1
|
Mortezaeefar M, Fotovat R, Shekari F, Sasani S. Comprehensive Understanding of the Interaction Among Stress Hormones Signalling Pathways by Gene Co-expression Network. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190226160742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Plants respond to various stresses at the same time. Recent studies show
that interactions of various phytohormones can play important roles in response to stresses.
Objective:
Although many studies have been done about the effects of the individual hormones,
little information exists about the crosstalk among the hormone signalling pathways in plants.
Methods:
In this work, the weighted gene co-expression network analysis method was used to
define modules containing genes with highly correlated expression patterns in response to abscisic
acid, jasmonic acid, and salicylic acid in Arabidopsis.
Results:
Results indicate that plant hormones cause major changes the expression profile and
control diverse cell functions, including response to environmental stresses and external factors,
cell cycle, and antioxidant activity. In addition, AtbHLH15 and HY5 transcription factors can
participate in phytochrome pathways in response to the phytohormones. It is probable that some
Type III WRKY transcription factors control the response to bacterium separately from the other
stresses. The E2Fa/DPa transcription factor also regulates the cell cycle.
Conclusion:
In general, many processes and pathways in plants may be regulated using a
combination of abscisic acid, jasmonic acid, and salicylic acid.
Collapse
Affiliation(s)
- Maryam Mortezaeefar
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Reza Fotovat
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Farid Shekari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Shahryar Sasani
- Crop and Horticultural Sciences Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
| |
Collapse
|
2
|
Hilley JL, Weers BD, Truong SK, McCormick RF, Mattison AJ, McKinley BA, Morishige DT, Mullet JE. Sorghum Dw2 Encodes a Protein Kinase Regulator of Stem Internode Length. Sci Rep 2017; 7:4616. [PMID: 28676627 PMCID: PMC5496852 DOI: 10.1038/s41598-017-04609-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
Sorghum is an important C4 grass crop grown for grain, forage, sugar, and bioenergy production. While tall, late flowering landraces are commonly grown in Africa, short early flowering varieties were selected in US grain sorghum breeding programs to reduce lodging and to facilitate machine harvesting. Four loci have been identified that affect stem length (Dw1-Dw4). Subsequent research showed that Dw3 encodes an ABCB1 auxin transporter and Dw1 encodes a highly conserved protein involved in the regulation of cell proliferation. In this study, Dw2 was identified by fine-mapping and further confirmed by sequencing the Dw2 alleles in Dwarf Yellow Milo and Double Dwarf Yellow Milo, the progenitor genotypes where the recessive allele of dw2 originated. The Dw2 locus was determined to correspond to Sobic.006G067700, a gene that encodes a protein kinase that is homologous to KIPK, a member of the AGCVIII subgroup of the AGC protein kinase family in Arabidopsis.
Collapse
Affiliation(s)
- Josie L Hilley
- Interdisciplinary Program in Genetics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Brock D Weers
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Sandra K Truong
- Interdisciplinary Program in Genetics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Ryan F McCormick
- Interdisciplinary Program in Genetics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Ashley J Mattison
- Interdisciplinary Program in Genetics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Brian A McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Daryl T Morishige
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - John E Mullet
- Interdisciplinary Program in Genetics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA. .,Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Resequencing at ≥40-Fold Depth of the Parental Genomes of a Solanum lycopersicum × S. pimpinellifolium Recombinant Inbred Line Population and Characterization of Frame-Shift InDels That Are Highly Likely to Perturb Protein Function. G3-GENES GENOMES GENETICS 2015; 5:971-81. [PMID: 25809074 PMCID: PMC4426381 DOI: 10.1534/g3.114.016121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A recombinant in-bred line population derived from a cross between Solanum lycopersicum var. cerasiforme (E9) and S. pimpinellifolium (L5) has been used extensively to discover quantitative trait loci (QTL), including those that act via rootstock genotype, however, high-resolution single-nucleotide polymorphism genotyping data for this population are not yet publically available. Next-generation resequencing of parental lines allows the vast majority of polymorphisms to be characterized and used to progress from QTL to causative gene. We sequenced E9 and L5 genomes to 40- and 44-fold depth, respectively, and reads were mapped to the reference Heinz 1706 genome. In L5 there were three clear regions on chromosome 1, chromosome 4, and chromosome 8 with increased rates of polymorphism. Two other regions were highly polymorphic when we compared Heinz 1706 with both E9 and L5 on chromosome 1 and chromosome 10, suggesting that the reference sequence contains a divergent introgression in these locations. We also identified a region on chromosome 4 consistent with an introgression from S. pimpinellifolium into Heinz 1706. A large dataset of polymorphisms for the use in fine-mapping QTL in a specific tomato recombinant in-bred line population was created, including a high density of InDels validated as simple size-based polymerase chain reaction markers. By careful filtering and interpreting the SnpEff prediction tool, we have created a list of genes that are predicted to have highly perturbed protein functions in the E9 and L5 parental lines.
Collapse
|
4
|
Cochran JC. Kinesin Motor Enzymology: Chemistry, Structure, and Physics of Nanoscale Molecular Machines. Biophys Rev 2015; 7:269-299. [PMID: 28510227 DOI: 10.1007/s12551-014-0150-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/16/2014] [Indexed: 11/25/2022] Open
Abstract
Molecular motors are enzymes that convert chemical potential energy into controlled kinetic energy for mechanical work inside cells. Understanding the biophysics of these motors is essential for appreciating life as well as apprehending diseases that arise from motor malfunction. This review focuses on kinesin motor enzymology with special emphasis on the literature that reports the chemistry, structure and physics of several different kinesin superfamily members.
Collapse
Affiliation(s)
- J C Cochran
- Department of Molecular & Cellular Biochemistry, Indiana University, Simon Hall Room 405C, 212 S. Hawthorne Dr., Bloomington, IN, 47405, USA.
| |
Collapse
|