1
|
Lygate CA. Maintaining energy provision in the heart: the creatine kinase system in ischaemia-reperfusion injury and chronic heart failure. Clin Sci (Lond) 2024; 138:491-514. [PMID: 38639724 DOI: 10.1042/cs20230616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
2
|
Tai Y, Zhang Z, Liu Z, Li X, Yang Z, Wang Z, An L, Ma Q, Su Y. D-ribose metabolic disorder and diabetes mellitus. Mol Biol Rep 2024; 51:220. [PMID: 38281218 PMCID: PMC10822815 DOI: 10.1007/s11033-023-09076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
D-ribose, an ubiquitous pentose compound found in all living cells, serves as a vital constituent of numerous essential biomolecules, including RNA, nucleotides, and riboflavin. It plays a crucial role in various fundamental life processes. Within the cellular milieu, exogenously supplied D-ribose can undergo phosphorylation to yield ribose-5-phosphate (R-5-P). This R-5-P compound serves a dual purpose: it not only contributes to adenosine triphosphate (ATP) production through the nonoxidative phase of the pentose phosphate pathway (PPP) but also participates in nucleotide synthesis. Consequently, D-ribose is employed both as a therapeutic agent for enhancing cardiac function in heart failure patients and as a remedy for post-exercise fatigue. Nevertheless, recent clinical studies have suggested a potential link between D-ribose metabolic disturbances and type 2 diabetes mellitus (T2DM) along with its associated complications. Additionally, certain in vitro experiments have indicated that exogenous D-ribose exposure could trigger apoptosis in specific cell lines. This article comprehensively reviews the current advancements in D-ribose's digestion, absorption, transmembrane transport, intracellular metabolic pathways, impact on cellular behaviour, and elevated levels in diabetes mellitus. It also identifies areas requiring further investigation.
Collapse
Affiliation(s)
- Yu Tai
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zehong Zhang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
- Department of Clinical Laboratory, the Fourth Hospital of Baotou, Baotou, Inner Mongolia, China
| | - Zhi Liu
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiaojing Li
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zhongbin Yang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zeying Wang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Liang An
- Department of Clinical Laboratory, the Fourth Hospital of Baotou, Baotou, Inner Mongolia, China
| | - Qiang Ma
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yan Su
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China.
| |
Collapse
|
3
|
Holst T, Petersen J, Ameling S, Müller L, Christ T, Gedeon N, Eschenhagen T, Reichenspurner H, Hammer E, Girdauskas E. Proteomic Analysis in Valvular Cardiomyopathy: Aortic Regurgitation vs. Aortic Stenosis. Cells 2023; 12:878. [PMID: 36980219 PMCID: PMC10047037 DOI: 10.3390/cells12060878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Left ventricular (LV) reverse remodeling after aortic valve (AV) surgery is less predictable in chronic aortic regurgitation (AR) than in aortic stenosis (AS). We aimed to disclose specific LV myocardial protein signatures possibly contributing to differential disease progression. Global protein profiling of LV myocardial samples excised from the subaortic interventricular septum in patients with isolated AR or AS undergoing AV surgery was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry. Based on label-free quantitation protein intensities, a logistic regression model was calculated and adjusted for age, sex and protein concentration. Web-based functional enrichment analyses of phenotype-associated proteins were performed utilizing g:Profiler and STRING. Data are available via ProteomeXchange with identifier PXD039662. Lysates from 38 patients, including 25 AR and 13 AS samples, were analyzed. AR patients presented with significantly larger LV diameters and volumes (end-diastolic diameter: 61 (12) vs. 48 (13) mm, p < 0.001; end-diastolic volume: 180.0 (74.6) vs. 92.3 (78.4), p = 0.001). A total of 171 proteins were associated with patient phenotype: 117 were positively associated with AR and the enrichment of intracellular compartment proteins (i.e., assigned to carbohydrate and nucleotide metabolism, protein biosynthesis and the proteasome) was detected. Additionally, 54 were positively associated with AS and the enrichment of extracellular compartment proteins (i.e., assigned to the immune and hematopoietic system) was observed. In summary, functional enrichment analysis revealed specific AR- and AS-associated signatures of LV myocardial proteins.
Collapse
Affiliation(s)
- Theresa Holst
- Department of Cardiothoracic Surgery, Augsburg University Hospital, Stenglinstraße 2, 86156 Augsburg, Germany
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Martinistraße 52, 20246 Hamburg, Germany
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Martinistraße 52, 20246 Hamburg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Straße 8, 17487 Greifswald, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Lisa Müller
- Department of Cardiothoracic Surgery, Augsburg University Hospital, Stenglinstraße 2, 86156 Augsburg, Germany
| | - Torsten Christ
- German Center of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Naomi Gedeon
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Martinistraße 52, 20246 Hamburg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- German Center of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Martinistraße 52, 20246 Hamburg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Straße 8, 17487 Greifswald, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Evaldas Girdauskas
- Department of Cardiothoracic Surgery, Augsburg University Hospital, Stenglinstraße 2, 86156 Augsburg, Germany
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Martinistraße 52, 20246 Hamburg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
4
|
Zhang Q, Liu X, Gao M, Li X, Wang Y, Chang Y, Zhang X, Huo Z, Zhang L, Shan J, Zhang F, Zhu B, Yao W. The study of human serum metabolome on the health effects of glyphosate and early warning of potential damage. CHEMOSPHERE 2022; 298:134308. [PMID: 35302001 DOI: 10.1016/j.chemosphere.2022.134308] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate is one of the most widely used herbicide with high efficiency, low toxicity and broad-spectrum. In recent decades, increasing evidence suggests that glyphosate may cause adverse health effects on human beings. However, until now, there is little data on the human metabolic changes. Since occupational workers are under greater health risks than ordinary people, the understanding regarding the health effects of glyphosate on occupational workers is very important for the early warning of potential damage. In this study, serum metabolic alterations in workers from three chemical factories were analyzed by gas chromatography-mass spectrometry (GC-MS) to assess the potential health risks caused by glyphosate at the molecular level. It was found that the levels of 27 metabolites changed significantly in the exposed group compared to the controls. The altered metabolic pathways, including amino acid metabolism, energy metabolism (glycolysis and TCA cycle) and glutathione metabolism (oxidative stress), etc., indicated a series of changes occur in health profile of the human body after glyphosate exposure, and the suboptimal health status of human may further evolve into various diseases, such as Parkinson's disease, renal and liver dysfunction, hepatocellular carcinoma, and colorectal cancer. Subsequently, 4 biomarkers (i.e., benzoic acid, 2-ketoisocaproic acid, alpha-ketoglutarate, and monoolein) were identified as potential biomarkers related to glyphosate exposure based on the partial correlation analyses, linear regression analyses, and FDR correction. Receiver-operating curve (ROC) analyses manifested that these potential biomarkers and their combinational pattern had good performance and potential clinical value to assess the potential health risk associated with glyphosate exposure while retaining high accuracy. Our findings provided new insights on mechanisms of health effects probably induced by glyphosate, and may be valuable for the health risk assessment of glyphosate exposure.
Collapse
Affiliation(s)
- QiuLan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Liu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China
| | - MengTing Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - YiFei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - YueYue Chang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - XueMeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - ZongLi Huo
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - JinJun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatics, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Feng Zhang
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China.
| | - BaoLi Zhu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China.
| | - WeiFeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Role of Creatine in the Heart: Health and Disease. Nutrients 2021; 13:nu13041215. [PMID: 33917009 PMCID: PMC8067763 DOI: 10.3390/nu13041215] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/26/2022] Open
Abstract
Creatine is a key player in heart contraction and energy metabolism. Creatine supplementation (throughout the paper, only supplementation with creatine monohydrate will be reviewed, as this is by far the most used and best-known way of supplementing creatine) increases creatine content even in the normal heart, and it is generally safe. In heart failure, creatine and phosphocreatine decrease because of decreased expression of the creatine transporter, and because phosphocreatine degrades to prevent adenosine triphosphate (ATP) exhaustion. This causes decreased contractility reserve of the myocardium and correlates with left ventricular ejection fraction, and it is a predictor of mortality. Thus, there is a strong rationale to supplement with creatine the failing heart. Pending additional trials, creatine supplementation in heart failure may be useful given data showing its effectiveness (1) against specific parameters of heart failure, and (2) against the decrease in muscle strength and endurance of heart failure patients. In heart ischemia, the majority of trials used phosphocreatine, whose mechanism of action is mostly unrelated to changes in the ergogenic creatine-phosphocreatine system. Nevertheless, preliminary data with creatine supplementation are encouraging, and warrant additional studies. Prevention of cardiac toxicity of the chemotherapy compounds anthracyclines is a novel field where creatine supplementation may also be useful. Creatine effectiveness in this case may be because anthracyclines reduce expression of the creatine transporter, and because of the pleiotropic antioxidant properties of creatine. Moreover, creatine may also reduce concomitant muscle damage by anthracyclines.
Collapse
|
6
|
Overexpression of mitochondrial creatine kinase preserves cardiac energetics without ameliorating murine chronic heart failure. Basic Res Cardiol 2020; 115:12. [PMID: 31925563 PMCID: PMC6954138 DOI: 10.1007/s00395-020-0777-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/02/2020] [Indexed: 01/24/2023]
Abstract
Mitochondrial creatine kinase (Mt-CK) is a major determinant of cardiac energetic status and is down-regulated in chronic heart failure, which may contribute to disease progression. We hypothesised that cardiomyocyte-specific overexpression of Mt-CK would mitigate against these changes and thereby preserve cardiac function. Male Mt-CK overexpressing mice (OE) and WT littermates were subjected to transverse aortic constriction (TAC) or sham surgery and assessed by echocardiography at 0, 3 and 6 weeks alongside a final LV haemodynamic assessment. Regardless of genotype, TAC mice developed progressive LV hypertrophy, dilatation and contractile dysfunction commensurate with pressure overload-induced chronic heart failure. There was a trend for improved survival in OE-TAC mice (90% vs 73%, P = 0.08), however, OE-TAC mice exhibited greater LV dilatation compared to WT and no functional parameters were significantly different under baseline conditions or during dobutamine stress test. CK activity was 37% higher in OE-sham versus WT-sham hearts and reduced in both TAC groups, but was maintained above normal values in the OE-TAC hearts. A separate cohort of mice received in vivo cardiac 31P-MRS to measure high-energy phosphates. There was no difference in the ratio of phosphocreatine-to-ATP in the sham mice, however, PCr/ATP was reduced in WT-TAC but preserved in OE-TAC (1.04 ± 0.10 vs 2.04 ± 0.22; P = 0.007). In conclusion, overexpression of Mt-CK activity prevented the changes in cardiac energetics that are considered hallmarks of a failing heart. This had a positive effect on early survival but was not associated with improved LV remodelling or function during the development of chronic heart failure.
Collapse
|
7
|
Faller KME, Leach J, Johnston P, Holmes WM, Macrae IM, Frenguelli BG. Proof of concept and feasibility studies examining the influence of combination ribose, adenine and allopurinol treatment on stroke outcome in the rat. Brain Neurosci Adv 2017; 1:2398212817717112. [PMID: 32166133 PMCID: PMC7058219 DOI: 10.1177/2398212817717112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/31/2017] [Indexed: 01/21/2023] Open
Abstract
Background Cerebral ischaemia results in a rapid and profound depletion of adenosine triphosphate (ATP), the energy currency of the cell. This depletion leads to disruption of cellular homeostasis and cell death. Early replenishment of ATP levels might therefore have a neuroprotective effect in the injured brain. We have previously shown that the ATP precursors, D-ribose and adenine (RibAde), restored the reduced ATP levels in rat brain slices to values similar to those measured in the intact rodent brain. The aim of this study was to assess whether RibAde, either alone or in combination with the xanthine oxidase inhibitor allopurinol (RibAdeAll; to further increase the availability of ATP precursors), could improve outcome in an in vivo rodent model of transient cerebral ischaemia. Methods After 60 min occlusion of the middle cerebral artery, and upon reperfusion, rats were administered saline, RibAde, or RibAdeAll for 6 h. Baseline lesion volume was determined by diffusion-weighted MRI prior to reperfusion and final infarct volume determined by T2-weighted MRI at Day 7. Neurological function was assessed at Days 1, 3 and 7. Results Ischaemic lesion volume decreased between Days 1 and 7: a 50% reduction was observed for the RibAdeAll group, 38% for the RibAde group and 18% in the animals that received saline. Reductions in lesion size in treatment groups were accompanied by a trend for faster functional recovery. Conclusion These data support the potential use of ribose, adenine and allopurinol in the treatment of cerebral ischaemic injury, especially since all compounds have been used in man.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Joshua Leach
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pamela Johnston
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William M Holmes
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - I Mhairi Macrae
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
8
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
9
|
Singh S, Schwarz K, Horowitz J, Frenneaux M. Cardiac energetic impairment in heart disease and the potential role of metabolic modulators: a review for clinicians. ACTA ACUST UNITED AC 2015; 7:720-8. [PMID: 25518045 DOI: 10.1161/circgenetics.114.000221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac energetic impairment is a frequent finding in patients with both inherited and acquired diseases of heart muscle. In this review the mechanisms of energy generation in the healthy heart and their disturbances in heart muscle diseases are described. Therapeutic agents targeted at correcting cardiac energetic impairment are discussed.
Collapse
Affiliation(s)
- Satnam Singh
- From the Department of Cardiovascular Medicine, University of Aberdeen, Aberdeen, United Kingdom (S.S., K.S., M.F.); and Cardiology Unit, The Queen Elizabeth Hospital, Adelaide, Australia (J.H.)
| | - Konstantin Schwarz
- From the Department of Cardiovascular Medicine, University of Aberdeen, Aberdeen, United Kingdom (S.S., K.S., M.F.); and Cardiology Unit, The Queen Elizabeth Hospital, Adelaide, Australia (J.H.)
| | - John Horowitz
- From the Department of Cardiovascular Medicine, University of Aberdeen, Aberdeen, United Kingdom (S.S., K.S., M.F.); and Cardiology Unit, The Queen Elizabeth Hospital, Adelaide, Australia (J.H.)
| | - Michael Frenneaux
- From the Department of Cardiovascular Medicine, University of Aberdeen, Aberdeen, United Kingdom (S.S., K.S., M.F.); and Cardiology Unit, The Queen Elizabeth Hospital, Adelaide, Australia (J.H.).
| |
Collapse
|
10
|
van Ewijk PA, Schrauwen-Hinderling VB, Bekkers SCAM, Glatz JFC, Wildberger JE, Kooi ME. MRS: a noninvasive window into cardiac metabolism. NMR IN BIOMEDICINE 2015; 28:747-66. [PMID: 26010681 DOI: 10.1002/nbm.3320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 05/21/2023]
Abstract
A well-functioning heart requires a constant supply of a balanced mixture of nutrients to be used for the production of adequate amounts of adenosine triphosphate, which is the main energy source for most cellular functions. Defects in cardiac energy metabolism are linked to several myocardial disorders. MRS can be used to study in vivo changes in cardiac metabolism noninvasively. MR techniques allow repeated measurements, so that disease progression and the response to treatment or to a lifestyle intervention can be monitored. It has also been shown that MRS can predict clinical heart failure and death. This article focuses on in vivo MRS to assess cardiac metabolism in humans and experimental animals, as experimental animals are often used to investigate the mechanisms underlying the development of metabolic diseases. Various MR techniques, such as cardiac (31) P-MRS, (1) H-MRS, hyperpolarized (13) C-MRS and Dixon MRI, are described. A short overview of current and emerging applications is given. Cardiac MRS is a promising technique for the investigation of the relationship between cardiac metabolism and cardiac disease. However, further optimization of scan time and signal-to-noise ratio is required before broad clinical application. In this respect, the ongoing development of advanced shimming algorithms, radiofrequency pulses, pulse sequences, (multichannel) detection coils, the use of hyperpolarized nuclei and scanning at higher magnetic field strengths offer future perspective for clinical applications of MRS.
Collapse
Affiliation(s)
- Petronella A van Ewijk
- Maastricht University Medical Center, Human Biology, Maastricht, the Netherlands
- Maastricht University Medical Center, Radiology, Maastricht, the Netherlands
- Maastricht University Medical Center, NUTRIM - School for Nutrition, Toxicology and Metabolism, Maastricht, the Netherlands
| | - Vera B Schrauwen-Hinderling
- Maastricht University Medical Center, Human Biology, Maastricht, the Netherlands
- Maastricht University Medical Center, Radiology, Maastricht, the Netherlands
- Maastricht University Medical Center, NUTRIM - School for Nutrition, Toxicology and Metabolism, Maastricht, the Netherlands
| | | | - Jan F C Glatz
- Maastricht University Medical Center, Molecular Genetics, Maastricht, the Netherlands
- Maastricht University Medical Center, CARIM - Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | | | - M Eline Kooi
- Maastricht University Medical Center, Radiology, Maastricht, the Netherlands
- Maastricht University Medical Center, NUTRIM - School for Nutrition, Toxicology and Metabolism, Maastricht, the Netherlands
- Maastricht University Medical Center, CARIM - Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| |
Collapse
|