DOI: 10.1177/0192623319898469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyclic adenosine monophosphate-response element (CREB)-binding protein (CBP) and EP300E1A-binding protein (p300) are members of the bromodomain and extraterminal motif (BET) family. These highly homologous proteins have a key role in modulating transcription, including altering the status of chromatin or through interactions with or posttranslational modifications of transcription factors. As CBP and p300 have known roles for stimulating c-Myc oncogenic activity, a small-molecule inhibitor, GNE-781, was developed to selectively and potently inhibit the CBP/p300 bromodomains (BRDs). Genetic models have been challenging to develop due to embryonic lethality arising from germline homozygous mutations in either CBP or P300. Hence, the purpose of this study was to characterize the role of dual inhibition of these proteins in adult rats and dogs. Repeat dose toxicity studies were conducted, and toxicologic and pathologic end points were assessed. GNE-781 was generally tolerated; however, marked effects on thrombopoiesis occurred in both species. Evidence of inhibition of erythroid, granulocytic, and lymphoid cell differentiation was also present, as well as deleterious changes in gastrointestinal and reproductive tissues. These findings are consistent with many preclinical (and clinical) effects reported with BET inhibitors targeting BRD proteins; thus, the current study findings indicate a likely important role for CBP/p300 in stem cell differentiation.
Collapse
Affiliation(s)
- Paula Katavolos
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| | - Gary Cain
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| | - Cindy Farman
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA.,Vet Path Services, Inc, Mason, OH, USA
| | - F Anthony Romero
- Medicinal Chemistry, Genentech, Inc, South San Francisco, CA, USA.,Terns Pharmaceuticals, San Mateo, CA, USA
| | - Steven Magnuson
- Medicinal Chemistry, Genentech, Inc, South San Francisco, CA, USA
| | - Justin Q Ly
- Department of Drug Metabolism and Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Edna F Choo
- Department of Drug Metabolism and Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | | | - Roxanne Andaya
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| | - Jonathan Maher
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
3
|
Ma HT, Niu CM, Xia J, Shen XY, Xia MM, Hu YQ, Zheng Y. Stimulated by retinoic acid gene 8 (Stra8) plays important roles in many stages of spermatogenesis. Asian J Androl 2019; 20:479-487. [PMID: 29848833 PMCID: PMC6116687 DOI: 10.4103/aja.aja_26_18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To clarify the functions and mechanism of stimulated by retinoic acid gene 8 (Stra8) in spermatogenesis, we analyzed the testes from Stra8 knockout and wild-type mice during the first wave of spermatogenesis. Comparisons showed no significant differences in morphology and number of germ cells at 11 days postpartum, while 21 differentially expressed genes (DEGs) associated with spermatogenesis were identified. We speculate that Stra8 performs many functions in different phases of spermatogenesis, such as establishment of spermatogonial stem cells, spermatogonial proliferation and self-renewal, spermatogonial differentiation and meiosis, through direct or indirect regulation of these DEGs. We therefore established a preliminary regulatory network of Stra8 during spermatogenesis. These results will provide a theoretical basis for further research on the mechanism underlying the role of Stra8 in spermatogenesis.
Collapse
Affiliation(s)
- Hai-Tao Ma
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Chang-Min Niu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Jing Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Xue-Yi Shen
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Meng-Meng Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Yan-Qiu Hu
- Clinicial Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| |
Collapse
|
4
|
Breen ME, Mapp AK. Modulating the masters: chemical tools to dissect CBP and p300 function. Curr Opin Chem Biol 2018; 45:195-203. [PMID: 30025258 DOI: 10.1016/j.cbpa.2018.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/25/2018] [Accepted: 06/02/2018] [Indexed: 01/07/2023]
Abstract
Dysregulation of transcription is found in nearly every human disease, and as a result there has been intense interest in developing new therapeutics that target regulators of transcription. CREB binding protein (CBP) and its paralogue p300 are attractive targets due to their function as `master coactivators'. Although inhibitors of several CBP/p300 domains have been identified, the selectivity of many of these compounds has remained underexplored. Here, we review recent successes in the development of chemical tools targeting several CBP/p300 domains with selectivity acceptable for use as chemical probes. Additionally, we highlight recent studies which have used these probes to expand our understanding of interdomain interactions and differential coactivator usage.
Collapse
Affiliation(s)
- Meghan E Breen
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|
5
|
Koli S, Mukherjee A, Reddy KVR. Retinoic acid triggers c-kit gene expression in spermatogonial stem cells through an enhanceosome constituted between transcription factor binding sites for retinoic acid response element (RARE), spleen focus forming virus proviral integration oncogene (SPFI1) (PU.1) and E26 transformation-specific (ETS). Reprod Fertil Dev 2018; 29:521-543. [PMID: 28442062 DOI: 10.1071/rd15145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/14/2015] [Indexed: 12/19/2022] Open
Abstract
Restricted availability of retinoic acid (RA) in the testicular milieu regulates transcriptional activity of c-kit (KIT, CD117), which aids in the determination of spermatogonial stem-cell differentiation. The effect of RA on c-kit has been reported previously, but its mode of genomic action remains unresolved. We studied the molecular machinery guiding RA responsiveness to the c-kit gene using spermatogonial stem-cell line C18-4 and primary spermatogonial cells. A novel retinoic acid response element (RARE) positioned at -989 nucleotides upstream of the transcription start site (TSS) was identified, providing a binding site for a dimeric RA receptor (i.e. retinoic acid receptor gamma (RARγ) and retinoic X receptor). RA treatment influenced c-kit promoter activity, along with endogenous c-kit expression in C18-4 cells. A comprehensive promoter deletion assay using the pGL3B reporter system characterised the region spanning -271bp and -1011bp upstream of the TSS, which function as minimal promoter and maximal promoter, respectively. In silico analysis predicted that the region -1011 to +58bp comprised the distal enhancer RARE and activators such as spleen focus forming virus proviral integration oncogene (SPFI1) (PU.1), specificity protein 1 (SP1) and four E26 transformation-specific (ETS) tandem binding sites at the proximal region. Gel retardation and chromatin immunoprecipitation (ChIP) assays showed binding for RARγ, PU.1 and SP1 to the predicted consensus binding sequences, whereas GABPα occupied only two out of four ETS binding sites within the c-kit promoter region. We propose that for RA response, an enhanceosome is orchestrated through scaffolding of a CREB-binding protein (CBP)/p300 molecule between RARE and elements in the proximal promoter region, controlling germ-line expression of the c-kit gene. This study outlines the fundamental role played by RARγ, along with other non-RAR transcription factors (PU.1, SP1 and GABPα), in the regulation of c-kit expression in spermatogonial stem cells in response to RA.
Collapse
Affiliation(s)
- Swanand Koli
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M Street, Parel, Mumbai-400 012, India
| | - Ayan Mukherjee
- Department of Biological Science, Kent State University, Kent, OH 44240, USA
| | - Kudumula Venkata Rami Reddy
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M Street, Parel, Mumbai-400 012, India
| |
Collapse
|
6
|
Salguero-Aranda C, Tapia-Limonchi R, Cahuana GM, Hitos AB, Diaz I, Hmadcha A, Fraga M, Martín F, Soria B, Tejedo JR, Bedoya FJ. Differentiation of Mouse Embryonic Stem Cells toward Functional Pancreatic β-Cell Surrogates through Epigenetic Regulation of Pdx1 by Nitric Oxide. Cell Transplant 2018; 25:1879-1892. [PMID: 26980118 DOI: 10.3727/096368916x691178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pancreatic and duodenal homeobox 1 (Pdx1) is a transcription factor that regulates the embryonic development of the pancreas and the differentiation toward β cells. Previously, we have shown that exposure of mouse embryonic stem cells (mESCs) to high concentrations of diethylenetriamine nitric oxide adduct (DETA-NO) triggers differentiation events and promotes the expression of Pdx1. Here we report evidence that Pdx1 expression is associated with release of polycomb repressive complex 2 (PRC2) and P300 from its promoter region. These events are accompanied by epigenetic changes in bivalent markers of histones trimethylated histone H3 lysine 27 (H3K27me3) and H3K4me3, site-specific changes in DNA methylation, and no change in H3 acetylation. On the basis of these findings, we developed a protocol to differentiate mESCs toward insulin-producing cells consisting of sequential exposure to DETA-NO, valproic acid, and P300 inhibitor (C646) to enhance Pdx1 expression and a final maturation step of culture in suspension to form cell aggregates. This small molecule-based protocol succeeds in obtaining cells that express pancreatic β-cell markers such as PDX1, INS1, GCK, and GLUT2 and respond in vitro to high glucose and KCl.
Collapse
Affiliation(s)
- Carmen Salguero-Aranda
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Fundación Progreso y Salud, Seville, Spain
| | - Rafael Tapia-Limonchi
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Pablo de Olavide University, Seville, Spain
| | - Gladys Margot Cahuana
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Pablo de Olavide University, Seville, Spain
| | - Ana Belen Hitos
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Diaz
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain
| | - Abdelkrim Hmadcha
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Fundación Progreso y Salud, Seville, Spain
| | - Mario Fraga
- Department of Epigenetics, Oncologic Institute of Principado of Asturias, Oviedo, Spain
| | - Franz Martín
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Pablo de Olavide University, Seville, Spain
| | - Bernat Soria
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Fundación Progreso y Salud, Seville, Spain
| | - Juan Rigoberto Tejedo
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Pablo de Olavide University, Seville, Spain
| | - Francisco Javier Bedoya
- Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,Center for Network Research in Diabetes and Metabolic Diseases (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.,Cell Therapy Network, Madrid (RED-TERCEL), Instituto de Salud Carlos III, Madrid, Spain.,Pablo de Olavide University, Seville, Spain
| |
Collapse
|
7
|
Li C, Hu R, Hou N, Wang Y, Wang Z, Yang T, Gu Y, He M, Shi Y, Chen J, Song W, Li T. Alteration of the Retinoid Acid-CBP Signaling Pathway in Neural Crest Induction Contributes to Enteric Nervous System Disorder. Front Pediatr 2018; 6:382. [PMID: 30560112 PMCID: PMC6287626 DOI: 10.3389/fped.2018.00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Hirschsprung Disease (HSCR) and/or hypoganglionosis are common pediatric disorders that arise from developmental deficiencies of enteric neural crest cells (ENCCs). Retinoid acid (RA) signaling has been shown to affect neural crest (NC) development. However, the mechanisms underlying RA deficiency-induced HSCR or hypoganglionosis are not well-defined. In this report, we found that in HSCR patient bowels, the RA nuclear receptor RARα and its interacting coregulator CREB-binding protein (CBP) were expressed in enteric neural plexuses in the normal ganglionic segment. However, the expression of these two genes was significantly inhibited in the pathological aganglionic segment. In a Xenopus laevis animal model, endogenous RARα interacted with CBP and was expressed in NC territory. Morpholino-mediated knockdown of RARα blocked expression of the NC marker genes Sox10 and FoxD3 and inhibited NC induction. The morphant embryos exhibited reduced nervous cells in the gastrointestinal anlage, a typical enteric nervous deficiency-associated phenotype. Injection of CBP mRNA rescued NC induction and reduced enteric nervous deficiency-associated phenotypes. Our work demonstrates that RARα regulates Sox10 expression via CBP during NC induction, and alteration of the RA-CBP signaling pathway may contribute to the development of enteric nervous system disorders.
Collapse
Affiliation(s)
- Cheng Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Hu
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Nali Hou
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Wang
- Department of Gastrointestinal Surgery and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhili Wang
- Department of Gastrointestinal Surgery and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Gu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mulan He
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Shi
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Yakushiji-Kaminatsui N, Kondo T, Hironaka KI, Sharif J, Endo TA, Nakayama M, Masui O, Koseki Y, Kondo K, Ohara O, Vidal M, Morishita Y, Koseki H. Variant PRC1 competes with retinoic acid-related signals to repress Meis2 in distal forelimb bud. Development 2018; 145:dev.166348. [DOI: 10.1242/dev.166348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
Abstract
Suppression of Meis genes in the distal limb bud is required for Proximal-Distal (PD) specification of the forelimb. Polycomb group (PcG) factors play a role in downregulation of retinoic acid (RA)-related signals in the distal forelimb bud, causing Meis repression. It is, however, not known if downregulation of RA-related signals and PcG-mediated proximal genes repression are functionally linked. Here, we reveal that PcG factors and RA-related signals antagonize each other to polarize Meis2 expression along the PD axis. With mathematical modeling and simulation, we propose that PcG factors are required to adjust the threshold for RA-related signaling to regulate Meis2 expression. Finally, we show that a variant Polycomb repressive complex 1 (PRC1), incorporating PCGF3 and PCGF5, represses Meis2 expression in the distal limb bud. Taken together, we reveal a previously unknown link between PcG proteins and downregulation of RA-related signals to mediate the phase transition of Meis2 transcriptional status during forelimb specification.
Collapse
Affiliation(s)
- Nayuta Yakushiji-Kaminatsui
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- KAST, Project on Health and Anti-aging, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Ken-ichi Hironaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takaho A. Endo
- Laboratory for Integrative Genomics, RIKEN-IMS, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Manabu Nakayama
- Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Osamu Masui
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kaori Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- KAST, Project on Health and Anti-aging, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN-IMS, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
- Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Miguel Vidal
- Centro de Investigaciones Biológicas, Department of Cellular and Molecular Biology, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
9
|
Abstract
Sexual reproduction crucially depends on the production of sperm in males and oocytes in females. Both types of gamete arise from the same precursor, the germ cells. We review the events that characterize the development of germ cells during fetal life as they commit to, and prepare for, oogenesis or spermatogenesis. In females, fetal germ cells enter meiosis, whereas in males they delay meiosis and instead lose pluripotency, activate an irreversible program of prospermatogonial differentiation, and temporarily cease dividing. Both pathways involve sex-specific molecular signals from the somatic cells of the developing gonads and a suite of intrinsic receptors, signal transducers, transcription factors, RNA stability factors, and epigenetic modulators that act in complex, interconnected positive and negative regulatory networks. Understanding these networks is important in the contexts of the etiology, diagnosis, and treatment of infertility and gonadal cancers, and in efforts to augment human and animal fertility using stem cell approaches.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia;
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
10
|
Desimio MG, Campolo F, Dolci S, De Felici M, Farini D. SOHLH1 and SOHLH2 directly down-regulate STIMULATED BY RETINOIC ACID 8 (STRA8) expression. Cell Cycle 2015; 14:1036-45. [PMID: 25603532 DOI: 10.1080/15384101.2015.1007721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
As the name implies, Stimulated by Retinoic Acid 8 is an early retinoic acid (RA) responsive gene pivotal for the beginning of meiosis in female and male germ cells. Its expression is strictly time-dependent and cell-specific (pre-meiotic germ cells) and likely requires a complex mechanism of regulation. In this study, we demonstrate a direct negative control of SOHLH1 and SOHLH2, 2 germ cell specific bHLH transcription factors, on Stra8 expression. We observed a negative correlation between STRA8 and SOHLH1 expression in prepuberal differentiating mouse KIT(+) spermatogonia and found that SOHLH1 and SOHLH2 were able to directly and cooperatively repress STRA8 expression in cell lines in vitro through binding to its promoter. We also identified 2 canonical E-Box motives in the Stra8 promoter that mediated the negative regulation of SOHLH1 and SOHLH2 on these gene both in the cell lines and KIT(+) spermatogonia. We hypothesize that this novel negative activity of SOHLH1 and SOHLH2 in male cooperates with that of other transcription factors to coordinate spermatogonia differentiation and the RA-induced meiosis and in female ensures STRA8 down-regulation at mid-end stages of meiotic prophase I.
Collapse
Affiliation(s)
- M G Desimio
- a Department of Biomedicine ; Section of Histology and Embryology ; University of "Tor Vergata" ; Rome , Italy
| | | | | | | | | |
Collapse
|
11
|
MiR-630 inhibits proliferation by targeting CDC7 kinase, but maintains the apoptotic balance by targeting multiple modulators in human lung cancer A549 cells. Cell Death Dis 2014; 5:e1426. [PMID: 25255219 PMCID: PMC4225225 DOI: 10.1038/cddis.2014.386] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAome analyses have shown microRNA-630 (miR-630) to be involved in the regulation of apoptosis. However, its apoptotic role is still debated and its participation in DNA replication is unknown. Here, we demonstrate that miR-630 inhibits cell proliferation by targeting cell-cycle kinase 7 (CDC7) kinase, but maintains the apoptotic balance by targeting multiple activators of apoptosis under genotoxic stress. We identified a novel regulatory mechanism of CDC7 gene expression, in which miR-630 downregulated CDC7 expression by recognizing and binding to four binding sites in CDC7 3'-UTR. We found that miR-630 was highly expressed in A549 and NIH3T3 cells where CDC7 was downregulated, but lower in H1299, MCF7, MDA-MB-231, HeLa and 2BS cells where CDC7 was upregulated. Furthermore, the induction of miR-630 occurred commonly in a variety of human cancer and immortalized cells in response to genotoxic agents. Importantly, downregulation of CDC7 by miR-630 was associated with cisplatin (CIS)-induced inhibitory proliferation in A549 cells. Mechanistically, miR-630 exerted its inhibitory proliferation by blocking CDC7-mediated initiation of DNA synthesis and by inducing G1 arrest, but maintains apoptotic balance under CIS exposure. On the one hand, miR-630 promoted apoptosis by downregulation of CDC7; on the other hand, it reduced apoptosis by downregulating several apoptotic modulators such as PARP3, DDIT4, EP300 and EP300 downstream effector p53, thereby maintaining the apoptotic balance. Our data indicate that miR-630 has a bimodal role in the regulation of apoptosis in response to DNA damage. Our data also support the notion that a certain mRNA can be targeted by several miRNAs, and in particular an miRNA may target a set of mRNAs. These data afford a comprehensive view of microRNA-dependent control of gene expression in the regulation of apoptosis under genotoxic stress.
Collapse
|
12
|
Hou N, Ren L, Gong M, Bi Y, Gu Y, Dong Z, Liu Y, Chen J, Li T. Vitamin A deficiency impairs spatial learning and memory: the mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Mol Neurobiol 2014; 51:633-47. [PMID: 24859384 DOI: 10.1007/s12035-014-8741-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022]
Abstract
Vitamin A (VA) is an essential micronutrient. Numerous studies have confirmed that VA deficiency (VAD) leads to a decline in learning and memory function. Our previous studies have demonstrated that retinoic acid nuclear receptor α (RARα) in the hippocampus plays a crucial role in learning and memory, but the exact mechanism for this process is unclear. Epigenetic modifications, particularly histone acetylation, are involved in nervous system development, learning and memory function, and the pathogenesis of neurodegenerative diseases. Histone acetyltransferases (HATs), such as CREB-binding protein (CBP), E1A-binding protein p300 (p300), and p300/CBP-associated factor (PCAF), are critical for regulating memory function. The current study uses RARα and CBP as examples to study the connections between the RA signaling pathway and histone acetylation modification and to reveal the epigenetic mechanism in VAD-induced learning and memory impairment. This study examined the expression of RARα, HATs, acetylated histone H3/H4, and memory-related genes (Zif268, cFos, FosB), as well as the interaction of RARα and CBP in the hippocampus of 8-week-old rats. Additionally, the changes shown in vivo were further assessed in primary cultured neurons with the inhibition or overexpression of RARα. We found significantly lower levels of histone acetylation in the VAD rats. Furthermore, this downregulation, which impairs learning and memory, is induced by the dysregulation of CBP-dependent histone acetylation that is mediated by RARα. This work provides a solid theoretical foundation and experimental basis for the importance of ensuring sufficient nutritional VA during pregnancy and early life to prevent impairments of learning and memory in adulthood.
Collapse
Affiliation(s)
- Nali Hou
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | | | | | | | | | | | | | | | | |
Collapse
|